1
|
Crestani G, Večeřová K, Cunningham N, Badmus UO, Urban O, Jansen MAK. Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1746. [PMID: 38999586 PMCID: PMC11243551 DOI: 10.3390/plants13131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Kristýna Večeřová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Uthman O. Badmus
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Matamala MF, Bastías RM, Urra I, Calderón-Orellana A, Campos J, Albornoz K. Rain Cover and Netting Materials Differentially Affect Fruit Yield and Quality Traits in Two Highbush Blueberry Cultivars via Changes in Sunlight and Temperature Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3556. [PMID: 37896020 PMCID: PMC10610296 DOI: 10.3390/plants12203556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The use of covers to protect blueberry orchards from adverse weather events has increased due to the variability in climate patterns, but the effects of rain covers and netting materials on yield and fruit quality have not been studied yet. This research evaluated the simultaneous effect of an LDPE plastic cover, a woven cover, and netting material on environmental components (UV light, PAR, NIR, and growing degree days (GDDs)), plant performance (light interception, leaf area index, LAI, yield, and flower development), and fruit quality traits (firmness, total soluble solids, and acidity) in two blueberry cultivars. On average, UV transmission under the netting was 11% and 43% higher compared to that under woven and LDPE plastic covers, while NIR transmission was 8-13% higher with both types of rain covers, with an increase in fruit air temperature and GDDs. Yield was 27% higher under the woven cover with respect to netting, but fruit firmness values under the netting were 12% higher than those of the LDPE plastic cover. Light interception, LAI, and flower development explained 64% (p = 0.0052) of the yield variation due to the cover material's effect. The obtained results suggest that the type of cover differentially affects yield and fruit quality in blueberries due to the specific light and temperature conditions generated under these materials.
Collapse
Affiliation(s)
- María F. Matamala
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Richard M. Bastías
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Ignacio Urra
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Arturo Calderón-Orellana
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Jorge Campos
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile;
| | - Karin Albornoz
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414, USA;
| |
Collapse
|
3
|
Krishna P, Pandey G, Thomas R, Parks S. Improving Blueberry Fruit Nutritional Quality through Physiological and Genetic Interventions: A Review of Current Research and Future Directions. Antioxidants (Basel) 2023; 12:antiox12040810. [PMID: 37107184 PMCID: PMC10135188 DOI: 10.3390/antiox12040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Blueberry, hailed as an antioxidant superfood, is the fruit of small shrubs in the genus Vaccinium (family Ericaceae). The fruits are a rich source of vitamins, minerals and antioxidants such as flavonoids and phenolic acids. The antioxidative and anti-inflammatory activities derived from the polyphenolic compounds, particularly from the abundantly present anthocyanin pigment, have been highlighted as the major contributing factor to the health-benefitting properties of blueberry. In recent years, blueberry cultivation under polytunnels has expanded, with plastic covers designed to offer protection of crop and fruit yield from suboptimal environmental conditions and birds. An important consideration is that the covers reduce photosynthetically active radiation (PAR) and filter out ultraviolet (UV) radiation that is critical for the fruit’s bioactive composition. Blueberry fruits grown under covers have been reported to have reduced antioxidant capacity as compared to fruits from open fields. In addition to light, abiotic stresses such as salinity, water deficit, and low temperature trigger accumulation of antioxidants. We highlight in this review how interventions such as light-emitting diodes (LEDs), photo-selective films, and exposure of plants to mild stresses, alongside developing new varieties with desired traits, could be used to optimise the nutritional quality, particularly the content of polyphenols, of blueberry grown under covers.
