1
|
Chirinos-Arias MC, Spampinato CP. Spontaneous and salt stress-induced molecular instability in the progeny of MSH7 deficient Arabidopsis thaliana plants. DNA Repair (Amst) 2024; 145:103801. [PMID: 39700649 DOI: 10.1016/j.dnarep.2024.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The MSH7 protein is a binding partner of MSH2 forming the MutSγ complex. This complex contributes to the plant mismatch repair (MMR) system by recognizing DNA base-base mismatches. Here, we evaluated the impact of MSH7 on genetic diversity of the tenth generation (G10) of wild type and MSH7 deficient Arabidopsis thaliana plants before and after two days exposure to 100 mM NaCl. Genetic diversity was assessed using inter simple sequence repeats (ISSR) and high-resolution melting (HRM) analyses. ISSR analyses revealed a 6.7 % or 5.8 % average polymorphism in the G10 of wild type before and after a short-term salt stress, respectively, and a 64.4 % or 72.1 % average polymorphism in the G10 of msh7 mutant plants before and after salt treatment, respectively. Interestingly, several ISSR markers showed different polymorphism patterns after salt stress compared with the control before treatment. We next compared the percentage of the G10 of wild type and msh7 seedlings with polymorphic bands. Statistically significant differences between genotypes but not due to the salt treatment were observed. In addition, co-amplification at lower temperature-PCR followed by HRM analysis was performed. Of the five assayed HRM loci, two loci allowed the discrimination of fragment alleles between genotypes and two loci, between conditions. We conclude that MSH7 deficient A. thaliana mutants accumulated mutations over 10 generations, and that two days of salt stress caused a further increase in new mutations, thus enhancing genetic diversity that may favor new traits associated with stress tolerance, fitness, and adaptation.
Collapse
Affiliation(s)
- Michelle C Chirinos-Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
2
|
Sloan DB, Broz AK, Kuster SA, Muthye V, Peñafiel-Ayala A, Marron JR, Lavrov DV, Brieba LG. Expansion of the MutS Gene Family in Plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603841. [PMID: 39071318 PMCID: PMC11275761 DOI: 10.1101/2024.07.17.603841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The MutS gene family is distributed across the tree of life and is involved in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded the set of MutS genes in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes. Land plants, green algae, red algae, and glaucophytes share cyanobacterial-like MutS1 and MutS2 genes that presumably were gained via plastid endosymbiotic gene transfer. MutS1 was subsequently lost in some taxa, including seed plants, whereas MutS2 was duplicated in Viridiplantae (i.e., land plants and green algae) with widespread retention of both resulting paralogs. Viridiplantae also have two anciently duplicated copies of the eukaryotic MSH6 gene (i.e., MSH6 and MSH7) and acquired MSH1 via horizontal gene transfer - potentially from a nucleocytovirus. Despite sharing the same name, "plant MSH1" is not directly related to the gene known as MSH1 in some fungi and animals, which may be an ancestral eukaryotic gene acquired via mitochondrial endosymbiosis and subsequently lost in most eukaryotic lineages. There has been substantial progress in understanding the functions of MSH1 and MSH6/MSH7 in plants, but the roles of the cyanobacterial-like MutS1 and MutS2 genes remain uncharacterized. Known functions of bacterial homologs and predicted protein structures, including fusions to diverse nuclease domains, provide hypotheses about potential molecular mechanisms. Because most plant-specific MutS proteins are targeted to the mitochondria and/or plastids, the expansion of this family appears to have played a large role in shaping plant organelle genetics.
