1
|
Li BH, Gong JC, Li CX, Liu T, Hu JW, Li PF, Liu CY, Yang GP. Regulation of seawater dissolved carbon pools by environmental changes in Ulva prolifera originating sites: A new perspective on the contribution of U. prolifera to the seawater carbon sink function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124679. [PMID: 39116923 DOI: 10.1016/j.envpol.2024.124679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The Ulva prolifera bloom is considered one of the most serious ecological disasters in the Yellow Sea in the past decade, forming a carbon sink in its source area within a short period but becoming a carbon source at its destination. To explore the effects of different environmental changes on seawater dissolved carbon pools faced by living U. prolifera in its originating area, U. prolifera were cultured in three sets with different light intensity (54, 108, and 162 μmol m-2 s-1), temperature (12, 20, and 28 °C) and nitrate concentration gradients (25, 50, and 100 μmol L-1). The results showed that moderate light (108 μmol m-2 s-1), temperature (20 °C), and continuous addition of exogenous nitrate significantly enhanced the absorption of dissolved inorganic carbon (DIC) in seawater by U. prolifera and most promoted its growth. Under the most suitable environment, the changes in the seawater carbonate system were mainly dominated by biological production and denitrification, with less influence from aerobic respiration. Facing different environmental changes, U. prolifera continuously changed its carbon fixation mode according to tissue δ13C results, with the changes in the concentrations of various components of DIC in seawater, especially the fluctuation of HCO3- and CO2 concentrations. Enhanced light intensity of 108 μmol m-2 s-1 could shift the carbon fixation pathway of U. prolifera towards the C4 pathway compared to temperature and nitrate stimulation. Environmental conditions at the origin determined the amount of dissolved carbon fixed by U. prolifera. Therefore, more attention should be paid to the changes in marine environmental conditions at the origin of U. prolifera, providing a basis for scientific management of U. prolifera.
Collapse
Affiliation(s)
- Bing-Han Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jiang-Chen Gong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Cheng-Xuan Li
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tao Liu
- College for Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Jing-Wen Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Pei-Feng Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Jahan K, Supty MSA, Lee JS, Choi KH. Transcriptomic Analysis Provides New Insights into the Tolerance Mechanisms of Green Macroalgae Ulva prolifera to High Temperature and Light Stress. BIOLOGY 2024; 13:725. [PMID: 39336152 PMCID: PMC11428574 DOI: 10.3390/biology13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Our research focused on understanding the genetic mechanisms that contribute to the tolerance of Ulva prolifera (Chlorophyta), a marine macroalgae, to the combined stress of high temperature and high light intensity. At the mRNA level, the up-regulated DEGs showed enrichment in pathways related to ribosomes, proteasomes, and peroxisomes. The spliceosome pathway genes were found to be vital for U. prolifera's ability to adapt to various challenging situations in all the comparison groups. In response to elevated temperature and light intensity stress, there was a significant increase in genes and pathways related to ribosomes, proteasomes, and peroxisomes, whereas autophagy showed an increase in response to stress after 24 h, but not after 48 h. These findings provide novel insights into how U. prolifera adapts to elevated temperature and light stress.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon 34134, Republic of Korea; (K.J.)
