1
|
Ablazov A, Jamil M, Haider I, Wang JY, Melino V, Maghrebi M, Vigani G, Liew KX, Lin PY, Chen GTE, Kuijer HNJ, Berqdar L, Mazzarella T, Fiorilli V, Lanfranco L, Zheng X, Dai NC, Lai MH, Caroline Hsing YI, Tester M, Blilou I, Al-Babili S. Zaxinone Synthase overexpression modulates rice physiology and metabolism, enhancing nutrient uptake, growth and productivity. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38924092 DOI: 10.1111/pce.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.
Collapse
Affiliation(s)
- Abdugaffor Ablazov
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Muhammad Jamil
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Imran Haider
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Soil, Plant and Food Sciences, Section of Plant Genetics and Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Jian You Wang
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vanessa Melino
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The Salt Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Moez Maghrebi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Kit Xi Liew
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pei-Yu Lin
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guan-Ting Erica Chen
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hendrik N J Kuijer
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamis Berqdar
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Teresa Mazzarella
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Xiongjie Zheng
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nai-Chiang Dai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | | | - Mark Tester
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The Salt Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- The BioActives Lab, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Chen Y, Han J, Wang X, Chen X, Li Y, Yuan C, Dong J, Yang Q, Wang P. OsIPK2, a Rice Inositol Polyphosphate Kinase Gene, Is Involved in Phosphate Homeostasis and Root Development. PLANT & CELL PHYSIOLOGY 2023; 64:893-905. [PMID: 37233621 DOI: 10.1093/pcp/pcad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Phosphorus (P) is a growth-limiting nutrient for plants, which is taken up by root tissue from the environment as inorganic phosphate (Pi). To maintain an appropriate status of cellular Pi, plants have developed sophisticated strategies to sense the Pi level and modulate their root system architecture (RSA) under the ever-changing growth conditions. However, the molecular basis underlying the mechanism remains elusive. Inositol polyphosphate kinase (IPK2) is a key enzyme in the inositol phosphate metabolism pathway, which catalyzes the phosphorylation of IP3 into IP5 by consuming ATP. In this study, the functions of a rice inositol polyphosphate kinase gene (OsIPK2) in plant Pi homeostasis and thus physiological response to Pi signal were characterized. As a biosynthetic gene for phytic acid in rice, overexpression of OsIPK2 led to distinct changes in inositol polyphosphate profiles and an excessive accumulation of Pi levels in transgenic rice under Pi-sufficient conditions. The inhibitory effects of OsIPK2 on root growth were alleviated by Pi-deficient treatment compared with wild-type plants, suggesting the involvement of OsIPK2 in the Pi-regulated reconstruction of RSA. In OsIPK2-overexpressing plants, the altered acid phosphatase (APase) activities and misregulation of Pi-starvation-induced (PSI) genes were observed in roots under different Pi supply conditions. Notably, the expression of OsIPK2 also altered the Pi homeostasis and RSA in transgenic Arabidopsis. Taken together, our findings demonstrate that OsIPK2 plays an important role in Pi homeostasis and RSA adjustment in response to different environmental Pi levels in plants.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Jianming Han
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xiaoyu Wang
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xinyu Chen
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Yonghui Li
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Congying Yuan
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Junyi Dong
- College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Qiaofeng Yang
- College of Food and Bioengineering, Henan University of Animal Husbandry and Ecomomy, Zhengzhou, Henan 450046, China
| | - Peng Wang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
3
|
Khan A, Nasim N, Pudhuvai B, Koul B, Upadhyay SK, Sethi L, Dey N. Plant Synthetic Promoters: Advancement and Prospective. AGRICULTURE 2023; 13:298. [DOI: 10.3390/agriculture13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Native/endogenous promoters have several fundamental limitations in terms of their size, Cis-elements distribution/patterning, and mode of induction, which is ultimately reflected in their insufficient transcriptional activity. Several customized synthetic promoters were designed and tested in plants during the past decade to circumvent such constraints. Such synthetic promoters have a built-in capacity to drive the expression of the foreign genes at their maximum amplitude in plant orthologous systems. The basic structure and function of the promoter has been discussed in this review, with emphasis on the role of the Cis-element in regulating gene expression. In addition to this, the necessity of synthetic promoters in the arena of plant biology has been highlighted. This review also provides explicit information on the two major approaches for developing plant-based synthetic promoters: the conventional approach (by utilizing the basic knowledge of promoter structure and Cis-trans interaction) and the advancement in gene editing technology. The success of plant genetic manipulation relies on the promoter efficiency and the expression level of the transgene. Therefore, advancements in the field of synthetic promoters has enormous potential in genetic engineering-mediated crop improvement.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Noohi Nasim