Collapse
|
4
|
Lee JH, Tanaka S, Goto E. Growth and Biosynthesis of Phenolic Compounds of Canola ( Brassica napus L.) to Different Ultraviolet (UV)-B Wavelengths in a Plant Factory with Artificial Light. PLANTS (BASEL, SWITZERLAND) 2022; 11:1732. [PMID: 35807684 PMCID: PMC9268760 DOI: 10.3390/plants11131732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The application of ultraviolet-B (UV-B) irradiation to supplement visible light as an elicitor to increase bioactive compounds under controlled conditions is increasing. This study aimed to evaluate the effects of UV-B dose and wavelength region (280−300 and 300−320 nm) on the morphological, physiological, and biochemical responses of canola plants (Brassica napus L.). Canola plants (17 days after sowing) were subjected to various UV-B intensities (i.e., 0.3, 0.6, and 0.9 W m−2) and were divided into cut and non-cut treatments for each UV treatment. Plant growth parameters exhibited different trends based on the treated UV irradiation intensity. Plant growth gradually decreased as the UV irradiation intensity and exposure time increased. Despite the same UV irradiation intensity, plant response varied significantly depending on the presence or absence of a short-wavelength cut filter (<300 nm). Canola plants suffered more leaf damage in nonfilter treatments containing shorter wavelengths (280−300 nm). UV treatment effectively activates the expression of secondary metabolite biosynthetic genes, differing depending on the UV irradiation intensity. Our results suggest that both UV irradiation intensity and wavelength should be considered when enhancing antioxidant phytochemicals without inhibiting plant growth in a plant factory with artificial light.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Saki Tanaka
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
- Plant Molecular Research Center, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
5
|
Lee JH, Shibata S, Goto E. Time-Course of Changes in Photosynthesis and Secondary Metabolites in Canola ( Brassica napus) Under Different UV-B Irradiation Levels in a Plant Factory With Artificial Light. FRONTIERS IN PLANT SCIENCE 2021; 12:786555. [PMID: 35003173 PMCID: PMC8730333 DOI: 10.3389/fpls.2021.786555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate short-duration (24 h) UV-B irradiation as a preharvest abiotic stressor in canola plants. Moreover, we quantified the expression levels of genes related to bioactive compounds synthesis in response to UV-B radiation. Canola seedlings were cultivated in a plant factory under artificial light (200 μmol m-2 s-1 photosynthetic photon flux density; white LED lamps; 16 h on/8 h off), 25°C/20°C daytime/nighttime air temperature, and 70% relative humidity. Eighteen days after sowing, the seedlings were subjected to supplemental UV-B treatment. The control plants received no UV-B irradiation. The plants were exposed to 3, 5, or 7 W m-2 UV-B irradiation. There were no significant differences in shoot fresh weight between the UV-B-irradiated and control plants. With increasing UV-B irradiation intensity and exposure time, the H2O2 content gradually increased, the expression levels of genes related to photosynthesis downregulated, and phenylpropanoid and flavonoid production, and also total phenolic, flavonoid, antioxidant, and anthocyanin concentrations were significantly enhanced. The genes related to secondary metabolite biosynthesis were immediately upregulated after UV-B irradiation. The relative gene expression patterns identified using qRT-PCR corroborated the variations in gene expression that were revealed using microarray analysis. The time point at which the genes were induced varied with the gene location along the biosynthetic pathway. To the best of our knowledge, this is the first study to demonstrate a temporal difference between the accumulation of antioxidants and the induction of genes related to the synthesis of this compound in UV-B-treated canola plants. Our results demonstrated that short-term UV-B irradiation could augment antioxidant biosynthesis in canola without sacrificing crop yield or quality.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Seina Shibata