| |
Collapse
|
3
|
Xu J, Zhao X, Zhong Y, Qu T, Sun B, Zhang H, Hou C, Zhang Z, Tang X, Wang Y. Acclimation of intertidal macroalgae Ulva prolifera to UVB radiation: the important role of alternative oxidase. BMC PLANT BIOLOGY 2024; 24:143. [PMID: 38413873 PMCID: PMC10900725 DOI: 10.1186/s12870-024-04762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Solar radiation is primarily composed of ultraviolet radiation (UVR, 200 - 400 nm) and photosynthetically active radiation (PAR, 400 - 700 nm). Ultraviolet-B (UVB) radiation accounts for only a small proportion of sunlight, and it is the primary cause of plant photodamage. The use of chlorofluorocarbons (CFCs) as refrigerants caused serious ozone depletion in the 1980s, and this had led to an increase in UVB. Although CFC emissions have significantly decreased in recent years, UVB radiation still remains at a high intensity. UVB radiation increase is an important factor that influences plant physiological processes. Ulva prolifera, a type of macroalga found in the intertidal zone, is intermittently exposed to UVB. Alternative oxidase (AOX) plays an important role in plants under stresses. This research examines the changes in AOX activity and the relationships among AOX, photosynthesis, and reactive oxygen species (ROS) homeostasis in U. prolifera under changes in UVB and photosynthetically active radiation (PAR). RESULTS UVB was the main component of solar radiation impacting the typical intertidal green macroalgae U. prolifera. AOX was found to be important during the process of photosynthesis optimization of U. prolifera due to a synergistic effect with non-photochemical quenching (NPQ) under UVB radiation. AOX and glycolate oxidase (GO) worked together to achieve NADPH homeostasis to achieve photosynthesis optimization under changes in PAR + UVB. The synergism of AOX with superoxide dismutase (SOD) and catalase (CAT) was important during the process of ROS homeostasis under PAR + UVB. CONCLUSIONS AOX plays an important role in the process of photosynthesis optimization and ROS homeostasis in U. prolifera under UVB radiation. This study provides further insights into the response of intertidal macroalgae to solar light changes.
Collapse
Grants
- No. LSKJ202203605 Laoshan Laboratory
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. U1806213 and U1606404 NSFC-Shandong Joint Fund
- Nos. U1806213 and U1606404 NSFC-Shandong Joint Fund
Collapse
Affiliation(s)
- Jinhui Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinyu Zhao
- Laoshan Laboratory, 1 Wenhai Road, Qingdao, 266237, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Baixue Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 1 Daxue Road, Jinan, 250000, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhipeng Zhang
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin, 300456, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao, 266237, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
4
|
Li C, Tang T, Jiang J, Yao Z, Zhu B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology 2023; 33:837-845. [PMID: 37593920 DOI: 10.1093/glycob/cwad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a β-elimination mechanism which cleaves the β-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 μmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, 777 Mingyue Road, Qingdao 266400, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| |
Collapse
|
5
|
Qu T, Zhao X, Guan C, Hou C, Chen J, Zhong Y, Lin Z, Xu Y, Tang X, Wang Y. Structure-Function Covariation of Phycospheric Microorganisms Associated with the Typical Cross-Regional Harmful Macroalgal Bloom. Appl Environ Microbiol 2023; 89:e0181522. [PMID: 36533927 PMCID: PMC9888261 DOI: 10.1128/aem.01815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Unravelling the structure-function variation of phycospheric microorganisms and its ecological correlation with harmful macroalgal blooms (HMBs) is a challenging research topic that remains unclear in the natural dynamic process of HMBs. During the world's largest green tide bloom, causative macroalgae Ulva prolifera experienced dramatic changes in growth state and environmental conditions, providing ideal scenarios for this investment. Here, we assess the phycospheric physicochemical characteristics, the algal host's biology, the phycospheric bacterial constitutive patterns, and the functional potential during the U. prolifera green tide. Our results indicated that (i) variation in the phycosphere nutrient structure was closely related to the growth state of U. prolifera; (ii) stochastic processes govern phycospheric bacterial assembly, and the contribution of deterministic processes to assembly varied among phycospheric seawater bacteria and epiphytic bacteria; (iii) phycospheric seawater bacteria and epiphytic bacteria exhibited significant heterogeneity variation patterns in community composition, structure, and metabolic potential; and (iv) phycospheric bacteria with carbon or nitrogen metabolic functions potentially influenced the nutrient utilization of U. prolifera. Furthermore, the keystone genera play a decisive