1
|
Li Z, Zhao Y, Luo K. Molecular Mechanisms of Heterosis and Its Applications in Tree Breeding: Progress and Perspectives. Int J Mol Sci 2024; 25:12344. [PMID: 39596408 PMCID: PMC11594601 DOI: 10.3390/ijms252212344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Heterosis, or hybrid vigor, refers to the phenomenon where hybrid progenies outperform their parents in traits such as yield and resistance. This phenomenon has been widely applied in plant breeding. Recent advances in high-throughput genomics have significantly advanced our understanding of heterosis. This review systematically summarizes the genetic, molecular, and epigenetic mechanisms underlying heterosis. Furthermore, we discuss recent advances in predictive methods for heterosis and their applications in improving growth rate, resistance to abiotic stresses, and wood yield in tree species. We also explore the role of tree genomics in unraveling the mechanisms underlying heterosis, emphasizing the potential of integrating high-resolution genomics, single-cell sequencing, and spatial transcriptomics to achieve a comprehensive understanding of heterosis from the molecular to spatial levels. Building on this, CRISPR-based gene-editing technologies can be employed to precisely edit heterotic loci, enabling the study of allele function. Additionally, molecular marker-assisted selection (MAS) can be utilized to identify heterotic loci in parental lines, facilitating the selection of optimal hybrid combinations and significantly reducing the labor and time costs of hybrid breeding. Finally, we review the utilization of heterosis in tree breeding and provide a forward-looking perspective on future research directions, highlighting the potential of integrating multi-omics approaches and emerging gene-editing tools to revolutionize tree hybrid breeding.
Collapse
Affiliation(s)
- Zeyu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yan Zhao
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Wei F, Chen H, Wei G, Tang D, Quan C, Xu M, Li L, Qin S, Liang Y. Physiological and metabolic responses of Sophora tonkinensis to cadmium stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1889-1907. [PMID: 39687702 PMCID: PMC11646257 DOI: 10.1007/s12298-024-01522-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 12/18/2024]
Abstract
Sophora tonkinensis is a significant medicinal plant indigenous to China and Vietnam. In China, S. tonkinensis is mainly grown naturally on limestone mountains or is cultivated artificially in arable land. Heavy metal contamination in agricultural soil, particularly cadmium (Cd), poses serious threats to soil health, as well as the growth and productivity of S. tonkinensis. However, information regarding the physiological and metabolic mechanism of S. tonkinensis under Cd toxicity conditions remains limited. In this study, a hydroponic experiment was conducted to investigate the physiological and metabolic responses of S. tonkinensis to varying concentrations of Cd (0, 20, 40, 60, 80 μM), designated as T0, T1, T2, T3, and T4 respectively. The results indicated that the Cd stress significantly impaired the growth and physiological activity of S. tonkinensis. Specifically, reductions were observed in plant height (15.3% to 37.1%) along with shoot fresh weight (9.6% to 36.3%), shoot dry weight (8.2% to 34.1%), root fresh weight (6.7% to 38.2%) and root dry weight (5.1% to 51.3%). This impairment was attributed to a higher uptake and accumulation of Cd in the roots. The decrease in growth was closely linked to the increased production of reactive oxygen species (ROS), which led to cellular damage under Cd toxicity; however, increased antioxidant enzyme activities improved the stress tolerance of S. tonkinensis's stress to Cd toxicity. Non-targeted metabolomic analyses identified 380 differential metabolites (DMs) in the roots of S. tonkinensis subjected to varying level of Cd stress, including amino acids, organic acids, fatty acids, ketones, and others compounds. Further KEGG pathway enrichment analysis revealed that several pathways, such as ABC transporters, isoflavonoid biosynthesis, and pyrimidine metabolism were involved in the response to Cd. Notably, the isoflavonoid biosynthesis pathway was significantly enriched in both T0 vs. T2 and T0 vs. the higher level (80 μM) of Cd stress, highlighting its significance in the plant responses to Cd stress. In conclusion, the identification of key pathways and metabolites is crucial for understanding Cd stress tolerance in S. tonkinensis. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01522-w.