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Peng T, Wang Y, Yang T, Wang F, Luo J, Zhang Y. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica sinensis Cultivars Under Enhanced Ultraviolet-B Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:805407. [PMID: 34975996 PMCID: PMC8718920 DOI: 10.3389/fpls.2021.805407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In this study, we explored the adaptive mechanism of two varieties of Angelica sinensis exposed to enhanced Ultraviolet-B (UV-B) radiation. The radiation had different effects on the biomass, photosynthetic performance, oxidative damage, antioxidant defense system, and levels of bioactive compounds of Mingui 1 (C1) and Mingui 2 (C2). C2 outperformed C1 under enhanced UV-B radiation, compared to natural light. Using the Illumina RNA-seq, we obtained 6,326 and 2,583 DEGs in C1 and C2, respectively. Under enhanced UV-B radiation, the mRNA levels of genes involved in photosynthesis, antennae protein synthesis, carbon fixation, chlorophyll synthesis, and carotenoid synthesis were decreased in C1 but stable in C2, involving few DEGs. TFs were widely involved in the response of C1 to enhanced UV-B radiation; almost all bHLH and MYB coding genes were downregulated whereas almost all genes encoded WRKY22, WRKY50, WRKY72, NCF, and HSF were upregulated. These results indicate that enhanced UV-B radiation was not conducive to the synthesis of flavonoids, while disease resistance was enhanced. Regarding the ROS scavenging system, upregulated DEGs were mainly found in the AsA-GSH cycle and PrxR/Trx pathways. Remarkably, DEGs that those encoding biosynthetic key enzymes, including ferulic acid (CHS, CHI, DFR, and ANS) and flavonoid (CHS, CHI, DFR, and ANS), most upregulation in C2, leading to increased accumulation of ferulic acid and flavonoids and adversely affecting C1. Genes encoding key enzymes involved in the synthesis of lactone components (ACX, PXG) were mostly up-regulated in C1, increasing the content of lactone components. Our results reveal the DEGs present between C1 and C2 under enhanced UV-B radiation and are consistent with the observed differences in physiological and biochemical indexes. C1 was more sensitive to enhanced UV-B radiation, and C2 was more tolerant to it under moderate enhanced UV-B radiation stress. In addition, the large amount of A. sinensis transcriptome data generated here will serve as a source for finding effective ways to mitigate UV-B enhancement, and also contribute to the well-established lack of genetic information for non-model plant species.
Collapse
Affiliation(s)
- Tong Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yinquan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China
| | - Tao Yang
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Jun Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
8
|
Tripathi D, Meena RP, Pandey-Rai S. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1823-1835. [PMID: 34393390 PMCID: PMC8354842 DOI: 10.1007/s12298-021-01046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01046-7.
Collapse
Affiliation(s)
- Deepika Tripathi
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| | - Ram Prasad Meena
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
9
|
Xu J, Nie S, Xu CQ, Liu H, Jia KH, Zhou SS, Zhao W, Zhou XQ, El-Kassaby YA, Wang XR, Porth I, Mao JF. UV-B-induced molecular mechanisms of stress physiology responses in the major northern Chinese conifer Pinus tabuliformis Carr. TREE PHYSIOLOGY 2021; 41:1247-1263. [PMID: 33416074 DOI: 10.1093/treephys/tpaa180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
During their lifetimes, plants are exposed to different abiotic stress factors eliciting various physiological responses and triggering important defense processes. For UV-B radiation responses in forest trees, the genetics and molecular regulation remain to be elucidated. Here, we exposed Pinus tabuliformis Carr., a major conifer from northern China, to short-term high-intensity UV-B and employed a systems biology approach to characterize the early physiological processes and the hierarchical gene regulation, which revealed a temporal transition from primary to secondary metabolism, the buildup of enhanced antioxidant capacity and stress-signaling activation. Our findings showed that photosynthesis and biosynthesis of photosynthetic pigments were inhibited, while flavonoids and their related derivates biosynthesis, as well as glutathione and glutathione S-transferase mediated antioxidant processes, were enhanced. Likewise, stress-related phytohormones (jasmonic acid, salicylic acid and ethylene), kinase and reactive oxygen species signal transduction pathways were activated. Biological processes regulated by auxin and karrikin were, for the first time, found to be involved in plant defense against UV-B by promoting the biosynthesis of flavonoids and the improvement of antioxidant capacity in our research system. Our work evaluated the physiological and transcriptome perturbations in a conifer's response to UV-B, and generally, highlighted the necessity of a systems biology approach in addressing plant stress biology.