role in the structure-function covariation of phycospheric bacterial communities. Our study reveals complex interactions and linkages among environment-algae-bacterial communities which existed in the macroalgal phycosphere and highlights the fact that phycospheric microorganisms are closely related to the fate of the HMBs represented by the green tide. IMPORTANCE Harmful macroalgal blooms represented by green tides have become a worldwide marine ecological problem. Unraveling the structure-function variation of phycospheric microorganisms and their ecological correlation with HMBs is challenging. This issue is still unclear in the natural dynamics of HMBs. Here, we revealed the complex interactions and linkages among environment-algae-bacterial communities in the phycosphere of the green macroalgae Ulva prolifera, which causes the world's largest green tides. Our study provides new ideas to increase our understanding of the variation patterns of macroalgal phycospheric bacterial communities and the formation mechanisms and ecological effects of green tides and highlights the importance of phycospheric microorganisms as a robust tool to help understand the fate of HMBs.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
The sporogenesis is partly regulated by oxidative signal in Ulva prolifera: A physiological and transcriptomic perspective. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Molecular Response of Ulva prolifera to Short-Term High Light Stress Revealed by a Multi-Omics Approach. BIOLOGY 2022; 11:biology11111563. [PMID: 36358264 PMCID: PMC9687821 DOI: 10.3390/biology11111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
The main algal species of Ulva prolifera green tide in the coastal areas of China are four species, but after reaching the coast of Qingdao, U. prolifera becomes the dominant species, where the light intensity is one of the most important influencing factors. In order to explore the effects of short-term high light stress on the internal molecular level of cells and its coping mechanism, the transcriptome, proteome, metabolome, and lipid data of U. prolifera were collected. The algae were cultivated in high light environment conditions (400 μmol·m−2·s−1) for 12 h and measured, and the data with greater relative difference (p < 0.05) were selected, then analyzed with the KEGG pathway. The results showed that the high light stress inhibited the assimilation of U. prolifera, destroyed the cell structure, and arrested its growth and development. Cells entered the emergency defense state, the TCA cycle was weakened, and the energy consumption processes such as DNA activation, RNA transcription, protein synthesis and degradation, and lipid alienation were inhibited. A gradual increase in the proportion of the C4 pathway was recorded. This study showed that U. prolifera can reduce the reactive oxygen species produced by high light stress, inhibit respiration, and reduce the generation of NADPH. At the same time, the C3 pathway began to change to the C4 pathway which consumed more energy. Moreover, this research provides the basis for the study of algae coping with high light stress.
Collapse
|
8
|
Ren CG, Liu ZY, Zhong ZH, Wang XL, Qin S. Integrated biotechnology to mitigate green tides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119764. [PMID: 35841985 DOI: 10.1016/j.envpol.2022.119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
9
|
Balancing Damage via Non-Photochemical Quenching, Phenolic Compounds and Photorespiration in Ulva prolifera Induced by Low-Dose and Short-Term UV-B Radiation. Int J Mol Sci 2022; 23:ijms23052693. [PMID: 35269845 PMCID: PMC8911146 DOI: 10.3390/ijms23052693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
The Yellow Sea green tide (YSGT) is the world’s largest transregional macroalgal blooms, and the causative species Ulva prolifera (U. prolifera) suffers from ultraviolet-b radiation (UVBR) during the floating migration process. Previous study confirmed that U. prolifera displayed a wide variety of physiological responses characterized as acclimation to UVBR, while the response mechanisms against low-dose and short-term radiation (LDSTR) are not clear. A study with photosynthetically active radiation (PAR) and UVBR was designed: normal light (NL: 72 μmol photons m−2 s−1), NL+0.3 (UVBR: 0.3 W·m−2), and NL+1.6 (UVBR: 1.6 W·m−2). The results showed that high-dose UVBR inhibited photosynthesis in thalli, especially under long-term exposure, while a variety of physiological responses were observed under LDSTR. The inhibition of photosynthesis appeared to be ameliorated by the algae under LDSTR. Further analysis showed that U. prolifera achieved balancing damage by means of non-photochemical quenching (NPQ), accumulation of phenolic compounds coupled with the ASA-GSH cycle involved in the antioxidant process and enhanced photorespiratory metabolism under LDSTR. This study provides new insights into the balancing damage mechanisms of U. prolifera under LDSTR, enabling the thalli to adapt to the light conditions during the long duration and distance involved in floating migration.