Collapse
Affiliation(s)
- Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Shady A. Kuster
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Viraj Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Alejandro Peñafiel-Ayala
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México
| | | | - Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Luis G. Brieba
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México
| |
Collapse
|
3
|
Gonzalez V, Figueroa NR, Spampinato CP. Plant-specific environmental and developmental signals regulate the mismatch repair protein MSH6 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112050. [PMID: 38401766 DOI: 10.1016/j.plantsci.2024.112050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The DNA mismatch repair (MMR) is a postreplicative system that guarantees genomic stability by correcting mispaired and unpaired nucleotides. In eukaryotic nuclei, MMR is initiated by the binding of heterodimeric MutS homologue (MSH) complexes to the DNA error or lesion. Among these proteins, MSH2-MSH6 is the most abundant heterodimer. Even though the MMR mechanism and proteins are highly conserved throughout evolution, physiological differences between species can lead to different regulatory features. Here, we investigated how light, sugar, and/or hormones modulate Arabidopsis thaliana MSH6 expression pattern. We first characterized the promoter region of MSH6. Phylogenetic shadowing revealed three highly conserved regions. These regions were analyzed by the generation of deletion constructs of the MSH6 full-length promoter fused to the β-glucuronidase (GUS) gene. Combined, our in silico and genetic analyses revealed that a 121-bp promoter fragment was necessary for MSH6 expression and contained potential cis-acting elements involved in light- and hormone-responsive gene expression. Accordingly, light exposure or sugar treatment of four-day old A. thaliana seedlings triggered an upregulation of MSH6 in shoot and root apical meristems. Appropriately, MSH6 was also induced by the stem cell inducer WUSCHEL. Further, the stimulatory effect of light was dependent on the presence of phyA. In addition, treatment of seedlings with auxin or cytokinin also caused an upregulation of MSH6 under darkness. Consistent with auxin signals, MSH6 expression was suppressed in the GATA23 RNAi line compared with the wild type. Our results provide evidence that endogenous factors and environmental signals controlling plant growth and development regulate the MSH6 protein in A. thaliana.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Nicolás R Figueroa
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
4
|
Xu P, Huang S, Zhai X, Fan Y, Li X, Yang H, Cao Y, Fan G. N6-methyladenosine modification changes during the recovery processes for Paulownia witches' broom disease under the methyl methanesulfonate treatment. PLANT DIRECT 2023; 7:e508. [PMID: 37426893 PMCID: PMC10325887 DOI: 10.1002/pld3.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/05/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Phytoplasmas induce diseases in more than 1000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N 6-methyladenosine (m6A) is the most common internal modification of the eukaryotic Messenger RNA (mRNA). As one of the species susceptible to phytoplasma infection, the pathogenesis and mechanism of Paulownia has been extensively studied by scholars, but the m6A transcriptome map of Paulownia fortunei (P. fortunei) has not been reported. Therefore, this study aimed to explore the effect of phytoplasma infection on m6A modification of P. fortunei and obtained the whole transcriptome m6A map in P. fortunei by m6A-seq. The m6A-seq results of Paulownia witches' broom (PaWB) disease and healthy samples indicate that PaWB infection increased the degree of m6A modification of P. fortunei. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. Moreover, the functions of PaWB-related genes were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with methyl methanesulfonate, and m6A modification was found in m6A-seq results. Moreover, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) verified that the alternative splicing of these two genes was associated with m6A modification. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the process of PaWB. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenic mechanism of PaWB caused by phytoplasma invasion.
