1
|
Li R, Zhou Z, Zhang T, Su H, Li J. Overexpression of LSU1 and LSU2 confers cadmium tolerance by manipulating sulfur metabolism in Arabidopsis. CHEMOSPHERE 2023; 334:139046. [PMID: 37244555 DOI: 10.1016/j.chemosphere.2023.139046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Phytoremediation using plants is an environmentally friendly and cost-effective strategy for removing cadmium (Cd) from soil. Plants used for phytoremediation must have a high Cd accumulation capacity and strong Cd tolerance. Therefore, understanding the molecular mechanism of Cd tolerance and accumulation in plants is of great interest. In response to Cd exposure, plants produce various thio-rich compounds, such as glutathione, phytochelatins, and metallothioneins, which play important roles in Cd immobilization, sequestration, and detoxification. Therefore, sulfur (S) metabolism is crucial for Cd tolerance and accumulation. In this study, we report that the overexpression of low-S responsive genes, LSU1 and LSU2, confers Cd tolerance in Arabidopsis. First, LSU1 and LSU2 promoted S assimilation under Cd stress. Second, LSU1 and LSU2 inhibited the biosynthesis and promoted the degradation of aliphatic glucosinolates, which could limit the consumption and enhance the release of S, thus, facilitating the production of the S-rich metabolites, glutathione, phytochelatins, and metallothioneins. We further demonstrated that the Cd tolerance mediated by LSU1 and LSU2 was dependent on the myrosinases BGLU28 and BGLU30, which catalyze the degradation of aliphatic glucosinolates. In addition, the overexpression of LSU1 and LSU2 improved Cd accumulation, which has great potential for the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zihuan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tianqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hongzhu Su
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Praveen A, Dubey S, Singh S, Sharma VK. Abiotic stress tolerance in plants: a fascinating action of defense mechanisms. 3 Biotech 2023; 13:102. [PMID: 36866326 PMCID: PMC9971429 DOI: 10.1007/s13205-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Climate fluctuation mediated abiotic stress consequences loss in crop yields. These stresses have a negative impact on plant growth and development by causing physiological and molecular changes. In this review, we have attempted to outline recent studies (5 years) associated with abiotic stress resistance in plants. We investigated the various factors that contribute to coping with abiotic challenges, such as transcription factors (TFs), microRNAs (miRNAs), epigenetic changes, chemical priming, transgenic breeding, autophagy, and non-coding RNAs. Stress responsive genes are regulated mostly by TFs, and these can be used to enhance stress resistance in plants. Plants express some miRNA during stress imposition that act on stress-related target genes to help them survive. Epigenetic alterations govern gene expression and facilitate stress tolerance. Chemical priming enhances growth in plants by modulating physiological parameters. Transgenic breeding enables identification of genes involved in precise plant responses during stressful situations. In addition to protein coding genes, non-coding RNAs also influence the growth of the plant by causing alterations at gene expression levels. For achieving sustainable agriculture for a rising world population, it is crucial to develop abiotic-resistant crops with anticipated agronomical traits. To achieve this objective, understanding the diverse mechanisms by which plants protect themselves against abiotic stresses is imperative. This review emphasizes on recent progress and future prospects for abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
- Afsana Praveen
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Sonali Dubey
- National Botanical Research Institute, Uttar Pradesh, Lukhnow, 226001 India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| | - Varun Kumar Sharma
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Yamuna Expressway, Sector 17A, Gautam Budh Nagar, Uttar Pradesh 203201 India
| |
Collapse
|
3
|
