1
|
Delgado-García E, Piedras P, Gómez-Baena G, García-Magdaleno IM, Pineda M, Gálvez-Valdivieso G. Nucleoside Metabolism Is Induced in Common Bean During Early Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:651015. [PMID: 33841480 PMCID: PMC8027947 DOI: 10.3389/fpls.2021.651015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Nucleoside hydrolases (NSH; nucleosidases) catalyze the cleavage of nucleosides into ribose and free nucleobases. These enzymes have been postulated as key elements controlling the ratio between nucleotide salvage and degradation. Moreover, they play a pivotal role in ureidic legumes by providing the substrate for the synthesis of ureides. Furthermore, nucleotide metabolism has a crucial role during germination and early seedling development, since the developing seedlings require high amount of nucleotide simultaneously to the mobilization of nutrient in cotyledons. In this study, we have cloned two nucleosidases genes from Phaseolus vulgaris, PvNSH1 and PvNSH2, expressed them as recombinant proteins, and characterized their catalytic activities. Both enzymes showed a broad range of substrate affinity; however, PvNSH1 exhibited the highest activity with uridine, followed by xanthosine, whereas PvNSH2 hydrolyses preferentially xanthosine and shows low activity with uridine. The study of the regulation of nucleosidases during germination and early postgerminative development indicated that nucleosidases are induced in cotyledons and embryonic axes just after the radicle emergence, coincident with the induction of nucleases activity and the synthesis of ureides in the embryonic axes, with no remarkable differences in the level of expression of both nucleosidase genes. In addition, nucleosides and nucleobase levels were determined as well in cotyledons and embryonic axes. Our results suggest that PvNSH1 and PvNSH2 play an important role in the mobilization of nutrients during this crucial stage of plant development.
Collapse
Affiliation(s)
- Elena Delgado-García
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Guadalupe Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Isabel M. García-Magdaleno
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Espectrometría de Masas y Cromatografía, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Gálvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal. Grupo de Fisiología Molecular y Biotecnología de Plantas. Campus de Excelencia Internacional en Agroalimentación, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Wang Y, Jia P, Sharif R, Li Z, Li Y, Chen P. High-Level Production of DNA-Specific Endonuclease AsEndI with Synonymous Codon and its Potential Utilization for Removing DNA Contamination. Appl Biochem Biotechnol 2017; 185:641-654. [PMID: 29250754 DOI: 10.1007/s12010-017-2672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
Endonuclease I is a widely distributed periplasmic or extracellular enzyme. A method for the high-level production of recombinant AsEndI (endonuclease I from Aliivibrio salmonicida) in Escherichia coli with secretion expression is investigated. The coding sequence of AsEndI gene was assembled according to the E. coli codon usage bias, and AsEndI was expressed in the periplasm of E. coli TOP10 with a C-terminal 6× His-tagged fusion. The recombinant AsEndI (His-AsEndI) was purified by Ni-NTA resin with a yield of 1.29 × 107 U from 1-L LB medium. His-AsEndI could be classified into Ca2+/Mg2+-dependent nucleases and showed highest nuclease activity to dsDNA at pH 8.0 and 37 °C. His-AsEndI is highly active in a broad range of salt concentration range up to 1.0 M with optimal NaCl concentration at 0.4 M. His-AsEndI can effectively remove DNA contamination in RNA sample or in PCR reagents to the level that cannot be detected by highly sensitive nested PCR and without adverse effects on the subsequent PCR reaction. His-AsEndI can remove DNA contamination at high salt conditions, especially for the DNA that may be shielded by DNA-binding protein at low salt conditions.