Collapse
Affiliation(s)
- Jie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Shan-Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Xian-Qing Zhou
- Qigou State-owned Forest Farm, Qigou Village, Qigou Town, Pingquan County, Chengde City, Hebei Province, 067509, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4 Canada
| | - Xiao-Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval Québec, 1030 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| |
Collapse
|
10
|
Shang F, Liu R, Wu W, Han Y, Fang X, Chen H, Gao H. Effects of melatonin on the components, quality and antioxidant activities of blueberry fruits. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Mariz-Ponte N, Mendes RJ, Sario S, Correia CV, Correia CM, Moutinho-Pereira J, Melo P, Dias MC, Santos C. Physiological, Biochemical and Molecular Assessment of UV-A and UV-B Supplementation in Solanum lycopersicum. PLANTS 2021; 10:plants10050918. [PMID: 34063679 PMCID: PMC8147646 DOI: 10.3390/plants10050918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Daily UV-supplementation during the plant fruiting stage of tomato (Solanum lycopersicum L.) growing indoors may produce fruits with higher nutraceutical value and better acceptance by consumers. However, it is important to ensure that the plant's performance during this stage is not compromised by the UV supplement. We studied the impact of UV-A (1 and 4 h) and UV-B (2 and 5 min) on the photosynthesis of greenhouse-grown tomato plants during the fruiting/ripening stage. After 30 d of daily irradiation, UV-B and UV-A differently interfered with the photosynthesis. UV-B induced few leaf-necrotic spots, and effects are more evidenced in the stimulation of photosynthetic/protective pigments, meaning a structural effect at the Light-Harvesting Complex. UV-A stimulated flowering/fruiting, paralleled with no visible leaf damages, and the impact on photosynthesis was mostly related to functional changes, in a dose-dependent manner. Both UV-A doses decreased the maximum quantum efficiency of photosystem II (Fv/Fm), the effective efficiency of photosystem II (ΦPSII), and gas exchange processes, including net carbon assimilation (PN). Transcripts related to Photosystem II (PSII) and RuBisCO were highly stimulated by UV supplementation (mostly UV-A), but the maintenance of the RuBisCO protein levels indicates that some protein is also degraded. Our data suggest that plants supplemented with UV-A activate adaptative mechanisms (including increased transcription of PSII peptides and RuBisCO), and any negative impacts on photosynthesis do not compromise the final carbohydrate balances and plant yield, thus becoming a profitable tool to improve precision agriculture.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence:
| | - Rafael J. Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Sara Sario
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristiana V. Correia
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Carlos M. Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; (C.M.C.); (J.M.-P.)
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal; (C.M.C.); (J.M.-P.)
| | - Paula Melo
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (R.J.M.); (S.S.); (C.V.C.); (P.M.); (C.S.)
- LAQV-REQUIMTE, Faculty of Science, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
12
|
González-Villagra J, Escobar AL, Ribera-Fonseca A, Cárcamo MP, Omena-Garcia RP, Nunes-Nesi A, Inostroza-Blancheteau C, Alberdi M, Reyes-Díaz M. Differential mechanisms between traditionally established and new highbush blueberry (Vaccinium corymbosum L.) cultivars reveal new insights into manganese toxicity resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:454-465. [PMID: 33250324 DOI: 10.1016/j.plaphy.2020.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In acid soils, manganese (Mn) concentration increases, becoming toxic to plants. Mn toxicity differentially affects physiological processes in highbush blueberry (Vaccinium corymbosum L.) cultivars. However, the mechanisms involved in Mn toxicity of the new and traditionally established cultivars are unknown. To understand Mn toxicity mechanisms, four traditionally established (Legacy, Brigitta, Duke, and Star) cultivars and two recently introduced to Chile (Camellia and Cargo) were grown under hydroponic conditions subjected to control Mn (2 μM) and Mn toxicity (1000 μM). Physiological, biochemical, and molecular parameters were evaluated at 0, 7, 14, and 21 days. We found that the relative growth rate was reduced in almost all blueberry cultivars under Mn toxicity, except Camellia, with Star being the most affected. The photosynthetic parameters were reduced only in Star by Mn treatment. Leaf Mn concentrations increased in all cultivars, exhibiting the lowest levels in Camellia and Cargo. Brigitta and Duke exhibited higher β-carotene levels, while Cargo exhibited a reduction under toxic Mn. In Legacy, lutein levels increased under Mn toxicity. Traditionally established cultivars exhibited higher antioxidant activity than the new cultivars under Mn toxicity. The Legacy and Duke cultivars increased VcMTP4 expression with Mn exposure time. A multivariate analysis separated Legacy and Duke from Camellia; Star and Cargo; and Brigitta. Our study demonstrated that Mn toxicity differentially affects physiological, biochemical, and molecular features in the new and traditionally established cultivars, with Legacy, Duke, Camellia, and Cargo as the Mn-resistant cultivars differing in their Mn-resistance mechanisms and Star as the Mn-sensitive cultivar.