Collapse
Affiliation(s)
- Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Hao Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Guili Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Meihua Xu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Linxuan Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530021 China
| |
Collapse
|
3
|
Luo D, Li Z, Mubeen S, Rehman M, Cao S, Wang C, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. Integrated transcriptomic and proteomic analysis revealed the regulatory role of 5-azacytidine in kenaf salt stress alleviation. J Proteomics 2024; 309:105328. [PMID: 39368635 DOI: 10.1016/j.jprot.2024.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Salinity stress limits agricultural production. The DNA methyltransferase inhibitor, 5-azacitidine (5-azaC), plays a role in plant abiotic stress regulation, but its molecular basis in mediating salinity tolerance in kenaf remains unclear. To investigate the effects on 5-azaC on alleviating salt stress, kenaf seedlings were pre-treated with 0, 50, 100, 150, and 200 μM 5-azaC and then exposed to 150 mM NaCl in a nutrient solution. Physiological, transcriptomic, and proteomic analyses were conducted on the root system to understand the regulatory mechanism of 5-azaC (comparing 5-azaC150 and control group 5-azaC0) under salt stress. The results indicated that 5-azaC significantly mitigated salt stress in kenaf by activating the antioxidant system, reducing reactive oxygen species (ROS), and increasing starch, soluble sugars, and adenosine triphosphate (ATP) content. A total of 14,348 differentially expressed genes (DEGs) and 313 differentially abundant proteins (DAPs) were identified. Combined proteomic and transcriptomic analysis revealed 27 DEGs/DAPs, with jointly up-regulated proteins (genes) including HcTHI1, HcBGLU11, and HcCBL1, and jointly down-regulated proteins (genes) including HcGAPDH, HcSS, and HcPP2C52. Overexpression and virus-induced gene silencing (VIGS) of HcPP2C52 demonstrated its role as a negative regulator of salt tolerance. These findings provide insights into the regulatory role of 5-azaC in plant responses to abiotic stresses. SIGNIFICANCE: The specific molecular mechanism by which 5-azaC affects gene expression and protein activity of kenaf has been revealed, leading to enhanced salt tolerance.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China; College of Life Science & Technology, Guangxi University, Nanning 530004, China.
| | - Zengqiang Li
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China; Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Samavia Mubeen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Muzammal Rehman
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Shan Cao
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Caijin Wang
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Jiao Yue
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Jiao Pan
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning 530004, China.
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| | - Peng Chen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning 530004, China.
| |
Collapse
|
4
|
Chen C, Wu Q, Yue J, Wang X, Wang C, Wei R, Li R, Jin G, Chen T, Chen P. A cyclic nucleotide-gated channel gene HcCNGC21 positively regulates salt and drought stress responses in kenaf (Hibiscus cannabinus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112111. [PMID: 38734143 DOI: 10.1016/j.plantsci.2024.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.
Collapse
Affiliation(s)
- Canni Chen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Qijing Wu
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Jiao Yue
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Xu Wang
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Caijin Wang
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Rujian Wei
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China.
| |
Collapse
|
5
|
Luo D, Wang C, Mubeen S, Rehman M, Cao S, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. HcLEA113, a late embryogenesis abundant protein gene, positively regulates drought-stress responses in kenaf. PHYSIOLOGIA PLANTARUM 2024; 176:e14506. [PMID: 39191701 DOI: 10.1111/ppl.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Late embryogenesis abundant (LEA) proteins have been widely recognized for their role in various abiotic stress responses in higher plants. Nevertheless, the specific mechanism responsible for the function of LEA proteins in plants has not yet been explored. This research involved the isolation and characterization of HcLEA113 from kenaf, revealing a significant increase in its expression in response to drought stress. When HcLEA113 was introduced into yeast, it resulted in an improved survival rate under drought conditions. Furthermore, the overexpression of HcLEA113 in tobacco plants led to enhanced tolerance to drought stress. Specifically, HcLEA113-OE plants exhibited higher germination rates, longer root lengths, greater chlorophyll content, and higher relative water content under drought stress compared to wild-type (WT) plants, while their relative conductivity was significantly lower than that of WT plants. Further physiological measurements revealed that the proline content, soluble sugars, and antioxidant activities of WT and HcLEA113-OE tobacco leaves increased significantly under drought stress, with greater changes in HcLEA113-OE plants than WT. The increase in hydrogen peroxide (H2O2), superoxide anions (O2 -), and malondialdehyde (MDA) content was significantly lower in HcLEA113-OE lines than in WT plants. Additionally, HcLEA113-OE plants can activate reactive oxygen species (ROS)- and osmotic-related genes in response to drought stress. On the other hand, silencing the HcLEA113 gene through virus-induced gene silencing (VIGS) in kenaf plants led to notable growth suppression when exposed to drought conditions, manifesting as decreased plant height and dry weight. Meanwhile, antioxidant enzymes' activity significantly decreased and the ROS content increased. This study offers valuable insights for future research on the genetic engineering of drought resistance in plants.