1
|
Wang Z, Yang X, Zhou S, Zhang X, Zhu Y, Chen B, Huang X, Yang X, Zhou G, Zhang T. The Antigenic Membrane Protein (Amp) of Rice Orange Leaf Phytoplasma Suppresses Host Defenses and Is Involved in Pathogenicity. Int J Mol Sci 2023; 24:ijms24054494. [PMID: 36901925 PMCID: PMC10003417 DOI: 10.3390/ijms24054494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Phytoplasmas are uncultivable, phloem-limited, phytopathogenic bacteria that represent a major threat to agriculture worldwide. Phytoplasma membrane proteins are in direct contact with hosts and presumably play a crucial role in phytoplasma spread within the plant as well as by the insect vector. Three highly abundant types of immunodominant membrane proteins (IDP) have been identified within the phytoplasmas: immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). Although recent results indicate that Amp is involved in host specificity by interacting with host proteins such as actin, little is known about the pathogenicity of IDP in plants. In this study, we identified an antigenic membrane protein (Amp) of rice orange leaf phytoplasma (ROLP), which interacts with the actin of its vector. In addition, we generated Amp-transgenic lines of rice and expressed Amp in tobacco leaves by the potato virus X (PVX) expression system. Our results showed that the Amp of ROLP can induce the accumulation of ROLP and PVX in rice and tobacco plants, respectively. Although several studies have reported interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins, this example demonstrates that Amp protein can not only interact with the actin protein of its insect vector but can also directly inhibit host defense responses to promote the infection. The function of ROLP Amp provides new insights into the phytoplasma-host interaction.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaorong Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Siqi Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xishan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingzhi Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- College of Marine and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (T.Z.)
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (T.Z.)
| |
Collapse
|
2
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
3
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
4
|
Zhang C, Chen D, Yang G, Yu X, Wu J. Rice Stripe Mosaic Virus-Encoded P4 Is a Weak Suppressor of Viral RNA Silencing and Is Required for Disease Symptom Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:412-422. [PMID: 31841359 DOI: 10.1094/mpmi-08-19-0239-ia] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viral suppressors of RNA silencing (VSRs) are a cluster of viral proteins that have evolved to counteract eukaryotic antiviral RNA silencing pathways, thereby contributing to viral pathogenicity. In this study, we revealed that the matrix protein P4 encoded by rice stripe mosaic virus (RSMV), which is an emerging cytoplasmic rhabdovirus, is a weak RNA silencing suppressor. By conducting yeast two-hybrid, bimolecular fluorescence complementation, and subcellular colocalization assays, we proved that P4 interacts with the rice endogenous suppressor of gene silencing 3 (OsSGS3). We also determined that P4 overexpression has no effect on OsSGS3 transcription. However, P4 can promote the degradation of OsSGS3 via ubiquitination and autophagy. Additionally, a potato virus X-based expression system was used to confirm that P4 enhances the development of mosaic symptoms on Nicotiana benthamiana leaves by promoting hydrogen peroxide accumulation but not cell death. To verify whether P4 is a pathogenicity factor in host plants, we generated transgenic P4-overexpressing rice plants that exhibited disease-related developmental defects including decreased plant height and excessive tillering. Our data suggest that RSMV-encoded P4 serves as a weak VSR that inhibits antiviral RNA silencing by targeting OsSGS3.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoyi Yang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiyuan Yu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|