1
|
Wang Y, Wei Z, Fan J, Song X, Xing S. Hyper-expression of GFP-fused active hFGF21 in tobacco chloroplasts. Protein Expr Purif 2023; 208-209:106271. [PMID: 37084839 DOI: 10.1016/j.pep.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Human fibroblast growth factor 21 (hFGF21) is a promising candidate for metabolic diseases. In this study, a tobacco chloroplast transformation vector, pWYP21406, was constructed that consisted of codon-optimized encoding gene hFGF21 fused with GFP at its 5' terminal; it was driven by the promoter of plastid rRNA operon (Prrn) and terminated by the terminator of plastid rps16 gene (Trps16). Spectinomycin-resistant gene (aadA) was the marker and placed in the same cistron between hFGF21 and the terminator Trps16. Transplastomic plants were generated by the biolistic bombardment method and proven to be homoplastic by Southern blotting analysis. The expression of GFP was detected under ultraviolet light and a laser confocal microscope. The expression of GFP-hFGF21 was confirmed by immunoblotting and quantified by enzyme-linked immunosorbnent assay (ELISA). The accumulation of GFP-hFGF21 was confirmed to be 12.44 ± 0.45% of the total soluble protein (i.e., 1.9232 ± 0.0673 g kg-1 of fresh weight). GFP-hFGF21 promoted the proliferation of hepatoma cell line HepG2, inducing the expression of glucose transporter 1 in hepatoma HepG2 cells and improving glucose uptake. These results suggested that a chloroplast expression is a promising approach for the production of bioactive recombinant hFGF21.
Collapse
Affiliation(s)
- Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhengyi Wei
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China; Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jieying Fan
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Shaochen Xing
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
2
|
Haji-Allahverdipoor K, Jalali Javaran M, Rashidi Monfared S, Khadem-Erfan MB, Nikkhoo B, Bahrami Rad Z, Eslami H, Nasseri S. Insights Into The Effects of Amino Acid Substitutions on The Stability of Reteplase Structure: A Molecular Dynamics Simulation Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3175. [PMID: 36811105 PMCID: PMC9938932 DOI: 10.30498/ijb.2022.308798.3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/06/2022] [Indexed: 02/24/2023]
Abstract
Background Reteplase (recombinant plasminogen activator, r-PA) is a recombinant protein designed to imitate the endogenous tissue plasminogen activator and catalyze the plasmin production. It is known that the application of reteplase is limited by the complex production processes and protein's stability challenges. Computational redesign of proteins has gained momentum in recent years, particularly as a powerful tool for improving protein stability and consequently its production efficiency. Hence, in the current study, we implemented computational approaches to improve r-PA conformational stability, which fairly correlates with protein's resistance to proteolysis. Objectives The current study was developed in order to evaluate the effect of amino acid substitutions on the stability of reteplase structure using molecular dynamic simulations and computational predictions. Materials and Methods Several web servers designed for mutation analysis were utilized to select appropriate mutations. Additionally, the experimentally reported mutation, R103S, converting wild type r-PA into non-cleavable form, was also employed. Firstly, mutant collection, consisting of 15 structures, was constructed based on the combinations of four designated mutations. Then, 3D structures were generated using MODELLER. Finally, 17 independent 20-ns molecular dynamics (MD) simulations were conducted and different analysis were performed like root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), secondary structure analysis, number of hydrogen bonds, principal components analysis (PCA), eigenvector projection, and density analysis. Results Predicted mutations successfully compensated the more flexible conformation caused by R103S substitution, so, improved conformational stability was analyzed from MD simulations. In particular, R103S/A286I/G322I indicated the best results and remarkably enhanced the protein stability. Conclusion The conformational stability conferred by these mutations will probably lead to more protection of r-PA in protease-rich environments in various recombinant systems and potentially enhance its production and expression level.