Panthri M, Gupta M. An insight into the act of iron to impede arsenic toxicity in paddy agro-system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115289. [PMID: 35598452 DOI: 10.1016/j.jenvman.2022.115289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Surplus research on the widespread arsenic (As) revealed its disturbing role in obstructing the metabolic function of plants. Also, the predilection of As towards rice has been an interesting topic. Contrary to As, iron (Fe) is an essential micronutrient for all life forms. Past findings propound about the enhanced As-resistance in rice plants during Fe supplementation. Thus, considering the severity of As contamination and resulting exposure through rice crops, as well as the studied cross-talks between As and Fe, we found this topic of relevance. Keeping these in view, we bring this review discussing the presence of As-Fe in the paddy environment, the criticality of Fe plaque in As sequestration, and the effectiveness of various Fe forms to overcome As toxicity in rice. This type of interactive analysis for As and Fe is also crucial in the context of the involvement of Fe in cellular redox activities such as oxidative stress. Also, this piece of work highlights Fe biofortification approaches for better rice varieties with optimum intrinsic Fe and limited As. Though elaborated by others, we lastly present the acquisition and transport mechanisms of both As and Fe in rice tissues. Altogether we suggest that Fe supply and Fe plaque might be a prospective agronomical tool against As poisoning and for phytostabilization, respectively.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Mao Q, Xie Z, Irshad S, Zhong Z, Liu T, Pei F, Gao B, Li L. Effect of arsenic accumulation on growth and antioxidant defense system of Chlorella thermophila SM01 and Leptolyngbya sp. XZMQ. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Impact of Ferrous Sulfate on Thylakoidal Multiprotein Complexes, Metabolism and Defence of Brassica juncea L. under Arsenic Stress. PLANTS 2022; 11:plants11121559. [PMID: 35736711 PMCID: PMC9228442 DOI: 10.3390/plants11121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at 7 days after treatment (7 DAT) and 14 DAT. Whereas, As induced high magnitude oxidative stress, FeSO4 limited it. In general, As decreased the growth and photosynthetic parameters less when in the presence of FeSO4. Furthermore, components of the antioxidant system operated in better coordination with FeSO4. Contents of non-protein thiols and phytochelatins were higher with the supply of FeSO4. Blue-Native polyacrylamide gel electrophoresis revealed an As-induced decrease in almost every multi-protein-pigment complex (MPC), and an increase in PSII subcomplex, LHCII monomers and free proteins. FeSO4 supplication helped in the retention of a better stoichiometry of light-harvesting complexes and stabilized every MPC, including supra-molecular complexes, PSI/PSII core dimer/ATP Synthase, Cytochrome b6/f dimer and LHCII dimer. FeSO4 strengthened the plant defence, perhaps by channelizing iron (Fe) and sulfur (S) to biosynthetic and anabolic pathways. Such metabolism could improve levels of antioxidant enzymes, and the contents of glutathione, and phytochelatins. Important key support might be extended to the chloroplast through better supply of Fe-S clusters. Therefore, our results suggest the importance of both iron and sulfur to combat As-induced stress in the Indian mustard plant at biochemical and molecular levels through enhanced antioxidant potential and proteomic adjustments in the photosynthetic apparatus.
Collapse
|
6
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Abstract
The non-essential metalloid arsenic (As) is widely distributed in soil and underground water of many countries. Arsenic contamination is a concern because it creates threat to food security in terms of crop productivity and food safety. Plants exposed to As show morpho-physiological, growth and developmental disorder which altogether result in loss of productivity. At physiological level, As-induced altered biochemistry in chloroplast, mitochondria, peroxisome, endoplasmic reticulum, cell wall, plasma membrane causes reactive oxygen species (ROS) overgeneration which damage cell through disintegrating the structure of lipids, proteins, and DNA. Therefore, plants tolerance to ROS-induced oxidative stress is a vital strategy for enhancing As tolerance in plants. Plants having enhanced antioxidant defense system show greater tolerance to As toxicity. Depending upon plant diversity (As hyperaccumulator/non-hyperaccumulator or As tolerant/susceptible) the mechanisms of As accumulation, absorption or toxicity response may differ. There can be various crop management practices such as exogenous application of nutrients, hormones, antioxidants, osmolytes, signaling molecules, different chelating agents, microbial inoculants, organic amendments etc. can be effective against As toxicity in plants. There is information gap in understanding the mechanism of As-induced response (damage or tolerance response) in plants. This review presents the mechanism of As uptake and accumulation in plants, physiological responses under As stress, As-induced ROS generation and antioxidant defense system response, various approaches for enhancing As tolerance in plants from the available literatures which will make understanding the to date knowledge, knowledge gap and future guideline to be worked out for the development of As tolerant plant cultivars.
