1
|
Singh S, Mucalo MR, Grainger MNC. Analysis of sulfur in soil and plant digests using methane as a reaction gas for ICP-MS. Talanta 2025; 281:126797. [PMID: 39243442 DOI: 10.1016/j.talanta.2024.126797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Quantitation of sulfur (S) is vitally important for analysis of agricultural soil and plant samples due to the requirement of S in living organisms. Although inductively coupled plasma mass spectrometry (ICP-MS) is a commonly used and robust instrument for multi-elemental detection, S is usually analysed by ICP-optical emission spectroscopy (OES) since S quantitation poses a particular challenge for ICP-MS due to interferences on all S isotopes. The requirement for analysis by two instruments increases time and cost for sample analysis, hence analysis by one instrument is desirable. The use of reaction gases in ICP-MS can improve the performance by shifting S to a mass for detection where no interference is present. This work explored the potential of methane as a reaction gas for analysis of S in soil and plant samples to give users an alternative option to oxygen. The product ion clusters CH2SH+ were monitored (m/z 47 and 49 on ICP-MS and with mass shift of +15 from Q1 → Q2 using 32 → 47 and 34 → 49 on triple quadrupole ICP-MS). As expected, triple quadrupole ICP-MS performed better than single quadrupole ICP-MS containing a reaction cell due to the ability to preselect the m/z of choice and remove ions that may react with methane in the reaction cell. The method detection limit (MDL) was 150 mg kg-1 S for plants and 53 mg kg-1 S for soils which is fit for requirements. This is the first-time methane has been reported as a reaction gas for analysis of S and shows promising results for agricultural samples when using a triple quadrupole ICP-MS. Results compared well to those obtained via the more commonly used ICP-optical emission spectroscopy (OES) method with results <20 % for all samples. Interlaboratory comparison samples were within 2 Z-scores of the consensus mean. In the absence of ICP-MS/MS, Q-ICP-MS with detection of cluster m/z 47 was deemed to be suitable for detection of S in plant samples, with acceptable MDL (250 mg kg-1 S), acceptable precision (<20 % RSD) and <20 % variation to the reported ICP-OES result.
Collapse
Affiliation(s)
- Sukhjeet Singh
- School of Science, The University of Waikato, Hamilton, New Zealand; Hill Laboratories, Hamilton, New Zealand
| | - Michael R Mucalo
- School of Science, The University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
2
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
3
|
Franzisky BL, Geilfus CM, Romo-Pérez ML, Fehrle I, Erban A, Kopka J, Zörb C. Acclimatisation of guard cell metabolism to long-term salinity. PLANT, CELL & ENVIRONMENT 2021; 44:870-884. [PMID: 33251628 DOI: 10.1111/pce.13964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Stomatal movements are enabled by changes in guard cell turgor facilitated via transient accumulation of inorganic and organic ions imported from the apoplast or biosynthesized within guard cells. Under salinity, excess salt ions accumulate within plant tissues resulting in osmotic and ionic stress. To elucidate whether (a) Na+ and Cl- concentrations increase in guard cells in response to long-term NaCl exposure and how (b) guard cell metabolism acclimates to the anticipated stress, we profiled the ions and primary metabolites of leaves, the apoplast and isolated guard cells at darkness and during light, that is, closed and fully opened stomata. In contrast to leaves, the primary metabolism of guard cell preparations remained predominantly unaffected by increased salt ion concentrations. Orchestrated reductions of stomatal aperture and guard cell osmolyte synthesis were found, but unlike in leaves, no increases of stress responsive metabolites or compatible solutes occurred. Diverging regulation of guard cell metabolism might be a prerequisite to facilitate the constant adjustment of turgor that affects aperture. Moreover, the photoperiod-dependent sucrose accumulation in the apoplast and guard cells changed to a permanently replete condition under NaCl, indicating that stress-related photosynthate accumulation in leaves contributes to the permanent closing response of stomata under stress.