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Caijin Wang
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Muzammal Rehman
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Shan Cao
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Yue
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Pan
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Peng Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| |
Collapse
|
6
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
7
|
Kamali S, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z, Haghighat S. Methyl jasmonate conferred Arsenic tolerance in Thymus kotschyanus by DNA hypomethylation, stimulating terpenoid metabolism, and upregulating two cytochrome P450 monooxygenases. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133163. [PMID: 38064945 DOI: 10.1016/j.jhazmat.2023.133163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Arsenic (As) is a highly cytotoxic element impairing normal cellular functions, and its bioremediation has become one of the environmental concerns. This study explored the molecular and physiological responses of thyme (Thymus kotschyanus) seedlings to incorporating As (0 and 10 mgl-1) and methyl jasmonate (MJ; 0 and 10 µM) into the culture medium. The MJ treatment reinforced root system and mitigated the As cytotoxicity risk. MJ contributed to hypomethylation, a potential adaptation mechanism for conferring the As tolerance. Two cytochrome P450 monooxygenases, including CYP71D178 and CYP71D180 genes, were upregulated in response to As and MJ. The MJ treatment contributed to up-regulation in the γ-terpinene synthase (TPS) gene, a marker gene in the terpenoid metabolism. The As presence reduced photosynthetic pigments (chlorophylls and carotenoids), while the MJ utilization alleviated the As toxicity. The MJ supplementation increased proline accumulation and soluble phenols. The application of MJ declined the toxicity sign of As on the concentration of proteins. The activities of peroxidase, catalase, and phenylalanine ammonia-lyase (PAL) enzymes displayed an upward trend in response to As and MJ treatments. Taken collective, MJ can confer the As tolerance by triggering DNA hypomethylation, regulating CYPs, and stimulating primary and secondary metabolism, especially terpenoid.
Collapse
Affiliation(s)
- Soheila Kamali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of advanced sciences and technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy;
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| |
Collapse
|
9
|
Chen Y, Huang Q, Hua X, Zhang Q, Pan W, Liu G, Yu C, Zhong F, Lian B, Zhang J. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107963. [PMID: 37595402 DOI: 10.1016/j.plaphy.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
CBFs (C-repeat binding factors) have multiple functions in abiotic stress adaption; functional research of these genes will provide precious gene resources for plant genetic improvement. In this study, a homolog of AtCBFs, SmDREB A1-4 was cloned and its role in salt tolerance was explored. SmDREB A1-4 is a member of DREB A1 subgroup with 10 members. SmDREB A1-4 localized in nuclei and cytoplasm and expressed ubiquitously in different tissue and organs. The expression level of SmDREB A1-4 could be induced by NaCl treatment and the TC-rich repeat and DREB motif on the SmDREB A1-4 gene promoter may mediate the NaCl-induced expression pattern. Overexpression of the SmDREB A1-4 gene in Arabidopsis enhanced the salt tolerance of transgenic Arabidopsis lines, while down-regulated the expression level in Salix plantlets by Virus induce gene silencing decreased the salt tolerance capacity in VIGS Salix plantlets. Experiments data from both sides confirmed that SmDREB A1-4 is a positive regulatory factor in salt stress tolerance. qRT-PCR and luciferase reporter assays revealed that SOS1 and DREB2A are downstream genes of SmDREB A1-4. Through upregulating the expression of SOS1 and DREB2A, SmDREB A1-4 enhanced plant tolerance to salinity by regulating ion homeostasis, reduction of Na+/K+ ratio, and improvement of proline biosynthesis. This research offers a potentially valuable gene resource for the stress-resistant varieties breeding of Salix matsudana in the future.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Qianhui Huang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Xuan Hua
- School of Life Sciences, Nantong University, Nantong, China.
| | - Qi Zhang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Wenjia Pan
- School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| |
Collapse
|