Collapse
Affiliation(s)
- Jorge González-Villagra
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Ana Luengo Escobar
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Alejandra Ribera-Fonseca
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Centro de Fruticultura, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avenida Francisco Salazar 01145, P.O. Box 24-D, Temuco, Chile
| | - María Paz Cárcamo
- Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | | | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viҫosa 3657-900, Viҫosa, MG, Brazil
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction, and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
13
|
Azarafshan M, Peyvandi M, Abbaspour H, Noormohammadi Z, Majd A. The effects of UV-B radiation on genetic and biochemical changes of Pelargonium graveolens L'Her. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:605-616. [PMID: 32205934 PMCID: PMC7078430 DOI: 10.1007/s12298-020-00758-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/08/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ultraviolet radiation induces biochemical and genetic changes in plants. The aim of this study was to investigate the effects of UV-B radiation on genetic stability, phenolic compounds and antioxidant activity of Pelargonium graveolens L'Her. Plant cuttings were exposed to 0, 0.12. 0.26 and 0.38 W/m2 of UV-B radiation. Results indicated that by increasing the UV-B radiation intensity, total phenols, flavonoids and anthocyanin contents, Phenylalanine ammonia lyase activity and antioxidant capacity were increased. Analysis of four flavonols (quercetin, myricetin, kaempferol and rutin) contents of leaves extract by HPLC indicated that these four flavonols were enhanced in all treated plants and also the ratio of quercetin to kaempferol (Q/K) showed a significant increase (P ≤ 0.05) in UV-B treated plants in compare to control. To evaluate the genetic variation in treated plants, 10 ISSR primers were used. The highest level of percentage of polymorphism (P%), Shannon index (I), number of effective allele (Ne) and Nei' genetic diversity (He), were observed at the highest UV-B radiation (0.38 W/m2). The AMOVA analysis also showed a significant genetic differentiation (P ≥ 0.001) among the studied groups, and confirmed the differentiation of groups obtained by the cluster analysis of molecular data. Overall, these results showed that biochemical changes in different intensities of UV-B were in line with genetic variations, so that the highest biochemical and genetic variations were observed in 0.38 W/m2 treatment.
Collapse
Affiliation(s)
- Marjan Azarafshan
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peyvandi
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Abbaspour
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Majd
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Dias MC, Pinto DCGA, Freitas H, Santos C, Silva AMS. The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids. PHYTOCHEMISTRY 2020; 170:112199. [PMID: 31759269 DOI: 10.1016/j.phytochem.2019.112199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 05/08/2023]
Abstract
The Mediterranean crop Olea europaea is often exposed to high UV-B irradiation conditions. To understand how this species modulates its enzymatic and non-enzymatic antioxidant system under high UV-B radiation, young O. europaea plants (cultivar "Galega Vulgar") were exposed, for five days, to UV-B radiation (6.5 kJ m-2 d-1 and 12.4 kJ m-2 d-1). Our data indicate that UV-doses slightly differ in the modulation of the antioxidant protective mechanisms. Particularly, superoxide dismutase (SOD), guaiacol peroxidase (GPox) and catalase (CAT) activities increased contributing to H2O2 homeostasis, being more solicited by higher UV-B doses. Also, glutathione reductase (Gr) activity, ascorbate (AsA) and reduced glutathione (GSH) pools increased particularly under the highest dose, suggesting a higher mobilization of the antioxidant system in this dose. The leaf metabolites' profile of this cultivar was analysed by UHPLC-MS. Interestingly, high levels of verbascoside were found, followed by oleuropein and luteolin-7-O-glucoside. Both UV-B treatments affected mostly less abundant flavonoids (decreasing 4'-methoxy luteolin and 4' or 3'-methoxy luteolin glucoside) and hydroxycinnamic acid derivatives (HCAds, increasing β-hydroxyverbascoside). These changes show not only different mobilization with the UV-intensity, but also reinforce for the first time the protective roles of these minor compounds against UV-B, as reactive oxygen species (ROS) scavengers and UV-B shields, in complement with other antioxidant systems (e.g. AsA/GSH cycle), particularly for high UV-B doses. Secoiridoids also standout in the response to both UV-B doses, with decreases of oleuropein and increases 2''-methoxyoleuropein. Being oleuropein an abundant compound, data suggest that secoiridoids play a more important role than flavonoids and HCAds, in O. europaea protection against UV-B, possibly by acting as signalling molecules and ROS scavengers. This is the first report on the influence of UV-B radiation on the secoiridoid oleuropein, and provides a novel insight to the role of this compound in the O. europaea antioxidant defence mechanisms.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Freitas
