1
|
Dong J, Li X, Ma Y, Yang J, Chen J, Yang W, Zhou L, Wang J, Yang T, Zhang S, Zhao J, Liu Q, Zhou L, Zhu X, Liu B. Overexpression of OsGF14C enhances salinity tolerance but reduces blast resistance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1098855. [PMID: 36844058 PMCID: PMC9950408 DOI: 10.3389/fpls.2023.1098855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
High-salinity and blast disease are two major stresses that cause dramatic yield loss in rice production. GF14 (14-3-3) genes have been reported to play important role in biotic and abiotic stresses in plants. However, the roles of OsGF14C remain unknown. To understand the functions and regulatory mechanisms of OsGF14C in regulating salinity tolerance and blast resistance in rice, we have conducted OsGF14C-overexpressing transgenic experiments in the present study. Our results showed that overexpression of OsGF14C enhanced salinity tolerance but reduced blast resistance in rice. The enhanced salinity tolerance is related to the reduction of methylglyoxal and Na+ uptake instead of exclusion or compartmentation and the negative role of OsGF14C in blast resistance is associated with the suppression of OsGF14E, OsGF14F and PR genes. Our results together with the results from the previous studies suggest that the lipoxygenase gene LOX2 which is regulated by OsGF14C may play roles in coordinating salinity tolerance and blast resistance in rice. The current study for the first time revealed the possible roles of OsGF14C in regulating salinity tolerance and blast resistance in rice, and laid down a foundation for further functional study and crosstalk regulation between salinity and blast resistance in rice.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Xuezhong Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Engineering, Zhongkai, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jianyuan Yang
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - TiFeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Engineering, Zhongkai, China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| |
Collapse
|
2
|
Kumar V, Singh PK, Karkute SG, Tasleem M, Bhagat S, Abdin MZ, Sevanthi AM, Rai A, Sharma TR, Singh NK, Solanke AU. Identification of novel resources for panicle blast resistance from wild rice accessions and mutants of cv. Nagina 22 by syringe inoculation under field conditions. 3 Biotech 2022; 12:53. [PMID: 35127308 PMCID: PMC8804147 DOI: 10.1007/s13205-022-03122-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/16/2022] [Indexed: 02/03/2023] Open
Abstract
Panicle blast is the most severe type of rice blast disease. Screening of rice genotypes for panicle blast resistance at the field level requires an efficient and robust method of inoculation. Here, we standardized a method that can be utilized for both small- and large-scale screening and assessment of panicle blast infection and disease reaction. The method involves inoculation of Magnaporthe oryzae spore culture in the neck of the rice panicle using a syringe and covering the inoculation site with wet cotton wrapped with aluminum foil to provide the required humidity for spore germination. The method was standardized using panicle blast-resistant cv. Tetep and susceptible cv. HP2216 inoculated with Mo-ni-025 isolate of M. oryzae. The method was evaluated at phenotypic as well as molecular level by expression analysis of disease responsive pathogenesis-related (PR) genes. We found this method simple, robust, reliable, and highly efficient for screening of large germplasm sets of rice for panicle blast. This was validated by screening the wild rice germplasm for panicle blast response in the field using three M. oryzae strains and subsequently with the most virulent strain in 45 EMS-induced mutants of Nagina 22 shortlisted based on field screening in a blast hotspot region. We identified five novel blast disease-resistant wild rice genotypes and 15 Nagina 22 mutants that can be used in breeding programmes.
Collapse
Affiliation(s)
- Vishesh Kumar
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062 India
| | - Pankaj K. Singh
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
| | - Suhas Gorakh Karkute
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
| | - Mohd. Tasleem
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
| | - Someshwar Bhagat
- ICAR-NRRI-Central Rainfed Upland Rice Research Station (CRURRS), Hazaribagh, Jharkhand 825302 India
| | - M. Z. Abdin
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062 India
| | - Amitha Mithra Sevanthi
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, 110001 India
| | - Nagendra K. Singh
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
| | - Amolkumar U. Solanke
- ICAR-National Institute for Plant Biotechnology, LBS Building, New Delhi, Delhi 110012 India
| |
Collapse
|
3
|
Chen H, Wang X, Jin H, Liu R, Hou T. Discovery of the molecular mechanisms of the novel chalcone-based Magnaporthe oryzae inhibitor C1 using transcriptomic profiling and co-expression network analysis. SPRINGERPLUS 2016; 5:1851. [PMID: 27818889 PMCID: PMC5075332 DOI: 10.1186/s40064-016-3385-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Background In our previous studies, we discovered a series of chalcone-based phytopathogenic fungus inhibitors. However, knowledge of their effects, detailed targets and molecular mechanisms in Magnaporthe oryzae (M. oryzae) remained limited. Methods To explore the expression and function of differentially expressed genes in M. oryzae after treatment with compound C1, we analyzed the expression profile of mRNAs using a microarray analysis and GO, KEGG and WGCNA analysis, followed by qRT-PCR and Western blots to validate our findings. Results A total of 1013 up-regulated and 995 down-regulated mRNAs were differentially expressed after M. oryzae was treated with C1 compared to those of the control samples. Among these, cytochrome P450, glycylpeptide N-myristoyltransferase (NMT) and peroxisomal membrane protein 4 were identified as the most significant DEGs and were validated by experiments. Conclusion In conclusion, our study suggests that the combination of transcriptomic microarray, bioinformatics analysis and weighted gene co-expression networks can be used to predict potential therapeutic targets and to map the pathways regulated by small molecular natural product-like drugs. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-3385-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Xiaoyun Wang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| | - Rui Liu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064 China
| |
Collapse
|
4
|
Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses. PLoS One 2016; 11:e0159264. [PMID: 27415007 PMCID: PMC4944987 DOI: 10.1371/journal.pone.0159264] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/29/2016] [Indexed: 02/04/2023] Open
Abstract
Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal resistant and high yielding varieties of finger millet.
Collapse
|
5
|
Neilson KA, Scafaro AP, Chick JM, George IS, Van Sluyter SC, Gygi SP, Atwell BJ, Haynes PA. The influence of signals from chilled roots on the proteome of shoot tissues in rice seedlings. Proteomics 2013; 13:1922-33. [DOI: 10.1002/pmic.201200475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/06/2012] [Accepted: 02/07/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Karlie A. Neilson
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| | - Andrew P. Scafaro
- Department of Biological Sciences, Macquarie University; New South Wales Australia
| | - Joel M. Chick
- Department of Cell Biology, Harvard Medical School; MA USA
| | - Iniga S. George
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| | - Steven C. Van Sluyter
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School; MA USA
| | - Brian J. Atwell
- Department of Biological Sciences, Macquarie University; New South Wales Australia
| | - Paul A. Haynes
- Department of Chemistry and Biomolecular Sciences; Macquarie University; New South Wales; Australia
| |
Collapse
|