Collapse
|
8
|
Phytoremediator Potential of Ipomea asarifolia in Gold Mine Waste Treated with Iron Impregnated Biochar. MINERALS 2022. [DOI: 10.3390/min12020150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Growing environmental pollution in recent decades has been generating potentially toxic elements (PTE) which pose an ongoing threat to terrestrial and aquatic ecosystems and human health, especially in mining areas. Biochar and PTE-tolerant species have been used in soil remediation as they are environmentally friendly alternatives. This study aimed to assess the influence of açaí seed biochar (Euterpe oleracea Mart), impregnated with iron (BFe) or not (BC), on the bioavailability of PTEs, in a multi-contaminated soil from a gold (Au) mining area in the Amazon, using Ipomea asarifolia as a plant test since it was naturally growing on the tailings. BC increased the soil pH while BFe reduced. Biochars increased PTEs in the oxidizable fraction (linked to soil organic matter). The use of BC and BFe improved the immobilization of PTEs and BC increased arsenic (As) in the easily soluble fraction in the soil. Moreover, plants grown with biochars showed lower dry matter yield, higher concentrations of PTEs and lower nutrient content than the control treatment. According to the phytoextraction and translocation factors, Ipomea asarifolia can be classified as a species with potential for phytostabilization of Zn and tolerant to other PTEs, mainly As.
Collapse
|
9
|
Strigolactones Modulate Cellular Antioxidant Defense Mechanisms to Mitigate Arsenate Toxicity in Rice Shoots. Antioxidants (Basel) 2021; 10:antiox10111815. [PMID: 34829686 PMCID: PMC8614715 DOI: 10.3390/antiox10111815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Metalloid contamination, such as arsenic poisoning, poses a significant environmental problem, reducing plant productivity and putting human health at risk. Phytohormones are known to regulate arsenic stress; however, the function of strigolactones (SLs) in arsenic stress tolerance in rice is rarely investigated. Here, we investigated shoot responses of wild-type (WT) and SL-deficient d10 and d17 rice mutants under arsenate stress to elucidate SLs’ roles in rice adaptation to arsenic. Under arsenate stress, the d10 and d17 mutants displayed severe growth abnormalities, including phenotypic aberrations, chlorosis and biomass loss, relative to WT. Arsenate stress activated the SL-biosynthetic pathway by enhancing the expression of SL-biosynthetic genes D10 and D17 in WT shoots. No differences in arsenic levels between WT and SL-biosynthetic mutants were found from Inductively Coupled Plasma-Mass Spectrometry analysis, demonstrating that the greater growth defects of mutant plants did not result from accumulated arsenic in shoots. The d10 and d17 plants had higher levels of reactive oxygen species, water loss, electrolyte leakage and membrane damage but lower activities of superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and glutathione S-transferase than did the WT, implying that arsenate caused substantial oxidative stress in the SL mutants. Furthermore, WT plants had higher glutathione (GSH) contents and transcript levels of OsGSH1, OsGSH2, OsPCS1 and OsABCC1 in their shoots, indicating an upregulation of GSH-assisted arsenic sequestration into vacuoles. We conclude that arsenate stress activated SL biosynthesis, which led to enhanced arsenate tolerance through the stimulation of cellular antioxidant defense systems and vacuolar sequestration of arsenic, suggesting a novel role for SLs in rice adaptation to arsenic stress. Our findings have significant implications in the development of arsenic-resistant rice varieties for safe and sustainable rice production in arsenic-polluted soils.
Collapse
|
10
|
Environmental Conditions and Agronomical Factors Influencing the Levels of Phytochemicals in Brassica Vegetables Responsible for Nutritional and Sensorial Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, the consumption of healthy foods has been related to the prevention of cardiovascular, degenerative diseases and different forms of cancers, underlying the importance of the diet for the consumer’s health. Fruits and vegetables contain phytochemicals that act as protective factors for the human body, through different mechanisms of action. Among vegetables, Brassica received a lot of attention in the last years for the phytochemical compounds content and antioxidant capacity that confer nutraceutical value to the product. The amount of healthy bioactive compounds present in the Brassica defines the nutritional quality. These molecules could belong to the class of antioxidant compounds (e.g., phenols, vitamin C, etc.), or to non-antioxidant compounds (e.g., minerals, glucosinolates, etc.). The amount of these compounds in Brassica vegetables could be influenced by several factors, depending on the genotypes, the environmental conditions and the cultivation techniques adopted. The aim of this study is to highlight the main phytochemical compounds present in brassicas used as a food vegetable that confer nutritional and sensorial quality to the final product, and to investigate the main factors that affect the phytochemical concentration and the overall quality of Brassica vegetables.