Collapse
Affiliation(s)
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | | | - Ines Fehrle
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Christian Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
5
|
Sarabia LD, Boughton BA, Rupasinghe T, Callahan DL, Hill CB, Roessner U. Comparative spatial lipidomics analysis reveals cellular lipid remodelling in different developmental zones of barley roots in response to salinity. PLANT, CELL & ENVIRONMENT 2020; 43:327-343. [PMID: 31714612 PMCID: PMC7063987 DOI: 10.1111/pce.13653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 05/18/2023]
Abstract
Salinity-induced metabolic, ionic, and transcript modifications in plants have routinely been studied using whole plant tissues, which do not provide information on spatial tissue responses. The aim of this study was to assess the changes in the lipid profiles in a spatial manner and to quantify the changes in the elemental composition in roots of seedlings of four barley cultivars before and after a short-term salt stress. We used a combination of liquid chromatography-tandem mass spectrometry, inductively coupled plasma mass spectrometry, matrix-assisted laser desorption/ionization mass spectrometry imaging, and reverse transcription - quantitative real time polymerase chain reaction platforms to examine the molecular signatures of lipids, ions, and transcripts in three anatomically different seminal root tissues before and after salt stress. We found significant changes to the levels of major lipid classes including a decrease in the levels of lysoglycerophospholipids, ceramides, and hexosylceramides and an increase in the levels of glycerophospholipids, hydroxylated ceramides, and hexosylceramides. Our results revealed that modifications to lipid and transcript profiles in plant roots in response to a short-term salt stress may involve recycling of major lipid species, such as phosphatidylcholine, via resynthesis from glycerophosphocholine.
Collapse
Affiliation(s)
- Lenin D. Sarabia
- School of BioSciences and Metabolomics AustraliaUniversity of MelbourneParkvilleVIC3010Australia
| | | | | | - Damien L. Callahan
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, (Burwood Campus)Deakin University, Geelong, Australia221 Burwood HighwayBurwoodVIC3125Australia
| | - Camilla B. Hill
- School of Veterinary and Life SciencesMurdoch UniversityMurdochWA6150Australia
| | - Ute Roessner
- School of BioSciences and Metabolomics AustraliaUniversity of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
6
|
Menéndez AB, Calzadilla PI, Sansberro PA, Espasandin FD, Gazquez A, Bordenave CD, Maiale SJ, Rodríguez AA, Maguire VG, Campestre MP, Garriz A, Rossi FR, Romero FM, Solmi L, Salloum MS, Monteoliva MI, Debat JH, Ruiz OA. Polyamines and Legumes: Joint Stories of Stress, Nitrogen Fixation and Environment. FRONTIERS IN PLANT SCIENCE 2019; 10:1415. [PMID: 31749821 PMCID: PMC6844238 DOI: 10.3389/fpls.2019.01415] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/11/2019] [Indexed: 05/31/2023]
Abstract
Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.
Collapse
Affiliation(s)
- Ana Bernardina Menéndez
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, UBA-CONICET, Buenos Aires, Argentina
| | | | | | | | - Ayelén Gazquez
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | | | | | | | | | | | - Andrés Garriz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | - Franco Rubén Rossi
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | | | - Leandro Solmi
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
| | - Maria Soraya Salloum
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Mariela Inés Monteoliva
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Julio Humberto Debat
- Instituto de Patología Vegetal (IPAVE) Ing “Sergio Nome,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Argentina
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV) Ing “Victorio S Trippi,” Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| |
Collapse
|
7
|
Dadshani S, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A. Multi-dimensional evaluation of response to salt stress in wheat. PLoS One 2019; 14:e0222659. [PMID: 31568491 PMCID: PMC6768486 DOI: 10.1371/journal.pone.0222659] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Soil salinity is a major threat to crop production worldwide. The global climate change is further accelerating the process of soil salinization, particularly in dry areas of the world. Increasing genetic variability of currently used wheat varieties by introgression of exotic alleles/genes from related progenitors' species in breeding programs is an efficient approach to overcome limitations due to the absence of valuable genetic diversity in elite cultivars. Synthetic hexaploid wheat (SHW) is widely regarded as donor of favourable exotic alleles to improve tolerance against biotic and abiotic stresses such as salinity stress. In this