1
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
2
|
Zhou H, Deng XW, He H. Gene expression variations and allele-specific expression of two rice and their hybrid in caryopses at single-nucleus resolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1171474. [PMID: 37287712 PMCID: PMC10242081 DOI: 10.3389/fpls.2023.1171474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023]
Abstract
Seeds are an indispensable part of the flowering plant life cycle and a critical determinant of agricultural production. Distinct differences in the anatomy and morphology of seeds separate monocots and dicots. Although some progress has been made with respect to understanding seed development in Arabidopsis, the transcriptomic features of monocotyledon seeds at the cellular level are much less understood. Since most important cereal crops, such as rice, maize, and wheat, are monocots, it is essential to study transcriptional differentiation and heterogeneity during seed development at a finer scale. Here, we present single-nucleus RNA sequencing (snRNA-seq) results of over three thousand nuclei from caryopses of the rice cultivars Nipponbare and 9311 and their intersubspecies F1 hybrid. A transcriptomics atlas that covers most of the cell types present during the early developmental stage of rice caryopses was successfully constructed. Additionally, novel specific marker genes were identified for each nuclear cluster in the rice caryopsis. Moreover, with a focus on rice endosperm, the differentiation trajectory of endosperm subclusters was reconstructed to reveal the developmental process. Allele-specific expression (ASE) profiling in endosperm revealed 345 genes with ASE (ASEGs). Further pairwise comparisons of the differentially expressed genes (DEGs) in each endosperm cluster among the three rice samples demonstrated transcriptional divergence. Our research reveals differentiation in rice caryopsis from the single-nucleus perspective and provides valuable resources to facilitate clarification of the molecular mechanism underlying caryopsis development in rice and other monocots.
Collapse
Affiliation(s)
- Han Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| |
Collapse
|
3
|
Binodh AK, Thankappan S, Ravichandran A, Mitra D, Alagarsamy S, Panneerselvam P, Senapati A, Sami R, Al-Mushhin AAM, Aljahani AH, Alyamani A, Alqurashi M. Synergistic Modulation of Seed Metabolites and Enzymatic Antioxidants Tweaks Moisture Stress Tolerance in Non-Cultivated Traditional Rice Genotypes during Germination. PLANTS 2022; 11:plants11060775. [PMID: 35336657 PMCID: PMC8955497 DOI: 10.3390/plants11060775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (−) 1.0 MPa, (−) 1.25 MPa and (−) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (−) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Asish Kanakaraj Binodh
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Sugitha Thankappan
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, India;
| | - Anupriya Ravichandran
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Killikulam 628252, India;
| | - Debasis Mitra
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
| | - Senthil Alagarsamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Ansuman Senapati
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Amal Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (M.A.)
| | - Mohammed Alqurashi
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (M.A.)
| |
Collapse
|
4
|
Kumar RR, Bhargava DV, Pandit K, Goswami S, Mukesh Shankar S, Singh SP, Rai GK, Tara Satyavathi C, Praveen S. Lipase - The fascinating dynamics of enzyme in seed storage and germination - A real challenge to pearl millet. Food Chem 2021; 361:130031. [PMID: 34058661 DOI: 10.1016/j.foodchem.2021.130031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022]
Abstract
Pearl millet is considered as 'nutri-cereal' because of high nutrient density of the seeds. The grain has limited use because of low keeping quality of the flour due to the activities of rancidity causing enzymes like lipase, lox, pox and PPO. Among all the enzymes, lipase is most notorious because of its robust nature and high activity under different conditions. we have identified 2180 putative transcripts showing homology with different variants of lipase precursor through transcriptome data mining (NCBI BioProject acc. no. PRJNA625418). Lipase plays dual role of facilitating the germination of seeds and deteriorating the quality of the pearl millet flour through hydrolytic rancidity. Different physiochemical methods like heat treatment, micro oven, hydrothermal, etc. have been developed to inhibit lipase activity in pearl millet flour. There is further need to develop improved processing technologies to inhibit the hydrolytic and oxidative rancidity in the floor with enhanced shelf-life.