Collapse
|
10
|
Hou C, Qu T, Zhao X, Xu J, Zhong Y, Guan C, Zhang H, Lin Z, Tang X, Wang Y. Diel metabolism of Yellow Sea green tide algae alters bacterial community composition under in situ seawater acidification of coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150759. [PMID: 34619190 DOI: 10.1016/j.scitotenv.2021.150759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification in coastal seawaters is a complex process, with coastal pH being affected by numerous factors including watershed and biological processes that also support metabolically diverse bacterial communities. The world's largest macroalgal blooms have occurred consecutively in the Yellow Sea over the last 13 years. In particular, algal mats formed by Yellow Sea green tides (YSGT) significantly influence coastal environments. Herein, we hypothesized that 1) inorganic carbonate chemistry in coastal areas is altered by diel metabolism of these giant algal mats and that 2) bacterial community composition in diffusive boundary layers might be altered along diel cycles due to algal mat metabolism. In situ studies indicated that algal mat metabolism led to changes in diel pH and CO2 in affected seawaters. Such metabolic activities could intensify diel pH fluctuations in algal mat diffusive boundary layers, as noted by pH fluctuations of 0.22 ± 0.01 units, and pCO2 fluctuations of 214.62 ± 29.37 μatm per day. In contrast, pH fluctuations of 0.11 ± 0.02 units and pCO2 fluctuations of 79.02 ± 42.70 μatm were noted in unaffected areas. Furthermore, the bacterial community composition associated with diffusive algal boundary layers, including those of ambient bacteria and epiphytic bacteria, exhibited diel changes, while endophytic bacterial communities were relatively stable. Flavobacteriaceae were particularly highly abundant taxa in the ambient and epiphytic bacterial communities and exhibited increased abundances at night but sharp decreases in abundances during daytime. Flavobacteriaceae are heterotrophic taxa that could contribute to coastal area acidification at night due to the transformation of organic carbon to inorganic carbon. These results provide new insights to understand the variability in coastal ocean acidification via harmful algal blooms while providing a framework for evaluating the effects of YSGT on costal carbon cycling.
Collapse
Affiliation(s)
- Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, China.
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, China.
| | - Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, China
| | - Jinhui Xu
- College of Marine Life Sciences, Ocean University of China, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, China.
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, China.
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250000, China
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
11
|
Guan C, Zhao X, Qu T, Zhong Y, Hou C, Lin Z, Xu J, Tang X, Wang Y. Physiological functional traits explain morphological variation of Ulva prolifera during the drifting of green tides. Ecol Evol 2022; 12:e8504. [PMID: 35136557 PMCID: PMC8809434 DOI: 10.1002/ece3.8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Ulva prolifera green tides, one of the greatest marine ecological disasters, originate in the southern Yellow Sea of China and obtain the highest biomass in Haizhou Bay (latitude around 35° N) during northward drift. U. prolifera shows different morphologies from southern Haizhou Bay (SH) to northern Haizhou Bay (NH). Owing to the distinct nutrient environments between SH and NH, we hypothesized that thalli in NH with poor nutrients increased the surface area to volume ratio (SA:VOL) to better absorb nutrients. Here, we tested this hypothesis by comparing the SA:VOL of thalli in SH and NH. The results showed that the thalli in NH had a lower SA:VOL than those in SH, and SA:VOL had positive relationships with temperature and nutrients, contrary to the general hypothesis. The novel results suggested that morphological differences of U. prolifera were the result of developmental state rather than environmental acclimation. Indicators of reproduction (reproductive allocation ratio) were negatively related to variation in tissue contents of C, N, P, and crude protein, whereas indicators of growth (tissue contents of C, N, P, and crude protein) showed significant positive influences on SA:VOL. The results indicated that a trade-off relationship between reproduction and growth existed in the northward drift. All the results suggested that physiological functional traits affected morphological variation of U. prolifera in different environmental conditions during the drifting of green tides. This study presents new insights into the opportunist species nature of U. prolifera through morphological variation and associated functional consequences.