study, synthetic backcross lines (SBLs) winter wheat population "Z86", derived from crosses involving synthetic hexaploid wheat Syn86L with German elite winter wheat cultivar Zentos, was evaluated for salinity tolerance at different developmental stages under controlled and field conditions in three growing seasons. High genetic variability was detected across the SBLs and their parents at various growth stages under controlled as well as under salt stress field trials. Greater performance of Zentos over Syn86L was detected at germination stage across all salt treatments and with respect to shoot dry weight (SDW) and root dry weight (RDW) at seedling stage. Whereas for the root length (RL) and the shoot length (SL) Syn86L surpassed the elite cultivar and most of the progenies. Our experiments revealed for almost all traits that some genotypes among the SBLs showed higher performance than their parents. Furthermore, positive transgressive segregations were detected among the SBLs for germination at high salinity levels, as well as for RDW and SDW at seedling stage. Therefore, the studied Z86 population is a suitable population for assessment of salinity stress on morphological and physiological traits at different plant growth stages. The identified SBLs provide a valuable source for genetic gain through recombination of superior alleles that can be directly applied in breeding programs for efficiently breeding cultivars with improved salinity tolerance and desired agronomic traits.
Collapse
Affiliation(s)
- Said Dadshani
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ram C. Sharma
- International Center for Agricultural Research in the Dry Areas (ICARDA), Tashkent, Uzbekistan
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | | | - Jens Léon
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- INRES Plant Breeding, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
8
|
Franzisky BL, Geilfus CM, Kränzlein M, Zhang X, Zörb C. Shoot chloride translocation as a determinant for NaCl tolerance in Vicia faba L. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:23-33. [PMID: 30851648 DOI: 10.1016/j.jplph.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Faba bean (Vicia faba L.) is sensitive to salinity. While toxic effects of sodium (Na+) are well studied, toxicity aspects of chloride (Cl-) and the underlying tolerance mechanisms to Cl- are not well understood. For this reason, shoot Cl- translocation and its effect as potential determinant for tolerance was tested. Diverse V. faba varieties were grown hydroponically and stressed with 100 mM NaCl until necrotic leaf spots appeared. At this point, biomass formation, oxidative damage of membranes as well as Na+, Cl- and potassium concentrations were measured. The V. faba varieties contrasted in the length of the period they could withstand the NaCl stress treatment. More tolerant varieties survived longer without evolving necrosis and were less affected by inhibitory effects on photosynthesis. The concentration of Cl- at the time point of developing leaf necrosis was in the same range irrespective of the variety, while that of Na+ varied. This indicates that Cl- concentrations, and not Na+ concentrations are critical for the formation of salt necrosis in faba bean. Tolerant varieties profited from lower Cl- translocation to leaves. Therefore, photosynthesis was less affected in those varieties with lower Cl-. This mechanism is a new trait of interest for salt tolerance in V. faba.
Collapse
Affiliation(s)
- Bastian L Franzisky
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany
| | - Christoph-Martin Geilfus
- Humboldt-University of Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Controlled Environment Horticulture, Albrecht-Thaer-Weg 1, 14195, Berlin, Germany
| | - Markus Kränzlein
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany
| | - Xudong Zhang
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany
| | - Christian Zörb
- University of Hohenheim, Institute of Crop Science, 340e, Schloss Westflügel, 70593, Stuttgart, Germany.
| |
Collapse
|
9
|
Richter JA, Behr JH, Erban A, Kopka J, Zörb C. Ion-dependent metabolic responses of Vicia faba L. to salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:295-309. [PMID: 29940081 DOI: 10.1111/pce.13386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Salt-affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low- and high-salt treatments of NaCl, Na2 SO4 , and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25-30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+ , K+ , and Cl- showed comparable accumulation patterns in leaves and roots, except for SO42- which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography-mass spectrometry-based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo-inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+ , K+ , or Cl- . For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl- accumulation.