Collapse
Affiliation(s)
- Kaveh Haji-Allahverdipoor
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mokhtar Jalali Javaran
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Bagher Khadem-Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zhila Bahrami Rad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Eslami
- Department of Pharmacology and Toxicology, School of Pharmacy, Hormozgan University of Medicinal sciences, Bandar Abbas, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Tetralysine modified H-chain apoferritin mediated nucleus delivery of chemotherapy drugs synchronized with passive diffusion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Lico C, Santi L, Baschieri S, Noris E, Marusic C, Donini M, Pedrazzini E, Maga G, Franconi R, Di Bonito P, Avesani L. Plant Molecular Farming as a Strategy Against COVID-19 - The Italian Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:609910. [PMID: 33381140 PMCID: PMC7768017 DOI: 10.3389/fpls.2020.609910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 37,000 people in Italy and has caused widespread socioeconomic disruption. Urgent measures are needed to contain and control the virus, particularly diagnostic kits for detection and surveillance, therapeutics to reduce mortality among the severely affected, and vaccines to protect the remaining population. Here we discuss the potential role of plant molecular farming in the rapid and scalable supply of protein antigens as reagents and vaccine candidates, antibodies for virus detection and passive immunotherapy, other therapeutic proteins, and virus-like particles as novel vaccine platforms. We calculate the amount of infrastructure and production capacity needed to deal with predictable subsequent waves of COVID-19 in Italy by pooling expertise in plant molecular farming, epidemiology and the Italian health system. We calculate the investment required in molecular farming infrastructure that would enable us to capitalize on this technology, and provide a roadmap for the development of diagnostic reagents and biopharmaceuticals using molecular farming in plants to complement production methods based on the cultivation of microbes and mammalian cells.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luca Santi
- Department of Agriculture and Forest Science, Tuscia University, Viterbo, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council IPSP-CNR, Turin, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Emanuela Pedrazzini
- Institute for Sustainable Plant Protection, National Research Council IBBA-CNR, Turin, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza,”Pavia, Italy
| | - Rosella Franconi
- Laboratory of Biomedical Technologies, Health Technologies Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F. Hairy Root Cultures-A Versatile Tool With Multiple Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:33. [PMID: 32194578 PMCID: PMC7064051 DOI: 10.3389/fpls.2020.00033] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/13/2020] [Indexed: 05/24/2023]
Abstract
Hairy roots derived from the infection of a plant by Rhizobium rhizogenes (previously referred to as Agrobacterium rhizogenes) bacteria, can be obtained from a wide variety of plants and allow the production of highly diverse molecules. Hairy roots are able to produce and secrete complex active glycoproteins from a large spectrum of organisms. They are also adequate to express plant natural biosynthesis pathways required to produce specialized metabolites and can benefit from the new genetic tools available to facilitate an optimized production of tailor-made molecules. This adaptability has positioned hairy root platforms as major biotechnological tools. Researchers and industries have contributed to their advancement, which represents new alternatives from classical systems to produce complex molecules. Now these expression systems are ready to be used by different industries like pharmaceutical, cosmetics, and food sectors due to the development of fully controlled large-scale bioreactors. This review aims to describe the evolution of hairy root generation and culture methods and to highlight the possibilities offered by hairy roots in terms of feasibility and perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | |
Collapse
|
6
|
Accurately cleavable goat β-lactoglobulin signal peptide efficiently guided translation of a recombinant human plasminogen activator in transgenic rabbit mammary gland. Biosci Rep 2019; 39:BSR20190596. [PMID: 31196965 PMCID: PMC6597847 DOI: 10.1042/bsr20190596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022] Open
Abstract
Poor expression is the key factor hampering the large-scale application of transgenic animal mammary gland bioreactors. A very different approach would be to evaluate the secretion of recombinant proteins into milk in response to a cleavable signal peptide of highly secreted lactoproteins.We previously reported rabbits harboring mammary gland-specific expression vector containing a fusion cDNA (goat β-lactoglobulin (BLG) signal peptide and recombinant human plasminogen activator (rhPA) coding sequences) expressed rhPA in the milk, but we did not realize the signal peptide contributed to the high rhPA concentration and did not mention it at that time. And the molecular structure and biological characteristics still remain unknown. So, rhPA in the milk was purified and characterized in the present study.rhPA was purified from the milk, and the purity of the recovered product was 98% with no loss of biological activity. Analysis of the N-terminal sequence, C-terminal sequence, and the molecular mass of purified rhPA revealed that they matched the theoretical design requirements. The active systemic anaphylaxis (ASA) reactions of the purified rhPA were negative. Taken together, these results indicated that the goat BLG signal peptide can efficiently mediate rhPA secretion into milk and was accurately cleaved off from rhPA by endogenous rabbit signal peptidase.We have reinforced the importance of a rhPA coding region fused to a cleavable heterologous signal peptide from highly secreted goat BLG to improve recombinant protein expression. It is anticipated that these findings will be widely applied to high-yield production of medically important recombinant proteins.