Collapse
Affiliation(s)
- Chen Guan
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Tongfei Qu
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yi Zhong
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Chengzong Hou
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Zhihao Lin
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Jinhui Xu
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xuexi Tang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Ying Wang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
12
|
Qu T, Hou C, Zhao X, Zhong Y, Guan C, Lin Z, Tang X, Wang Y. Bacteria associated with Ulva prolifera: a vital role in green tide formation and migration. HARMFUL ALGAE 2021; 108:102104. [PMID: 34588120 DOI: 10.1016/j.hal.2021.102104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Ulva prolifera green tide in the Yellow Sea of China is a typical cross-regional marine ecological disaster. We hypothesized that the complex interactions between U. prolifera and its associated bacterial communities possibly impact the formation and outbreak of green tide. To test this hypothesis, the U. prolifera-associated bacterial community changes in the entire migration area were investigated through field sampling and high-throughput sequencing. The results showed that (1) with the green tide migration, the richness and diversity increased for U. prolifera epiphytic bacterial communities, while they decreased for seawater bacterial communities in the phycosphere. (2) The richness, diversity, and community composition of U. prolifera-associated bacteria changed more dramatically in the 35.00°N sea area. (3) Potential interactions between bacteria and U. prolifera existed during the entire long-distance migration of green tide, and six bacterial functional groups (BFGs) were defined. Growth-regulating BFG I and antibacterial and stress-resistance BFG II were the dominant communities in the early stage of the green tide migration, which have the role of regulating algal growth and synergistic protection. Heterotrophic BFG III and algicidal BFG IV were the dominant communities in the late stage of the green tide migration, and they were able to compete with algae for nutrients and inhibit algal growth. Nutritive BFG V and algae-derived nutritional type BFG VI symbiotically lived with algal host. Our study highlights the spatial and temporal complexity of U. prolifera-associated bacterial communities and provides valuable insights into the potential contribution of U. prolifera-associated bacterial communities to green tide outbreaks.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
13
|
Probing rapid carbon fixation in fast-growing seaweed Ulva meridionalis using stable isotope 13C-labelling. Sci Rep 2020; 10:20399. [PMID: 33230200 PMCID: PMC7684289 DOI: 10.1038/s41598-020-77237-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 11/08/2022] Open
Abstract
The high growth rate of Ulva seaweeds makes it a potential algal biomass resource. In particular, Ulva meridionalis grows up to fourfold a day. Here, we demonstrated strong carbon fixation by U. meridionalis using 13C stable isotope labelling and traced the 13C flux through sugar metabolites with isotope-ratio mass spectrometry (IR-MS), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), 13C-nuclear magnetic resonance spectrometry (13C-NMR), and gas chromatography-mass spectrometry (GC-MS). U. meridionalis was first cultured in 13C-labelled enriched artificial seawater for 0-12 h, and the algae were collected every 4 h. U. meridionalis grew 1.8-fold (dry weight), and the 13C ratio reached 40% in 12 h, whereas 13C incorporation hardly occurred under darkness. At the beginning of the light period, 13C was incorporated into nucleic diphosphate (NDP) sugars in 4 h, and 13C labelled peaks were identified using FT-ICR-MS spectra. Using semiquantitative 13C-NMR measurements and GC-MS, 13C was detected in starch and matrix polysaccharides after the formation of NDP sugars. Moreover, the 14:10 light:dark regime resulted into 85% of 13C labelling was achieved after 72 h of cultivation. The rapid 13C uptake by U. meridionalis shows its strong carbon fixation capacity as a promising seaweed biomass feedstock.
Collapse
|
14
|
Role of C 4 carbon fixation in Ulva prolifera, the macroalga responsible for the world's largest green tides. Commun Biol 2020; 3:494. [PMID: 32895472 PMCID: PMC7477558 DOI: 10.1038/s42003-020-01225-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Most marine algae preferentially assimilate CO2 via the Calvin-Benson Cycle (C3) and catalyze HCO3− dehydration via carbonic anhydrase (CA) as a CO2-compensatory mechanism, but certain species utilize the Hatch-Slack Cycle (C4) to enhance photosynthesis. The occurrence and importance of the C4 pathway remains uncertain, however. Here, we demonstrate that carbon fixation in Ulva prolifera, a species responsible for massive green tides, involves a combination of C3 and C4 pathways, and a CA-supported HCO3− mechanism. Analysis of CA and key C3 and C4 enzymes, and subsequent analysis of δ13C photosynthetic products showed that the species assimilates CO2 predominately via the C3 pathway, uses HCO3− via the CA mechanism at low CO2 levels, and takes advantage of high irradiance using the C4 pathway. This active and multi-faceted carbon acquisition strategy is advantageous for the formation of massive blooms, as thick floating mats are subject to intense surface irradiance and CO2 limitation. Liu et al. present evidence that carbon fixation in Ulva prolifera takes place via a combination of C3 and C4 pathways in combination with the enzyme carbonic anhydrase. The active and multi-faceted carbon acquisition strategy in U. prolifera is advantageous for the formation of massive blooms as the thick floating mats are subject to intense surface irradiance and CO2 limitation.