Collapse
|
11
|
Bell L, Chadwick M, Puranik M, Tudor R, Methven L, Kennedy S, Wagstaff C. The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest. FRONTIERS IN PLANT SCIENCE 2020; 11:525102. [PMID: 33193472 PMCID: PMC7652772 DOI: 10.3389/fpls.2020.525102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Rocket (Eruca sativa) is a source of health-related metabolites called glucosinolates (GSLs) and isothiocyanates (ITCs) but little is known of the genetic and transcriptomic mechanisms responsible for regulating pre and postharvest accumulations. We present the first de novo reference genome assembly and annotation, with ontogenic and postharvest transcriptome data relating to sulfur assimilation, transport, and utilization. Diverse gene expression patterns related to sulfur metabolism, GSL biosynthesis, and glutathione biosynthesis are present between inbred lines of rocket. A clear pattern of differential expression determines GSL abundance and the formation of hydrolysis products. One breeding line sustained GSL accumulation and hydrolysis product formation throughout storage. Multiple copies of MYB28, SLIM1, SDI1, and ESM1 have increased and differential expression postharvest, and are associated with GSLs and hydrolysis product formation. Two glucosinolate transporter gene (GTR2) copies were found to be associated with increased GSL accumulations in leaves. Monosaccharides (which are essential for primary metabolism and GSL biosynthesis, and contribute to the taste of rocket) were also quantified in leaves, with glucose concentrations significantly correlated with the expression of numerous GSL-related genes. Significant negative correlations were observed between the expression of glutathione synthetase (GSH) genes and those involved in GSL metabolism. Breeding line "B" showed increased GSH gene expression and low GSL content compared to two other lines where the opposite was observed. Co-expression analysis revealed senescence (SEN1) and oxidative stress-related (OXS3) genes have higher expression in line B, suggesting that postharvest deterioration is associated with low GSL concentrations.
Collapse
Affiliation(s)
- Luke Bell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Martin Chadwick
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Manik Puranik
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Lisa Methven
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Carol Wagstaff
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
12
|
Majumder B, Das S, Biswas S, Mazumdar A, Biswas AK. Differential responses of photosynthetic parameters and its influence on carbohydrate metabolism in some contrasting rice (Oryza sativa L.) genotypes under arsenate stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:912-931. [PMID: 32594380 DOI: 10.1007/s10646-020-02241-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Influence of arsenic (As) in As tolerant and sensitive rice genotypes based chloroplastic pigments, leaf gas exchange attributes and their influence on carbohydrate metabolism were investigated in the present study. As retards growth of crop plants and increase several health ailments by contaminating food chain. Photosynthetic inhibition is known to be the prime target of As toxicity due to over-production of ROS. Hydroponically grown rice seedlings of twelve cultivars were exposed to 25, 50, and 75 μM arsenate (AsV) that exerted negative impact on plastidial pigments content and resulted into inhibition of Hill activity. Internal CO2 concentration lowered gradually due to interference of As with stomatal conductance and transpiration rate that subsequently led to drop in net photosynthesis. Twelve contrasting rice genotypes responded differentially to As(V) stress. Present study evaluated As tolerant and sensitive rice cultivars with respect to As(V) imposed alterations in pigments content, photosynthetic attributes along with sugar metabolism. Starch contents, the principle carbohydrate storage declined differentially among As(V) stressed test cultivars, being more pronounced in cvs. Swarnadhan, Tulaipanji, Pusa basmati, Badshabhog, Tulsibhog and IR-20 compared to cvs. Bhutmuri, Kumargore, Binni, Vijaya, TN-1 and IR-64. Therefore, the six former cultivars tried to adapt defensive mechanisms by accumulating higher levels of reducing and non-reducing sugars to carry out basal metabolism to withstand As(V) induced alterations in photosynthesis. This study could help to screen As tolerant and sensitive rice genotypes based on their photosynthetic efficiency in As polluted agricultural fields to reduce As contamination assisted ecotoxicological risk.