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Conceição Santos
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Dhanya Thomas TT, Dinakar C, Puthur JT. Effect of UV-B priming on the abiotic stress tolerance of stress-sensitive rice seedlings: Priming imprints and cross-tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:21-30. [PMID: 31837557 DOI: 10.1016/j.plaphy.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
Ultraviolet (UV)-B priming can boost the abiotic stress tolerance of plants by activating stress-responsive pathways. The main objective of the present study was to investigate the persistence of priming imprints and cross-tolerance inducing effects of UV-B priming in abiotic stress-sensitive rice (Oryza sativa L. 'Aiswarya') when subjected to various abiotic stressors (NaCl, PEG, and UV-B). The UV-B priming of rice seeds and seedlings effectively enhanced photosynthetic efficiency, antioxidant machinery activity, and antioxidative enzyme production, especially when seedlings were exposed to NaCl, followed by UV-B and PEG. The ability of UV-B priming to induce cross-tolerance against NaCl stress was substantiated by the greater antioxidant activity of the primed and NaCl-stressed seedlings. The greater performance and stress tolerance of the seedlings from UV-B-primed seeds were attributed to the carryover of priming imprints from seeds into the seedlings. Indeed, UV-B priming activated the antioxidant systems of the seedlings, even under non-stress conditions, and resulted in greater responses upon subsequent stress exposure, which suggested that preparedness for encountering imminent stress was attained by UV-B priming in a stress-sensitive rice.
Collapse
Affiliation(s)
- T T Dhanya Thomas
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India
| | - Challabathula Dinakar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India.
| |
Collapse
|
16
|
Dong XY, Yang YL. A Novel Approach to Enhance Blueberry Quality During Storage Using Cold Plasma at Atmospheric Air Pressure. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02305-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Thomas DT, Puthur JT. Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:455-466. [PMID: 30940331 DOI: 10.1071/fp18258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/21/2019] [Indexed: 05/22/2023]
Abstract
UV-B radiation is a major abiotic stress factor that adversely affects the growth and productivity of crop plants including rice (Oryza sativa L.). However, on the other hand, lower doses of UV-B radiation applied to seeds can have a priming effect on plants emerging from it. In this study, seeds of O. sativa var. kanchana were primed with UV-B radiation (6 kJ m-2) and were further subjected to NaCl, polyethylene glycol 6000 (PEG) and UV-B stress. The effects of UV-B priming in imparting NaCl, PEG and UV-B stress tolerance to rice seedlings were analysed through various photosynthetic features and antioxidative mechanisms. PSI and PSII activity levels as well as chl a fluorescence were found to be significantly higher in the UV-B primed and unstressed seedlings. When stress (NaCl, PEG and high UV-B) was imposed, increased PSI and PSII activity levels, chl a fluorescence and metabolite accumulation (proline, total phenolics and sugar) as well as nonenzymatic (ascorbate and glutathione) and enzymatic (superoxide dismutase, catalase, ascorbate peroxidase) antioxidants were recorded in UV-B primed and NaCl-stressed plants followed by UV-B primed and UV-B-stressed plants, and primed and PEG-stressed, compared with unprimed and stressed conditions. The results indicate that UV-B priming in rice seedlings effectively enhances the NaCl stress tolerance potential in rice to a greater extent than UV-B and PEG stress tolerance potential. The cost-effectiveness of UV-B seed priming is predominantly clear from the differing tolerance responses of rice seedlings exposed to different stress conditions.