Collapse
|
15
|
Hao Y, Qu T, Guan C, Zhao X, Hou C, Tang X, Wang Y. Competitive advantages of Ulva prolifera from Pyropia aquaculture rafts in Subei Shoal and its implication for the green tide in the Yellow Sea. MARINE POLLUTION BULLETIN 2020; 157:111353. [PMID: 32658704 DOI: 10.1016/j.marpolbul.2020.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The physiological characteristics of Ulva prolifera and Blidingia sp. during two pre-bloom stages (March & May) were compared to evaluate the competitive advantage of U. prolifera on Pyropia aquaculture rafts in Subei Shoal. (1) Compared to Blidingia sp., U. prolifera had a lower growth rate, chlorophyll content, photosynthetic efficiency, and antioxidant capacity in March. (2) In May, various indicators of U. prolifera's physiological function improved significantly, while the antioxidant capacity of Blidingia sp. decreased significantly. Large lipidic globules in U. prolifera cells became scattered small lipidic globules in May, which indicated a decrease in lipid membrane peroxidation. (3) In U. prolifera, the ratio of buoyancy to gravity of per unit volume was 1.73, and the bubbles inside the thalli provided 60% of the total buoyancy. Buoyancy generated by the inflatable structure of U. prolifera allowed this species to float after being separated from the rafts.
Collapse
Affiliation(s)
- Ya Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
16
|
Li N, Tong M, Glibert PM. Effect of allelochemicals on photosynthetic and antioxidant defense system of Ulva prolifera. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105513. [PMID: 32504860 DOI: 10.1016/j.aquatox.2020.105513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Ulva prolifera is a macroalgae that forms massive blooms, negatively impacting natural communities, aquaculture operations and recreation. The effects of the natural products, eugenol, β-myrcene, citral and nonanoic acid on the growth rate, antioxidative defense system and photosynthesis of Ulva prolifera were investigated as a possible control strategy for this harmful taxon. Negative effects on growth were observed with all four chemicals, due to the excessive production of reactive oxygen species and oxidative damage to the thalli. However, the response of U. prolifera under the four chemicals stress was different at the cellular level. β-myrcene, the most effective compound in terms of growth inhibition, induced oxidative stress as shown by the damage of total antioxidant capacity (T-AOC) and the downregulation of the glutathione-ascorbate (GSH-ASA) cycle which inhibited the antioxidative system. This chemical also inhibited photosynthesis and photoprotection mechanisms in U. prolifera, resulting in growth limitation. In contrast, U. prolifera was less affected by the second tested chemical, eugenol, and showed no significant change on photosynthetic efficiency in the presence of the chemical. The inhibition effects of the third and fourth tested chemicals, nonanoic acid and citralon, on growth and on the antioxidant defense system in U. prolifera were inferior. These results provide a potential avenue for controlling green tides in the future.