Collapse
Affiliation(s)
- Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Soumyajit Biswas
- Regional-cum-Facilitation Centre (Eastern Region), National Medicinal Plants Board (NMPB), Ministry of AYUSH, Government of India, Jadavpur University, Kolkata, 700032, India
| | - Asis Mazumdar
- Regional-cum-Facilitation Centre (Eastern Region), National Medicinal Plants Board (NMPB), Ministry of AYUSH, Government of India, Jadavpur University, Kolkata, 700032, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
13
|
Sahay S, Khan E, Praveen A, Panthri M, Mirza Z, Gupta M. Sulphur potentiates selenium to alleviate arsenic-induced stress by modulating oxidative stress, accumulation and thiol-ascorbate metabolism in Brassica juncea L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11697-11713. [PMID: 31975009 DOI: 10.1007/s11356-019-07520-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/25/2019] [Indexed: 05/10/2023]
Abstract
The present study was designed to see the influence of selenium (Se) and sulphur (S) in the alleviation of arsenic (As)-induced stress in Brassica juncea plant. Se-induced alterations in physiological and biochemical responses due to deficient S (DS), normal S (NS) and additional S (AS) conditions were evaluated in 14-day-old seedlings of B. juncea variety Varuna. During the last 7 days of the 14-day-old seedlings, supplementation with arsenite (AsIII, 300 μM) alone and its combination with selenite (SeIV, 50 μM) along with different S treatments was done which are as follows: (i) control; (ii) As; (iii) As+Se+DS; (iv) As+Se + NS; (v) As+Se + AS. Experimental results showed that the application of AS in spite of NS supplied with Se influenced plant growth, oxidative stress and thiol-ascorbate-related parameters more prominently under As stress. The plants with As+Se+AS treatment exhibited lower ROS (superoxide and hydrogen peroxide ion), malondialdehyde (MDA) accumulation and lipoxygenase activity with increased activities of superoxide dismutase, catalase and ascorbate peroxidase compared with As+Se+NS condition. These plants also exhibited an increase in cysteine, non-protein thiols and phytochelatins, along with reduced, oxidised and redox content of glutathione and ascorbate. Furthermore, the application of S along with Se increased the activities of glutathione reductase, glutathione S-transferase, glutathione peroxidase, monodehydroascorbate and dehydroascorbate to minimise As stress. However, we observed that these responses were reversed under As+Se+DS condition and induced oxidative stress, which was almost similar to As only treatment. It indicated that AS nutrition potentiated Se to alleviate As-inhibited plant growth by modulating antioxidants including thiol-ascorbate-based mechanism and reducing As accumulation in B. juncea plants.