Collapse
Affiliation(s)
- Dhanya T Thomas
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala-673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala-673635, India; and Corresponding author.
| |
Collapse
|
18
|
Chen Y, Zhang X, Guo Q, Cao L, Qin Q, Li C, Zhao M, Wang W. Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of Prunella vulgaris L. under UV solar exclusion. Biol Res 2019; 52:17. [PMID: 30935421 PMCID: PMC6442409 DOI: 10.1186/s40659-019-0225-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Prunella vulgaris L. has been an important medicinal plant for the treatment of thyroid gland malfunction and mastitis in China for over 2000 years. There is an urgent need to select effective wavelengths for greenhouse cultivation of P. vulgaris as light is a very important factor in P. vulgaris growth. Here, we described the effects of natural light (control) and UV solar exclusion on the morphological and physiological traits, secondary metabolites contents and antioxidant activities of P. vulgaris. Results The results showed that UV solar exclusion resulted in remarkable alterations to morphological and biomass traits; significantly reduced the chlorophyll a, chlorophyll b and total chlorophyll contents; significantly enhanced the ratio of chlorophyll a to b; and significantly increased the carotenoid and anthocyanin contents in P. vulgaris. UV solar exclusion significantly increased the catalase (CAT) and peroxidase (POD) activities, increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and slightly decreased the glutathione (GSH) content. UV solar exclusion significantly increased the soluble sugar and H2O2 contents and increased the soluble protein content but significantly decreased the proline content and slightly decreased the MDA content. The secondary metabolite contents (total phenolics, rosmarinic acid, caffeic acid, hyperoside, ursolic acid and oleanolic acid) and in vitro antioxidative properties (DPPH· and ABTS·+scavenging activities) were significantly increased in P. vulgaris spicas under UV solar exclusion. Additionally, the total polysaccharide and total flavonoids contents were slightly increased by UV solar exclusion. The salviaflaside content was significantly reduced by UV solar exclusion. Conclusion Our study demonstrated that P. vulgaris activates several antioxidant defence systems against oxidative damage caused by UV solar exclusion.
Collapse
Affiliation(s)
- Yuhang Chen
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China. .,Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xuerong Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.,Shanghai Traditional Chinese Medicine Co., LTD., Shanghai, 200002, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Liping Cao
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Qin Qin
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Chen Li
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Miao Zhao
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
19
|
Gallé Á, Czékus Z, Bela K, Horváth E, Ördög A, Csiszár J, Poór P. Plant Glutathione Transferases and Light. FRONTIERS IN PLANT SCIENCE 2019; 9:1944. [PMID: 30687349 PMCID: PMC6333738 DOI: 10.3389/fpls.2018.01944] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
The activity and expression of glutathione transferases (GSTs) depend on several less-known endogenous and well-described exogenous factors, such as the developmental stage, presence, and intensity of different stressors, as well as on the absence or presence and quality of light, which to date have received less attention. In this review, we focus on discussing the role of circadian rhythm, light quality, and intensity in the regulation of plant GSTs. Recent studies demonstrate that diurnal regulation can be recognized in GST activity and gene expression in several plant species. In addition, the content of one of their co-substrates, reduced glutathione (GSH), also shows diurnal changes. Darkness, low light or shade mostly reduces GST activity, while high or excess light significantly elevates both the activity and expression of GSTs and GSH levels. Besides the light-regulated induction and dark inactivation of GSTs, these enzymes can also participate in the signal transduction of visible and UV light. For example, red light may alleviate the harmful effects of pathogens and abiotic stressors by increasing GST activity and expression, as well as GSH content in leaves of different plant species. Based on this knowledge, further research on plants (crops and weeds) or organs and temporal regulation of GST activity and gene expression is necessary for understanding the complex regulation of plant GSTs under various light conditions in order to increase the yield and stress tolerance of plants in the changing environment.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Edit Horváth
- Biological Research CentreInstitute of Plant Biology, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Celeste Dias M, Pinto DCGA, Correia C, Moutinho-Pereira J, Oliveira H, Freitas H, Silva AMS, Santos C. UV-B radiation modulates physiology and lipophilic metabolite profile in Olea europaea. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:39-50. [PMID: 29407548 DOI: 10.1016/j.jplph.2018.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 05/25/2023]