Collapse
Affiliation(s)
- Yuan Wang
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Peng Jia
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Rahat Sharif
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Zhengchen Li
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yuhong Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| | - Peng Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Isolation of a Ribonuclease with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Japanese Large Brown Buckwheat Seeds. Appl Biochem Biotechnol 2014; 175:2456-67. [DOI: 10.1007/s12010-014-1438-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023]
|
4
|
Lambert R, Quiles FA, Cabello-Díaz JM, Piedras P. Purification and identification of a nuclease activity in embryo axes from French bean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:137-143. [PMID: 24908514 DOI: 10.1016/j.plantsci.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/02/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Plant nucleases are involved in nucleic acid degradation associated to programmed cell death processes as well as in DNA restriction, repair and recombination processes. However, the knowledge about the function of plant nucleases is limited. A major nuclease activity was detected by in-gel assay with whole embryonic axes of common bean by using ssDNA or RNA as substrate, whereas this activity was minimal in cotyledons. The enzyme has been purified to electrophoretic homogeneity from embryonic axes. The main biochemical properties of the purified enzyme indicate that it belongs to the S1/P1 family of nucleases. This was corroborated when this protein, after SDS-electrophoresis, was excised from the gel and further analysis by MALDI TOF/TOF allowed identification of the gene (PVN1) that codes this protein. The gene that codes the purified protein was identified. The expression of PVN1 gene was induced at the specific moment of radicle protrusion. The inclusion of inorganic phosphate to the imbibition media reduced the level of expression of this gene and the nuclease activity suggesting a relationship with the phosphorous status in French bean seedlings.
Collapse
Affiliation(s)
- Rocío Lambert
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Francisco Antonio Quiles
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Juan Miguel Cabello-Díaz
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Grupo de Fisiología Molecular y Biotecnología de Plantas, Campus Rabanales, Edif. Severo Ochoa, 1ª Planta, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
5
|
Tzatzani TT, Dimassi-Theriou K, Yupsanis T, Bosabalidis A, Therios I, Sarropoulou V. Globular body production, their anatomy, DNase gel analysis and NDP kinase activity in root tips of Poncirus trifoliata L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:247-253. [PMID: 23974357 DOI: 10.1016/j.plaphy.2013.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Green globular bodies were developed from Poncirus trifoliata L. root tip explants as a response to addition in the substrate of different growth regulators. From the globular bodies, shoots initiated and grew. Median section of the globular bodies reveals that they are composed of parenchyma cells and originate from the pericycle. The activity of DNases during shoot formation from globular bodies was influenced by the type and concentration of plant growth regulators that were added in the nutrient substrate. Peptide bands formation was also influenced by the increase of BA concentration. Consequently, BA, NAA and IAA combination influenced 5'-triphosphonucleosides (NTPs) appearance and activity in the presence of metal. Peptide bands resulted from the electrophoretic analysis of endogenous protein phosphorylation, proved to be catalytic subunits of NDP kinases, as they all phosphorylate diphosphonucleosides. The enzymes DNases and NDP kinases could be used as a scientific tool for the study of shoot formation from P. trifoliata L. green globular bodies.
Collapse
Affiliation(s)
- Thiresia-Teresa Tzatzani
- Department of Horticulture, Laboratory of Pomology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
6
|
Fedoreyeva LI, Vanyushin BF. Mechanisms of catalytic action and chemical modifications of endonucleases WEN1 and WEN2 from wheat seedlings. BIOCHEMISTRY (MOSCOW) 2013; 78:41-52. [PMID: 23379558 DOI: 10.1134/s0006297913010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrolysis of DNA catalyzed by wheat endonucleases WEN1 and WEN2 is pronouncedly processive. A correlation has been revealed between appearance of new products of DNA hydrolysis with different length and conformational changes in the enzymes. The first conformational conversion of the endonucleases is associated with appearance of large fragments of DNA hydrolysis with length longer than 500 bp, and the second conversion is associated with formation of oligonucleotides with length of 120-140 bp, and the third conversion is associated with formation of short oligonucleotides and mononucleotides. Formation of the DNA-enzyme complex is accompanied by appearance of fluorescence at λ = 410-440 nm. The intensity, positions, and numbers of maximums of the fluorescence spectra of DNA-WEN1 and DNA-WEN2 complexes are different and depend on the methylation status of the DNA and on the presence of Mg2+. The endonucleases hydrolyze DNA by two mechanisms: one is metal-independent, and the other depends on one or two Mg2+ ions. One Mg2+ ion is located inside the catalytic center of WEN1, whereas the WEN2 center contains two Mg2+ ions. The first (site-specific) stage of DNA hydrolysis does not depend on Mg2+. Mg2+ ions evoke changes in the site specificity of the endonuclease action (WEN1) and abolish their ability to recognize the methylation status of DNA. Products of DNA hydrolysis by endonucleases WEN1 and WEN2 in the presence of Mg2+ are similar in length (120-140 bp). The endonucleases have at least two centers (domains) - catalytic and substrate-binding. Two histidine and apparently two lysine plus two dicarboxylic amino acid residues are present inside the catalytic center of WEN1. The catalytic center of WEN2 contains at least one histidine residue and apparently two residues of aspartic or glutamic acid, which are involved in coordination of the metal ions. The catalytic centers of WEN1 and WEN2 seem to be formed, respectively, by HD/E(D/EK)KH and HD/ED/E amino acid residues. The site-specificity of the endonuclease action is due to the DNA-binding domain. This domain contains dicarboxylic amino acid residues, which seem to be responsible for sensitivity of the enzymes to the methylation status of DNA. The hydroxyl groups of tyrosine residues in the enzymes also seem to contribute to recognizing methylated bases in DNA.