Collapse
Affiliation(s)
- Seema Sahay
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE, 68503, USA
| | - Ehasanullah Khan
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Afsana Praveen
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
14
|
Panthri M, Gupta M. Facets of iron in arsenic exposed Oryza sativa varieties: A manifestation of plant's adjustment at morpho-biochemical and enzymatic levels ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113289. [PMID: 31606664 DOI: 10.1016/j.envpol.2019.113289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Rice consumption is one of the primary sources of arsenic (As) exposure as the grains contain relatively higher concentration of inorganic As. Abundant studies on the ability of iron (Fe) plaque in hampering As uptake by plants has been reported earlier. However, little is known about its role in the mitigation of As mediated oxidative damage in rice plants. The present study highlights the effect of As and Fe co-supplementation on growth response, oxidative stress, Fe uptake related enzymes and nutrient status in rice varieties. Eight different Indica rice varieties were screened and finally four varieties (Varsha, Jaya, PB-1 and IR-64) were selected for detailed investigations. Improved germination and chlorophyll/protein levels during As+Fe co-exposure indicate healthier plants than As(III) treated ones. Interestingly Fe was found act both as an antagonist and also as a synergist of As treatments. It acted by reducing As translocation and improving the nutritional levels and enhancing the oxidative stress. Fe uptake related enzymes (nitrite reductase and ferric chelate reductase) and phytosiderophores analysis revealed that Fe supplementation can reduce its deficiency in rice plants. Morpho-biochemical, oxidative stress and nutrient analysis symbolizes higher tolerance of PB-1 towards As, while Varsha being most sensitive, efficiently combated the As(III) stress in the presence of Fe.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
15
|
Lin Y, Fan J, Yu J, Jiang S, Yan C, Liu J. Root activities and arsenic translocation of Avicennia marina (Forsk.) Vierh seedlings influenced by sulfur and iron amendments. MARINE POLLUTION BULLETIN 2018; 135:1174-1182. [PMID: 30301016 DOI: 10.1016/j.marpolbul.2018.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Sulfur and iron are abundant and have close, complex interactions with the biogeochemical cycle of arsenic (As) in mangrove ecosystems. A hydroponic experiment was conducted to investigate the influences of variable SO42- and Fe2+ supplies on radial oxygen loss (ROL), iron plaque formation and As translocation in Avicennia marina upon exposure to As(III). The results indicate that A. marina is an As-tolerant plant, the application of iron and sulfur not only showed positive growth effects but also induced much higher amounts of ROL-induced iron plaque formation on root surfaces. The presence of iron plaque remarkably improved the proportion of As sequestration near this area but consequently reduced the proportion of As translocation in root. Therefore, it is concluded that iron plaque may act as a barrier for protection against As, and iron and sulfur play important roles in controlling the growth and translocation of As in A. marina seedlings.
Collapse
Affiliation(s)
- Yushan Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Jin Fan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Jinfeng Yu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Shan Jiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, PR China.
| |
Collapse
|
16
|
Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E59. [PMID: 29301332 PMCID: PMC5800158 DOI: 10.3390/ijerph15010059] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 11/16/2022]
Abstract
Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems.
Collapse
Affiliation(s)
- Ghulam Abbas
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
- MARUM and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
- MARUM and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
- Southern Cross GeoScience, Southern Cross University, Lismore 2480, Australia
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| | - Munawar Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (I.B.); (M.I.K.); (M.H.)
| | - Natasha
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-61100, Pakistan; (G.A.); (B.M.); (M.A.); (N.)
| |
Collapse
|
17
|
Zvobgo G, LwalabaWaLwalaba J, Sagonda T, Mutemachani Mapodzeke J, Muhammad N, Haider Shamsi I, Zhang G. Phosphate alleviates arsenate toxicity by altering expression of phosphate transporters in the tolerant barley genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:832-839. [PMID: 28968924 DOI: 10.1016/j.ecoenv.2017.09.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/27/2017] [Accepted: 09/15/2017] [Indexed: 05/13/2023]
Abstract
The contribution of the phosphate transporters (PHTs) in uptake of arsenate (As5+) and phosphate (P) is a widely recognized mechanism. Here we investigated how P regulates the uptake of As5+ and the subsequent effects on growth and relative expression of PHTs. The study was conducted on 3 barley genotypes differing in As tolerance (ZDB160, As-tolerant; ZDB115, moderately tolerant; ZDB475, As-sensitive) using a hydroponic experiment. There were 3 As5+ (0, 10 and 100µM) and 3P (0, 50 and 500µM) levels. The results showed that the negative effect of As stress on plant growth, photosynthesis and cell ultra-structure is As dose and barley genotype dependent, confirming the distinctly genotypic difference in As tolerance. As uptake and accumulation in plant tissues are closely associated with inhibited extent of growth and photosynthesis, with the tolerant genotype ZDB160 having lower As content than other two genotypes. The toxic effect caused by As stress could be alleviated by P addition, mainly due to reduced As uptake. Moreover, the tolerant genotype showed relatively lower expression PHTs than sensitive ones upon exposure to both As stress and P addition, suggesting regulation of PHTs expression is a major mechanism for relative uptake of As and P, in subsequence affecting As tolerance. Moreover, among 6 PHTs examined in this study, the expressions of PHT1.3, PHT1.4 and PHT1.6 showed the marked difference among the three barley genotypes in responses to As stress and P addition, indicating further research on the contribution of phosphate transporters to As and P uptake should be focused on these PHTs.