Abstract
Ultraviolet-B (UV-B) radiation plays an important role in plant photomorphogenesis. Whilst the morpho-functional disorders induced by excessive UV irradiation are well-known, it remains unclear how this irradiation modulates the metabolome, and which metabolic shifts improve plants' tolerance to UV-B. In this study, we use an important Mediterranean crop, Olea europaea, to decipher the impacts of enhanced UV-B radiation on the physiological performance and lipophilic metabolite profile. Young olive plants (cv. 'Galega Vulgar') were exposed for five days to UV-B biologically effective doses of 6.5 kJ m-2 d-1 and 12.4 kJ m-2 d-1. Cell cycle/ploidy, photosynthesis and oxidative stress, as well as GC-MS metabolites were assessed. Both UV-B treatments impaired net CO2 assimilation rate, transpiration rate, photosynthetic pigments, and RuBisCO activity, but 12.4 kJ m-2 d-1 also decreased the photochemical quenching (qP) and the effective efficiency of PSII (ΦPSII). UV-B treatments promoted mono/triperpene pathways, while only 12.4 kJ m-2 d-1 increased fatty acids and alkanes, and decreased geranylgeranyl-diphosphate. The interplay between physiology and metabolomics suggests some innate ability of these plants to tolerate moderate UV-B doses (6.5 kJ m-2 d-1). Also their tolerance to higher doses (12.4 kJ m-2 d-1) relies on plants' metabolic adjustments, where the accumulation of specific compounds such as long-chain alkanes, palmitic acid, oleic acid and particularly oleamide (which is described for the first time in olive leaves) play an important protective role. This is the first study demonstrating photosynthetic changes and lipophilic metabolite adjustments in olive leaves under moderate and high UV-B doses.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carlos Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801 Vila Real, Portugal
| | - Helena Oliveira
- Department Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena Freitas
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Conceição Santos
- Department of Biology, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
21
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|
22
|
Mariz-Ponte N, Mendes RJ, Sario S, Ferreira de Oliveira JMP, Melo P, Santos C. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:32-42. [PMID: 29223880 DOI: 10.1016/j.jplph.2017.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
Plants developed receptors for solar UV-A/B radiation, which regulate a complex network of functions through the plant's life cycle. However, greenhouse grown crops, like tomato, are exposed to strongly reduced UV radiation, contrarily to their open-field counterparts. A new paradigm of modern horticulture is to supplement adequate levels of UV to greenhouse cultures, inducing a positive mild stress necessary to stimulate oxidative stress pathways and antioxidant mechanisms. Protected cultures of Solanum (cv MicroTom) were supplemented with moderate UV-A (1h and 4h) and UV-B (1min and 5min) doses during the flowering/fruiting period. After 30days, flowering/fruit ripening synchronization were enhanced, paralleled by the upregulation of blue/UV-A and UV-B receptors' genes cry1a and uvr8. UV-B caused moreover an increase in the expression of hy5, of HY5 repressor cop1 and of a repressor of COP1, uvr8. While all UV-A/B conditions increased SOD activity, increases of the generated H2O2, as well as lipid peroxidation and cell mebrane disruption, were minimal. However, the activity of antioxidant enzymes downstream from SOD (CAT, APX, GPX) was not significant. These results suggest that the major antioxidant pathways involve phenylpropanoid compounds, which also have an important role in UV screening. This hypothesis was confirmed by the increase of phenolic compounds and by the upregulation of chs and fls, coding for CHS and FLS enzymes involved in the phenylpropanoid synthesis. Overall, all doses of UV-A or UV-B were beneficial to flowering/fruiting but lower UV-A/B doses induced lower redox disorders and were more effective in the fruiting process/synchronization. Considering the benefits observed on flowering/fruiting, with minimal impacts in the vegetative part, we demonstrate that both UV-A/B could be used in protected tomato horticulture systems.
Collapse
Affiliation(s)
- N Mariz-Ponte
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - R J Mendes
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - S Sario
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - J M P Ferreira de Oliveira
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal; UCIBIO, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira nº 228, 4050-313, Porto, Portugal
| | - P Melo
- Department of Biology & BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007, Porto, Portugal
| | - C Santos
- Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|