Collapse
Affiliation(s)
- Julia A Richter
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Jan H Behr
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Christian Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
10
|
Geilfus CM. Review on the significance of chlorine for crop yield and quality. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:114-122. [PMID: 29576063 DOI: 10.1016/j.plantsci.2018.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 05/28/2023]
Abstract
The chloride concentration in the plant determines yield and quality formation for two reasons. First, chlorine is a mineral nutrient and deficiencies thereof induce metabolic problems that interfere with growth. However, due to low requirement of most crops, deficiency of chloride hardly appears in the field. Second, excess of chloride, an event that occurs under chloride-salinity, results in severe physiological dysfunctions impairing both quality and yield formation. The chloride ion can effect quality of plant-based products by conferring a salty taste that decreases market appeal of e.g. fruit juices and beverages. However, most of the quality impairments are based on physiological dysfunctions that arise under conditions of chloride-toxicity: Shelf life of persimmon is shortened due to an autocatalytic ethylene production in fruit tissues. High concentrations of chloride in the soil can increase phyto-availability of the heavy metal cadmium, accumulating in wheat grains above dietary intake thresholds. When crops are cultivated on soils that are moderately salinized by chloride, nitrate fertilization might be a strategy to suppress uptake of chloride by means of an antagonistic anion-anion uptake competition. Overall, knowledge about proteins that catalyse chloride-efflux out of the roots or that restrict xylem loading is needed to engineer more resistant crops.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Geilfus CM. Chloride: from Nutrient to Toxicant. PLANT & CELL PHYSIOLOGY 2018; 59:877-886. [PMID: 29660029 DOI: 10.1093/pcp/pcy071] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
In salinized soils in which chloride (Cl-) is the dominant salt anion, growth of plants that tolerate only low concentrations of salt (glycophytes) is disturbed by Cl- toxicity. Chlorotic discolorations precede necrotic lesions, causing yield reductions. Little is known about the effects of Cl- toxicity on these dysfunctions. A lack of understanding exists regarding (i) the molecular and physiological mechanisms that lead to Cl--induced damage and (ii) the adaptive aspects of induced tolerance to Cl- salinity. Here, mechanistic explanations for the Cl--induced stress responses are proposed and novel ideas and strategies by which glycophytic plants avoid the excessive accumulation of Cl- are reviewed. New experiments are suggested to test the proposed hypotheses. Cl- salinity constrains global food security and thus we urgently need more research into the causes and consequences of Cl- salinity.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, D-14195 Berlin, Germany
| |
Collapse
|
12
|
Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS One 2017; 12:e0183615. [PMID: 28846722 PMCID: PMC5573290 DOI: 10.1371/journal.pone.0183615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Salt stress is becoming an increasing threat to global agriculture. In this study, physiological and proteomics analysis were performed using a salt-tolerant grass species, Leymus chinensis (L. chinensis). The aim of this study is to understand the potential mechanism of salt tolerance in L. chinensis that used for crop molecular breeding. A series of short-term (<48 h) NaCl treatments (0 ~ 700 mM) were conducted. Physiological data indicated that the root and leaves growth were inhibited, chlorophyll contents decreased, while hydraulic conductivity, proline, sugar and sucrose were accumulated under salt stress. For proteomic analysis, we obtained 274 differentially expressed proteins in response to NaCl treatments. GO analysis revealed that 44 out of 274 proteins are involved in the biosynthesis of amino acids and carbon metabolism. Our findings suggested that L. chinensis copes with salt stress by stimulating the activities of POD, SOD and CAT enzymes, speeding up the reactions of later steps of citrate cycle, and synthesis of proline and sugar. In agreement with our physiological data, proteomic analysis also showed that salt stress depress the expression of photosystem relevant proteins, Calvin cycle, and chloroplast biosynthesis.
Collapse
|
13
|
Gupta P, De B. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. PLANT SIGNALING & BEHAVIOR 2017; 12:e1335845. [PMID: 28594277 PMCID: PMC5586353 DOI: 10.1080/15592324.2017.1335845] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.
Collapse
Affiliation(s)
- Poulami Gupta
- Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Department of Botany, University of Calcutta, Kolkata, India
- CONTACT Bratati De Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|