Collapse
Affiliation(s)
- Ranjeet R Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India.
| | - D V Bhargava
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Kangkan Pandit
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Suneha Goswami
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - S Mukesh Shankar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Sumer P Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi Pin 110012, India
| | - Gyanendra K Rai
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, Pin 180009, India
| | - C Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet, Jodhpur, Rajasthan Pin 342304, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi Pin 110012, India.
| |
Collapse
|
5
|
Sinha K, Kaur R, Singh N, Kaur S, Rishi V, Bhunia RK. Mobilization of storage lipid reserve and expression analysis of lipase and lipoxygenase genes in rice (Oryza sativa var. Pusa Basmati 1) bran during germination. PHYTOCHEMISTRY 2020; 180:112538. [PMID: 33091779 DOI: 10.1016/j.phytochem.2020.112538] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Storage lipid mobilization by lipases and lipoxygenases (LOXs) in response to developmental cues take place during seed germination. After rice grain milling, the endogenous lipases and LOXs present in the bran fraction come in contact with the storage lipid reserve or triacylglycerol (TAG). Lipases catalyze the hydrolysis of TAGs to non-esterified fatty acids (NEFAs) and glycerol. The NEFAs, especially linoleic acid (18:2) produced, are further subjected to oxidative rancidity via peroxidation reaction catalyzed by LOXs. This results in the production of conjugated hydroperoxides of 18:2 that influence the off-flavors in rice bran lipids. The aim of this study is to understand how lipid mobilization and expression of lipase and LOX genes occur in the bran of germinating rice grains (Oryza sativavar. Pusa Basmati 1). Our results show that the primary source of storage lipids in bran is TAG, and its mobilization starts at 4 days after imbibition (4 DAI). Using publically available RNA-seq data and phylogeny analyses, we selected a total of 18 lipase and 16 LOX genes in rice for their expression profiles during onset of lipid mobilization. Gene expression analyses revealed OsLip1, OsLip9, and OsLip13; and OsLOX3 and OsLOX14 as the predominantly expressed genes in bran of germinating rice grains. This study explores two important events in the germinating rice grains, namely, mobilization of storage lipids and expression pattern of lipase and LOX genes. The information generated in this study can be used to efficiently manipulate the genes to enhance the shelf-stability of bran lipid reserve.
Collapse
Affiliation(s)
- Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, 110026, India
| | - Nishu Singh
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, 304022, Rajasthan, India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Plant Tissue Culture and Genetic Engineering, Mohali, 140306, Punjab, India.
| |
Collapse
|
6
|
Zhang N, Wang M, Fu J, Shen Y, Ding Y, Wu D, Shu X, Song W. Identifying genes for resistant starch, slowly digestible starch, and rapidly digestible starch in rice using genome-wide association studies. Genes Genomics 2020; 42:1227-1238. [PMID: 32901332 DOI: 10.1007/s13258-020-00981-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The digestibility of starch is important for the nutritive value of staple food. Although several genes are responsible for resistant starch (RS) and slowly digestible starch (SDS), gaps persist concerning the molecular basis of RS and SDS formation due to the complex genetic mechanisms of starch digestibility. OBJECTIVES The objective of this study was to identify new genes for starch digestibility in rice and interprete the genetic mechanisms of RS and SDS by GWAS. METHODS Genome-wide association studies were conducted by associating the RS and SDS phenotypes of 104 re-sequenced rice lines to an SNP dataset of 2,288,867 sites using a compressed mixed linear model. Candidate genes were identified according to the position of the SNPs based on data from the MSU Rice Genome Annotation Project. RESULTS Seven quantitative trait loci (QTLs) were detected to be associated with the RS content, among which the SNP 6 m1765761 was located on Waxy. Starch branching enzymes IIa (BEIIa) close to QTL qRS-I4 was detected and further identified as a specific candidate gene for RS in INDICA. Two QTLs were associated with SDS, and the LOC_Os09g09360 encoding lipase was identified as a causal gene for SDS. CONCLUSIONS GWAS is a valid strategy to genetically dissect the formation of starch digestion properties in rice. RS formation in grains is dependent on the rice type; lipid might also contribute to starch digestibility and should be an alternative factor to improve rice starch digestibility.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China
| | - Maike Wang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China
| | - Ji Fu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China
| | - Yi Shen
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China
| | - Yi Ding
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China.