Collapse
Affiliation(s)
- Gerald Zvobgo
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Jonas LwalabaWaLwalaba
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Tichaona Sagonda
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - James Mutemachani Mapodzeke
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Noor Muhammad
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
18
|
Arasu MV, Kim NH, Antonisamy P, Yoon YH, Kim SJ. Variation of glucosinolates on position orders of flower buds in turnip rape ( Brassica rapa). Saudi J Biol Sci 2017; 24:1562-1566. [PMID: 30174493 PMCID: PMC6114119 DOI: 10.1016/j.sjbs.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
To glucosinolate (GSL) contents on flower buds depending on their position orders in turnip rape (Brassica rapa), three Japanese 'Nabana' cultivars such as cv. No. 21 (Brassica rapa, early type), cv. Husanohana (B. rapa, late type) and cv. Norin No. 20 (B. napus) were investigated using HPLC analysis. Ten GSLs including glucoraphanin, sinigrin, glucoalyssin, napoleiferin, gluconapin, 4-hydroxyglucobrassicin, glucobrassicanapin, glucobrassicin, and gluconasturtiin were detected. Differences in individual and total GSL contents were found between two plant varieties, which are also depending on various developmental stages. Among the GSLs, gluconapin (mean 23.11 μmole/g dry weight (DW) and glucobrassicanapin (mean 13.41 μmole/g DW) documented the most abundant compounds and contributed average 39 and 27% of the total GSLs, but indolyl and aromatic GSLs together accounted >10% of the total GSLs. The presence of significant quantities of gluconapin in the cultivars should be studied more extensively, since the GSL is mainly responsible for the bitter taste.
Collapse
Affiliation(s)
- Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Na-Hyung Kim
- Food and Drug Research Institute, Uiduk University, 261 Donghaedae-Ro, Gyeongju 38004, Republic of Korea
| | - Paulrayer Antonisamy
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Yong-Han Yoon
- Department of Green Technology Convergence, College of Science and Technology, Konkuk University, Chungju 48666, Republic of Korea
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
19
|
Park YJ, Lee HM, Shin M, Arasu MV, Chung DY, Al-Dhabi NA, Kim SJ. Effect of different proportion of sulphur treatments on the contents of glucosinolate in kale ( Brassica oleracea var. acephala) commonly consumed in Republic of Korea. Saudi J Biol Sci 2017; 25:349-353. [PMID: 29472789 PMCID: PMC5815982 DOI: 10.1016/j.sjbs.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/23/2017] [Accepted: 04/30/2017] [Indexed: 12/22/2022] Open
Abstract
Kale (Brassica oleracea L. Acephala Group) is the rich source of medicinal value sulphur compounds, glucosinolates (GLSs). The aim of this study was to investigate the effect of different proportion of sulphur (S) supplementation levels on the accumulation of GLSs in the leaves of the kale cultivar ('TBC'). High performance liquid chromatography (HPLC) separation method guided to identify and quantify six GSLs including three aliphatic (progoitrin, sinigrin and gluconapin) and three indolyl (glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin) respectively. Analysis of these distinct levels of S supplementation revealed that the accumulation of individual and total GLSs was directly proportional to the S concentration. The maximum levels of total GLSs (26.8 µmol/g DW) and glucobrassicin (9.98 µmol/g DW) were found in lower and upper parts of the leaves supplemented with 1 mM and 2 mM S, respectively. Interestingly, aliphatic GSLs were noted predominant in all the parts (50.1, 59.3 and 56% of total GSLs). Among the aliphatic and indolyl GSLs, sinigrin and glucobrassicin account 35.3 and 30.88% of the total GSLs. From this study, it is concluded that supply of S enhance the GSLs accumulation in kale.
Collapse
Affiliation(s)
- Ye-Jin Park
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Hye-Min Lee
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - MinJung Shin
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Mariadhas Valan Arasu
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Doug Young Chung
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Naif Abdullah Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| |
Collapse
|