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Lini Sethi
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
4
|
Lin M, Yan J, Ali MM, Wang S, Tian S, Chen F, Lin Z. Isolation and Functional Characterization of a Green-Tissue Promoter in Japonica Rice (Oryza sativa subsp. Japonica). BIOLOGY 2022; 11:biology11081092. [PMID: 35892948 PMCID: PMC9332004 DOI: 10.3390/biology11081092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Transgenic applications have largely focused on constitutive promoters in plants. However, strong and continuous over-expression of certain genes may be redundant and even harmful to plant growth. Thus, tissue-specific promoters are the most suitable for regulating target gene expression. Although several tissue-specific promoters have been identified, the regulatory mechanism of tissue-specific gene expression remains unclear. By a series of GUS staining of 5′ and 3′ deletions, we uncover tissue-specific cis-acting elements in GSX7R, including ten light-responsive elements. The results reveal that GSX7R is a reverse green tissue-specific promoter, except in endosperm. In contrast, strong tissue-specific promoters that can be used for rice improvements are limited. In this study, we successfully showed that the GSX7R promoter can drive the Cry1Ab gene to resistant rice yellow stem borer. In addition, our study demonstrates an effective promoter to drive foreign genes for crop improvement. Abstract Plant promoters play a vital role in the initiation and regulation of gene transcription. In this study, a rice protein/gene of unknown expression, named Os8GSX7, was gained from a rice T-DNA capture line. The semi-quantitative RT-PCR analysis showed that the gene was only expressed in root, glume, and flower, but not in stem, leaf, embryo, and endosperm of japonica rice. The GUS activity analysis of the GSX7R promoter showed that it was a reverse green tissue expression promoter, except in endosperm. The forward promoter of GSX7 cannot normally drive the expression of the foreign GUS gene, while the reverse promoter of GSX7 is a green tissue-specific expression promoter, which can drive the expression of the foreign GUS gene. The region from −2097 to −1543 bp was the key region for controlling the green tissue-specific expression. The regulatory sequences with different lengths from the 2097 bp reverse sequence from the upstream region of the Os8GSX7 were fused with the GUS reporter gene and stably expressed in rice. Furthermore, transgenic rice plants carrying Cry1Ab encoding Bacillus thuringiensis endotoxin, regulated by GSX7R, were resistant to yellow stem borer. The analysis suggested that 10 light responsive elements of tissue-specific expression were found, including ACE, Box4, CAT-box, G-Box, G-box, GATA motif, GC motif, I-box, Sp1, and chs-unit1 M1. In addition, the results of 5′ and 3′ deletions further speculated that ACE and I-box may be the key elements for determining the green tissue-specific expression of GSX7R promoter.
Collapse
Affiliation(s)
- Mi Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (M.L.); (J.Y.)
| | - Jingwan Yan
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (M.L.); (J.Y.)
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (S.W.); (S.T.)
| | - Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (S.W.); (S.T.)
| | - Shengnan Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (S.W.); (S.T.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (S.W.); (S.T.)
- Correspondence: (F.C.); (Z.L.)
| | - Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China; (M.L.); (J.Y.)
- Correspondence: (F.C.); (Z.L.)
| |
Collapse
|
5
|
Tissue-specific enhancement of OsRNS1 with root-preferred expression is required for the increase of crop yield. J Adv Res 2022; 42:69-81. [PMID: 35609869 PMCID: PMC9788951 DOI: 10.1016/j.jare.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice. OBJECTIVES This study aimed to verify the usefulness of a new rice root-preferred promoter to optimize the function of a target gene with root-preferred expression in rice. METHODS osrns1 mutant had defects in root development based on T-DNA insertional mutant screening and CRISPR technology. To optimize the function of OsRNS1, we generated OsRNS1-overexpression plants under two different promoters: a whole-plant expression promoter and a novel root-preferred expression promoter. Root growth, yield-related agronomic traits, RNA-seq, and reactive oxygen species (ROS) accumulation were analyzed for comparison. RESULTS OsRNS1 was found to be involved in root development through T-DNA insertional mutant analysis and gene editing mutant analysis. To understand the gain of function of OsRNS1, pUbi1::OsRNS1 was generated for the whole-plant expression, and both root growth defects and overall growth defects were found. To overcome this problem, a root-preferential overexpression line using Os1-CysPrxB promoter (Per) was generated and showed an increase in root length, plant height, and grain yield compared to wild-type (WT). RNA-seq analysis revealed that the response to oxidative stress-related genes was significantly up-regulated in both overexpression lines but was more obvious in pPer::OsRNS1. Furthermore, ROS levels in the roots were drastically decreased in pPer::OsRNS1 but were increased in the osrns1 mutants compared to WT. CONCLUSION The results demonstrated that the use of a root-preferred promoter effectively optimizes the function of OsRNS1 and is a useful strategy for improving root-related agronomic traits as well as ROS regulation.
Collapse
|
6
|
Yang X, Liu D, Lu H, Weston DJ, Chen JG, Muchero W, Martin S, Liu Y, Hassan MM, Yuan G, Kalluri UC, Tschaplinski TJ, Mitchell JC, Wullschleger SD, Tuskan GA. Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. BIODESIGN RESEARCH 2021; 2021:9798714. [PMID: 37849951 PMCID: PMC10521660 DOI: 10.34133/2021/9798714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2023] Open
Abstract
A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Haiwei Lu
- Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|