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, P.R. China. .,Agricultural Technology Extension Center, Zhejiang University, Hangzhou, 310029, P.R. China.
| |
Collapse
|
7
|
Zhao Y, Ma Y, Li Q, Yang Y, Guo J, Song J. Utilisation of stored lipids during germination in dimorphic seeds of euhalophyte Suaeda salsa. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1009-1016. [PMID: 32291000 DOI: 10.1071/fp17309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/26/2018] [Indexed: 05/09/2023]
Abstract
Utilisation of stored lipids plays an important role in germination of oil seeds. In the present study, key enzyme activity (lipase, isocitrate lyase and malate synthase) in lipid utilisation was determined during germination in dimorphic seeds of euhalophyte Suaeda salsa (L.) Pall. The results revealed that the percentage of germination were highest in intertidal brown seeds, followed by inland brown seeds and then inland black seeds moistened with 0 and 300mM NaCl during early seed germination. The same trend was found in the activity of three enzymes and soluble sugar content when seeds were moistened with 0 and 300mM NaCl for 3h. Salinity reduced the activity of three enzymes in inland brown and black seeds in the initial 3h, except that salinity had no adverse effect on isocitrate lyase activity of brown seeds. Salinity had no adverse effect on three enzymes in inland brown and black seeds in the initial 30h, except that it decreased malate synthase activity of black seeds. Salinity had no effect on three enzymes in intertidal brown seeds in the initial 3h and 30h. In conclusion, high activity of these enzymes in brown seeds may play an important role in utilisation of stored lipids during their rapid seed germination.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yanchun Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
8
|
Guzmán-Ortiz FA, Castro-Rosas J, Gómez-Aldapa CA, Mora-Escobedo R, Rojas-León A, Rodríguez-Marín ML, Falfán-Cortés RN, Román-Gutiérrez AD. Enzyme activity during germination of different cereals: A review. FOOD REVIEWS INTERNATIONAL 2018. [DOI: 10.1080/87559129.2018.1514623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Javier Castro-Rosas
- Área Académica de Química (AAQ), Universidad Autónoma del Estado de Hidalgo, Hidalgo. CP, Mexico
| | | | - Rosalva Mora-Escobedo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Unidad Profesional “Adolfo López Mateos”, Calle Wilfrido Massieu esquina Cda, Mexico City, Mexico
| | - Adriana Rojas-León
- Área Académica de Química (AAQ), Universidad Autónoma del Estado de Hidalgo, Hidalgo. CP, Mexico
| | | | | | | |
Collapse
|
9
|
Wang X, Zhou W, Lu Z, Ouyang Y, O CS, Yao J. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:200-8. [PMID: 26398804 DOI: 10.1016/j.plantsci.2015.07.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 05/02/2023]
Abstract
Storage lipid is a vital component for maintaining structure of seed storage substances and valuable for rice quality and food texture. However, the knowledge of lipid transporting related genes and their function in seed development have not been well elucidated yet. In this study, we identified OsLTPL36, a homolog of putative lipid transport protein, and showed specific expression in rice developing seed. Transcriptional profiling and in situ hybridization analysis confirmed that OsLTPL36 was exclusively expressed in developing seed coat and endosperm aleurone cells. Down-regulated expression of OsLTPL36 led to decreased seed setting rate and 1000-grain weight in transgenic plants. Further studies showed that suppressed expression of OsLTPL36 caused chalky endosperm and resulted in reduced fat acid content in RNAi lines as compared with wild type (WT). Histological analysis showed that the embryo development was delayed after down regulation of OsLTPL36. Moreover, impeded seed germination and puny seedling were also observed in the OsLTPL36 RNAi lines. The data demonstrated that OsLTPL36, a lipid transporter, was critical important not only for seed quality but also for seed development and germination in rice.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhanhua Lu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yidan Ouyang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chol Su O
- Life science Faculty, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea.
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Zhang YX, Yu D, Tian XL, Liu CY, Gai SP, Zheng GS. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:114-22. [PMID: 25091021 DOI: 10.1111/plb.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/14/2014] [Indexed: 05/06/2023]
Abstract
Endo-dormant flower buds of tree peony must have sufficient chilling duration to reinitiate growth, which is a major obstacle to the forcing culture of tree peony in winter. We used a combination of two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionisation time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS) to identify the differentially expressed proteins of tree peony after three different chilling treatments: endo-dormancy, endo-dormancy release and eco-dormancy stages. More than 200 highly reproducible protein spots were detected, and 31 differentially expressed spots (P < 0.05) were selected for further analysis. Finally, 20 protein spots were confidently identified from databases, which were annotated and classified into seven functional categories: response to abiotic or biotic stimulus (four), metabolic processes (four), other binding (three), transcription or transcription regulation (two), biological processes (one), cell biogenesis (one) and unclassified (five). The results of qPCR of five genes were mainly consistent with that of the protein accumulation analysis as determined by 2-DE. This indicated that most of these genes were mainly regulated at transcriptional level. The activity of nitrate reductase and pyruvate dehydrogenase E1 was consistent with the 2-DE results. The proteomic profiles indicated activation of citrate cycle, amino acid metabolism, lipid metabolism, energy production, calcium signalling and cell growth processes by chilling fulfilment to facilitate dormancy release in tree peony. Analysis of functions of identified proteins will increase our knowledge of endo-dormancy release in tree peony.