Collapse
Affiliation(s)
- L I Fedoreyeva
- All-Russian Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow, 127550, Russia
| | | |
Collapse
|
7
|
Fedoreyeva LI, Vanyushin BF. Processing character of the action of wheat endonucleases WEN1 and WEN2. Kinetic parameters. BIOCHEMISTRY (MOSCOW) 2012; 77:485-91. [PMID: 22813589 DOI: 10.1134/s0006297912050082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The wheat seedling endonucleases WEN1 and WEN2 dependent on Mg(2+), Ca(2+), and S-adenosyl-L-methionine (SAM) and sensitive to the substrate DNA methylation status have an expressed processing action. The enzymes hydrolyze DNA at a few subsequent stages: first, they split λ phage DNA specifically at CNG-sites (WEN1) with liberation of large fragments; second, they hydrolyze these fragments to 120-140 bp oligonucleotides that finally are hydrolyzed to very short fragments and mononucleotides. Initial stages of DNA hydrolysis may proceed in the absence of Mg(2+), but subsequent hydrolysis stages are very strongly stimulated by Mg(2+). It cannot be ruled out that modulation of enzymatic activity with Mg(2+) and probably with DNA fragments formed is associated with reorganization of the structure of eukaryotic (wheat) endonucleases with respective changes in their catalytic properties and site specificity of action. Michaelis constant value for WEN1 endonuclease on hydrolysis of methylated λ phage DNA containing Cm(5)CWGG and Gm(6)ATC sites is four-fold lower compared with that observed on hydrolysis of unmethylated λ phage DNA. This may indicate that affinity of WEN1 enzyme to methylated DNA is higher than that to unmethylated DNA. In the presence of SAM, the Michaelis constant for WEN2 on the DNA hydrolysis stage characterized by formation of 120-140 bp fragments is decreased, but for WEN1 it is increased by 1.5-2.0-fold. This means that SAM inhibits WEN1 but stimulates WEN2. Thus, wheat endonucleases WEN1 and WEN2 differ significantly in affinities to substrate DNAs with different methylation status, in velocities of DNA hydrolysis, and time of production of DNA fragments of similar length. It seems that the investigated plant endonucleases can hydrolyze DNA in the nucleus as well to both large and very short fragments including mononucleotides, that is, in particular, essential for utilization of cell nucleic acid material during apoptosis.
Collapse
Affiliation(s)
- L I Fedoreyeva
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, ul. Timiryazevskaya 42, 127550 Moscow, Russia
| | | |
Collapse
|
8
|
Gomes-Filho E, Lima CRFM, Costa JH, da Silva ACM, da Guia Silva Lima M, de Lacerda CF, Prisco JT. Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. PLANT CELL REPORTS 2008; 27:147-57. [PMID: 17899099 DOI: 10.1007/s00299-007-0433-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/27/2007] [Accepted: 08/03/2007] [Indexed: 05/17/2023]
Abstract
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu(2+), Hg(2+), and Zn(2+) ions, stimulated by MgCl(2), and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.
Collapse
Affiliation(s)
- Enéas Gomes-Filho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, P.O. Box 6039, 60455-900, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | |
Collapse
|