Collapse
Affiliation(s)
- Naicheng Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| | - Patricia M Glibert
- University of Maryland Center for Environment Science, Horn Point Laboratory, Cambridge, MD, 21613, USA
| |
Collapse
|
17
|
Eismann AI, Perpetuo Reis R, Ferreira da Silva A, Negrão Cavalcanti D. Ulva spp. carotenoids: Responses to environmental conditions. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Qu T, Zhao X, Hao Y, Zhong Y, Guan C, Hou C, Tang X, Wang Y. Ecological effects of Ulva prolifera green tide on bacterial community structure in Qingdao offshore environment. CHEMOSPHERE 2020; 244:125477. [PMID: 31821926 DOI: 10.1016/j.chemosphere.2019.125477] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/05/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Ulva prolifera green tide is a serious marine ecological problem in China's coastal areas, with recurrent outbreaks occurring annually during late spring and summer since 2007. Marine bacteria communities are closely linked with important ecological functions in coastal environments. Hence, the succession of bacterial community structures in seawater and sediments during the outbreak and extinction stages of U. prolifera green tide were studied in this paper. The results revealed that: (1) the outbreak of a green tide led to changes in the bacterial community structure and a reduction in the abundance and diversity of the bacterial community in the Qingdao offshore region. This change was more significant in sediments than in seawater. (2) The bacterial assemblage appeared to be dominated by members of Deltaproteobacteria, Bacteroidia and Flavobacteria in sediment, and reductions in the relative abundance of Flavobacteria and Alphaproteobacteria were also observed in seawater after the green tide outbreak. There was also a high similarity in species composition of bacteria in sediment (extinction stage) and seawater (outbreak stage). (3) The outbreak of the U. prolifera affected the abundance of functional bacterial communities in the offshore environment such as SRB (sulfate-reducing bacteria), CFB (Cytophaga-Flavobacter-Bacteroides), heterotrophic bacteria and the potentially algicidal bacteria Alteromonadaceae. Overall, U. prolifera affects aquatic ecosystem secondary production, biogenic geochemical cycles and the growth of other seaweeds in Qingdao offshore areas by driving variations in functional bacterial communities.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Ya Hao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
19
|
Cruces E, Rautenberger R, Cubillos VM, Ramírez-Kushel E, Rojas-Lillo Y, Lara C, Montory JA, Gómez I. Interaction of Photoprotective and Acclimation Mechanisms in Ulva rigida (Chlorophyta) in Response to Diurnal Changes in Solar Radiation in Southern Chile. JOURNAL OF PHYCOLOGY 2019; 55:1011-1027. [PMID: 31222742 DOI: 10.1111/jpy.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll-a fluorescence-based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400-700 nm) and PAR+ ultraviolet (UV) radiation (280-700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation. On the other hand, under PAR+UV conditions a substantial decline up to 43% was detected and an incomplete fluorescence recovery, also, P-I curve values remained low in relation to the initial condition. The phenolic compounds increased their concentration only in UV radiation treatments without showing a correlation with the antioxidant activity. The enzimatic activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased over 2-fold respect at initial values during the onset of light intensity. In contrast, catalase (CAT) increased its activity rapidly in response to the radiation stress to reach maxima at 10 a.m. and decreasing during solar. The present study suggests that U. rigida is capable of acclimating to natural radiation stress relies on a concerted action of various physiological mechanisms that act at different times of the day and under different levels of environmental stress.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago, 8370854, Chile
- Centro de Investigaciones Costeras-Universidad de Atacama (CIC-UDA), Universidad de Atacama, Avenida Copayapu 485, Copiapó, Atacama, Chile
| | - Ralf Rautenberger
- Division of Biotechnology and Plant Health, Department of Algae Production, Norwegian Institute for Bioeconomy Research (NIBIO), Kudalsveien 6, 8027, Bodø, Norway
| | - Víctor Mauricio Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Ramírez-Kushel
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Yesenia Rojas-Lillo
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1780, Santiago, 8370854, Chile
| | - Carlos Lara
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, 8370993, Chile
| | | | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Research Center FONDAP Dynamic of High Latitude Marine Ecosystems de (IDEAL), Valdivia, Chile
| |
Collapse
|
20
|
Zhang Y, He P, Li H, Li G, Liu J, Jiao F, Zhang J, Huo Y, Shi X, Su R, Ye N, Liu D, Yu R, Wang Z, Zhou M, Jiao N. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Natl Sci Rev 2019; 6:825-838. [PMID: 34691936 PMCID: PMC8291432 DOI: 10.1093/nsr/nwz026] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 10/23/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
The Ulva prolifera green tides in the Yellow Sea, China, which have been occurring since 2007, are a serious environmental problem attracting worldwide attention. Despite extensive research, the outbreak mechanisms have not been fully understood. Comprehensive analysis of anthropogenic and natural biotic and abiotic factors reveals that human activities, regional physicochemical conditions and algal physiological characteristics as well as ocean warming and biological interactions (with microorganism or other macroalgae) are closely related to the occurrence of green tides. Dynamics of these factors and their interactions could explain why green tides suddenly occurred in 2007 and decreased abruptly in 2017. Moreover, the consequence of green tides is serious. The decay of macroalgal biomass could result in hypoxia and acidification, possibly induce red tide and even have a long-lasting impact on coastal carbon cycles and the ecosystem. Accordingly, corresponding countermeasures have been proposed in our study for future reference in ecosystem management strategies and sustainable development policy.