Collapse
Affiliation(s)
- Y X Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | |
Collapse
|
11
|
Patui S, Clincon L, Peresson C, Zancani M, Conte L, Del Terra L, Navarini L, Vianello A, Braidot E. Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:19-25. [PMID: 24576760 DOI: 10.1016/j.plantsci.2013.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
In this paper, lipase activity was characterized in coffee (Coffea arabica L.) seeds to determine its involvement in lipid degradation during germination. The lipase activity, evaluated by a colorimetric method, was already present before imbibition of seeds and was further induced during the germination process. The activity showed a biphasic behaviour, which was similar in seeds either with or without endocarp (parchment), even though the phenomenon showed a delay in the former. The enzymatic activity was inhibited by tetrahydrolipstatin (THL), a selective and irreversible inhibitor of lipases, and by a polyclonal antibody raised against purified alkaline lipase from castor bean. The immunochemical analysis evidenced a protein of ca. 60 kDa, cross-reacting with an anti-lipase antibody, in coffee samples obtained from seeds of both types. Gas chromatographic analyses of free fatty acid (FFA) content confirmed the differences shown in the lipolytic activity of the samples with or without parchment, since FFA levels increased more rapidly in samples without parchment. Finally, the analyses of the antioxidant capacity showed that the presence of parchment was crucial for lowering the oxidation of the lipophylic fraction, being the seeds with parchment less prone to oxidation processes.
Collapse
Affiliation(s)
- Sonia Patui
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Luisa Clincon
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Carlo Peresson
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Marco Zancani
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Lanfranco Conte
- Department of Food Science, University of Udine, via Sondrio 2/A, 33100 Udine, Italy.
| | | | | | - Angelo Vianello
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| | - Enrico Braidot
- Department of Agricultural and Environmental Sciences, Unit of Plant Biology, University of Udine, via delle Scienze 91, 33100 Udine, Italy.
| |
Collapse
|
12
|
Vijayakumar KR, Gowda LR. Rice (Oryza sativa) lipase: molecular cloning, functional expression and substrate specificity. Protein Expr Purif 2012. [PMID: 23202292 DOI: 10.1016/j.pep.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipases are important biocatalysts showing many interesting properties with industrial applications. Previously, different isoforms of lipases, Lipase-I and Lipase-II from rice (Oryza sativa) have been purified and characterized. Lipase-II identified as the major lipase in rice bran is designated as rice bran lipase (RBL). In this study, we report the cloning and expression of the RBL in Escherichia coli and Pichia pastoris. An exploration of expression in four different E. coli expression systems analyzed: BL21(DE3)pLysS, RIL(DE3)pLysS, Rosetta(DE3)pLysS and Origami(DE3)pLysS indicated that E. coli was not a suitable host. Expression with supplement of rare codons in Rosetta (DE3)pLysS and RIL(DE3)pLysS resulted in highest expression as insoluble inclusion bodies. The hurdles of expression in E. coli were overcome by expression as a secretory protein in P. pastoris X-33. The expression of lipase in shake flasks was optimized to achieve the maximum recombinant lipase activity of 152.6 U/mL. The purified recombinant lipase had a specific activity of 998 U/mg toward triacetin. The pH and temperature optimum of native and recombinant enzymes were pH 7.4 and 25 ± 2 °C, respectively. Both the lipases showed higher activity toward short chain triacylglycerol and unsaturated fatty acid enriched oils. Computational modeling and molecular docking studies reveal that the catalytic efficiency of the lipase correlates with the distance of the nucleophilic Ser(175)-OH and the scissile ester bond. The shorter the distance, the greater is the turnover of the substrate.
Collapse
Affiliation(s)
- K R Vijayakumar
- Department of Protein Chemistry and Technology, CSIR, Central Food Technological Research Institute, Mysore 570 020, India.
| | | |
Collapse
|