Collapse
|
7
|
Ma T, Li Z, Wang S. Production of Bioactive Recombinant Reteplase by Virus-Based Transient Expression System in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2019; 10:1225. [PMID: 31649696 PMCID: PMC6791962 DOI: 10.3389/fpls.2019.01225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/04/2019] [Indexed: 05/08/2023]
Abstract
To explore a cost-effective alternative method to produce the recombinant thrombolytic drug Reteplase (rPA), a plant viral amplicon-based gene expression system was employed to transiently express bioactive Strep II-tagged recombinant rPA in Nicotiana benthamiana leaves via agro-infiltration. Several gene expression cassettes were designed, synthesized in vitro, and then cloned into Tobacco mosaic virus RNA-based overexpression vector. Codon optimization, subcellular targeting, and the effect of attached Strep-tag II were assessed to identify conditions that maximized expression levels of the recombinant rPA in tobacco leaves. We found that codon-optimized rPA with N-terminal Strep-tag II that was aimed to the endoplasmic reticulum as target provided the highest amount of biologically active protein, i.e., up to ∼50 mg from per kilogram fresh weight leaf biomass in less than 1 week. Furthermore, the recombinant rPA was conveniently purified from inoculated leaf extracts by a one-step purification procedure via the Strep-tag II. The plant-made rPA was glycosylated with molecular mass of ∼45.0 kDa, and its in vitro fibrinolysis activity was equivalent to the commercial available rPA. These results indicate that the plant viral amplicon-based system offers a simple and highly effective approach for cost-effective large-scale production of recombinant rPA.
Collapse
Affiliation(s)
- Ting Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, School of Life Science, Ningxia Universisty, Yinchuan, China
| | - Zhiying Li
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, School of Life Science, Ningxia Universisty, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia Universisty, Yinchuan, China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, School of Life Science, Ningxia Universisty, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, School of Life Science, Ningxia Universisty, Yinchuan, China
- *Correspondence: Sheng Wang,
| |
Collapse
|
8
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Chahardoli M, Fazeli A, Niazi A, Ghabooli M. Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1451780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mahmood Chahardoli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Arash Fazeli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Mehdi Ghabooli
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
10
|
Hidalgo D, Abdoli-Nasab M, Jalali-Javaran M, Bru-Martínez R, Cusidó RM, Corchete P, Palazon J. Biotechnological production of recombinant tissue plasminogen activator protein (reteplase) from transplastomic tobacco cell cultures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:130-137. [PMID: 28633085 DOI: 10.1016/j.plaphy.2017.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/22/2023]
Abstract
Transplastomic plants are a system of choice for the mass production of biopharmaceuticals due to the polyploidy of the plastid genome and the low risk of pollen-mediated outcrossing because of maternal inheritance. However, as field-grown plants, they can suffer contamination by agrochemicals and fertilizers, as well as fluctuations in yield due to climatic changes and infections. Tissue-type plasminogen activator (tPA), a protein used to treat heart attacks, converts plasminogen into plasmine, which digests fibrin and induces the dissolution of fibrin clots. Recently, we obtained transplastomic tobacco plants carrying the K2S gene encoding truncated human tPA (reteplase) with improved biological activity, and confirmed the presence of the target protein in the transgenic plant leaves. Considering the advantages of plant cell cultures for biopharmaceutical production, we established a cell line derived from the K2S tobacco plants. The active form of reteplase was quantified in cultures grown in light or darkness, with production 3-fold higher in light.
Collapse
Affiliation(s)
- Diego Hidalgo
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain
| | - Maryam Abdoli-Nasab
- Department of Biotechnology, Institute of Science, High Technology and Environmental Science, Graduate University of Advanced Tecnology, P.O. Box 76315-117, Kerman, Iran
| | - Mokhtar Jalali-Javaran
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Rosa M Cusidó
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain
| | - Purificación Corchete
- Department of Botany and Plant Physiology, Campus Miguel de Unamuno, University of Salamanca, E-37007, Salamanca, Spain
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain.
| |
Collapse
|