Collapse
Affiliation(s)
- Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Gang Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Department of Oceanography, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Fanglue Jiao
- Department of Oceanography, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanzi Huo
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoyong Shi
- National Marine Hazard Mitigation Service, State Oceanic Administration, Beijing 100194, China
| | - Rongguo Su
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Dongyan Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Rencheng Yu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zongling Wang
- Key Laboratory of Science and Engineering for Marine Ecology and Environment, the First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
| | - Mingjiang Zhou
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
21
|
Münzbergová Z, Haisel D. Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. PHOTOSYNTHESIS RESEARCH 2019; 140:289-299. [PMID: 30413987 DOI: 10.1007/s11120-018-0604-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
The contents of photosynthetic pigments are an important indicator of many processes taking place in the plant body. Still, however, our knowledge of the effects of polyploidization, a major driver of speciation in vascular plants, on the contents of photosynthetic pigments is very sparse. We compared the contents of photosynthetic pigments among natural diploids, natural tetraploids, and synthetic tetraploids. The material originated from four natural mixed-cytotype populations of diploid and autotetraploid Vicia cracca (Fabaceae) occurring in the contact zone between the cytotypes in Central Europe and was cultivated under uniform conditions. We explored whether the contents of pigments are primarily driven by polyploidization or by subsequent evolution of the polyploid lineage and whether the patterns differ between populations. We also explored the relationship between pigment contents and plant performance. We found very few significant effects of the cytotype on the individual pigments but many significant interactions between the cytotype and the population. In pair-wise comparisons, many comparisons were not significant. The prevailing pattern among the significant once was that the contents of pigments were determined by polyploidization rather than by subsequent evolution of the polyploid lineage. The contents of the pigments turned out to be a useful predictor of plant performance not only at the time of material collection, but also at the end of the growing season. Further studies exploring differences in the contents of photosynthetic pigments in different cytotypes using replicated populations and assessing their relationship to plant performance are needed to assess the generality of our findings.
Collapse
Affiliation(s)
- Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic.
| | - Daniel Haisel
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Prague, Czech Republic
| |
Collapse
|
22
|
Zhao X, Zhong Y, Zhang H, Qu T, Jiang Y, Tang X, Wang Y. Cooperation Between Photosynthetic and Antioxidant Systems: An Important Factor in the Adaptation of Ulva prolifera to Abiotic Factors on the Sea Surface. FRONTIERS IN PLANT SCIENCE 2019; 10:648. [PMID: 31178877 PMCID: PMC6537605 DOI: 10.3389/fpls.2019.00648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Large-scale green tides have occurred continuously in the Yellow Sea of China from 2007 to 2018, and the causative species of the Yellow Sea green tide (YSGT) is Ulva prolifera. The thalli form floated thallus mats, and the thalli from different layers of the thallus mat suffer significantly different environmental conditions. In the present study, the environmental conditions of the surface layer (SL), middle layer (ML), and lower layer (LL) of the thallus mat from mid-June (Stage I) to mid-July (Stage II) were simulated. Photosynthetic traits and antioxidant systems were measured. The results showed that (1) photoprotective [non-photochemical quenching (NPQ) and cyclic electron transport (CEF)] and antioxidant systems both play important roles in protecting against abiotic factors in U. prolifera. (2) Cooperation between NPQ and CEF was observed in the ML group; CEF and the antioxidant system in the SL group work synergistically to protect the thalli. Furthermore, an inferred spatiotemporal attribute regarding the YSGT is presented: the significant changes in abiotic factors on the sea surface can easily affect the thalli of SL and ML from mid-June to mid-July, and those of LL can be affected in mid-July. This cooperation combined with the spatiotemporal attributes offers an explanation for the annual occurrence of the YSGT. HIGHLIGHTS -Adaptive mechanisms of Ulva prolifera against abiotic factors. -Cooperation between photosynthetic and antioxidant systems. -Spatiotemporal attributes regarding the Yellow Sea green tide are presented.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yongshun Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Xuexi Tang, Ying Wang,
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Xuexi Tang, Ying Wang,
| |
Collapse
|