Collapse
Affiliation(s)
- Pingluo Xu
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Shunmou Huang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaoqiao Zhai
- Key Laboratory of Forest Germplasm Resources Protection and Improved Variety Selection in Henan ProvinceHenan Province Academy of ForestryZhengzhouP. R. China
| | - Yujie Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaofan Li
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Haibo Yang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Yabing Cao
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Guoqiang Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| |
Collapse
|
5
|
Ramos RS, Spampinato CP. Deficiency of the Arabidopsis mismatch repair MSH6 attenuates Pseudomonas syringae invasion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111713. [PMID: 37068662 DOI: 10.1016/j.plantsci.2023.111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
The MutS homolog 6 (MSH6) is a nuclear DNA mismatch repair (MMR) gene that encodes the MSH6 protein. MSH6 interacts with MSH2 to form the MutSα heterodimer. MutSα corrects DNA mismatches and unpaired nucleotides arising during DNA replication, deamination of 5-methylcytosine, and recombination between non-identical DNA sequences. In addition to correcting DNA biosynthetic errors, MutSα also recognizes chemically damaged DNA bases. Here, we show that inactivation of MSH6 affects the basal susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv tomato DC3000. The msh6 T-DNA insertional mutant exhibited a reduced susceptibility to the bacterial invasion. This heightened basal resistance of msh6 mutants appears to be dependent on an increased stomatal closure, an accumulation of H2O2 and double-strand breaks (DSBs) and a constitutive expression of pathogenesis-related (NPR1 and PR1) and DNA damage response (RAD51D and SOG1) genes. Complementation of this mutant with the MSH6 wild type allele under the control of its own promoter resulted in reversal of the basal bacterial resistance phenotype and the stomatal closure back to wild type levels. Taken together, these results demonstrate that inactivation of MSH6 increases Arabidopsis basal susceptibility to the bacterial pathogen and suggests a link between DNA repair and stress signaling in plants.
Collapse
Affiliation(s)
- Rocío S Ramos
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
6
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
7
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
8
|
Chirinos-Arias MC, Spampinato CP. Role of the mismatch repair protein MSH7 in Arabidopsis adaptation to acute salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:280-290. [PMID: 34823145 DOI: 10.1016/j.plaphy.2021.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
DNA mismatch repair (MMR) is a highly conserved pathway in evolution responsible for maintaining genomic stability. MMR is initiated when MutS proteins recognize and repair single base-base mismatches and small loops of unpaired nucleotides as well as certain types of DNA damage. Arabidopsis thaliana and other plants contain MutS protein homologs (MSH) found in other eukaryotic organisms and a unique MSH7 polypeptide. In this study, we first evaluated transient expression profiles of ten-days old pAtMSH7:GUS transgenic seedlings at different recovery times after an acute treatment for 48 hs with100 mM NaCl. GUS histochemical staining indicated that MSH7 expression is repressed by salt exposure but recovers progressively. Then, ten-days old mutants harboring two independent msh7 alleles were exposed for 48 hs with100 mM NaCl and different traits were measured over recovery time. Salt treated msh7 seedlings were defective in G2/M arrest. As a result, msh7 seedlings showed a reduced salt inhibitory effect as evidenced by a decreased reduction of rosette and leaf areas, stomatal density, total leaf number, silique length and seed number per silique. These findings suggest that disruption of MSH7 activity could be a promising approach for plant adaptive responses to salinity stress.
Collapse
Affiliation(s)
- Michelle C Chirinos-Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
9
|
Serra H, Svačina R, Baumann U, Whitford R, Sutton T, Bartoš J, Sourdille P. Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nat Commun 2021; 12:803. [PMID: 33547285 PMCID: PMC7865012 DOI: 10.1038/s41467-021-21127-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Meiotic recombination is a critical process for plant breeding, as it creates novel allele combinations that can be exploited for crop improvement. In wheat, a complex allohexaploid that has a diploid-like behaviour, meiotic recombination between homoeologous or alien chromosomes is suppressed through the action of several loci. Here, we report positional cloning of Pairing homoeologous 2 (Ph2) and functional validation of the wheat DNA mismatch repair protein MSH7-3D as a key inhibitor of homoeologous recombination, thus solving a half-century-old question. Similar to ph2 mutant phenotype, we show that mutating MSH7-3D induces a substantial increase in homoeologous recombination (up to 5.5 fold) in wheat-wild relative hybrids, which is also associated with a reduction in homologous recombination. These data reveal a role for MSH7-3D in meiotic stabilisation of allopolyploidy and provides an opportunity to improve wheat's genetic diversity through alien gene introgression, a major bottleneck facing crop improvement.
Collapse
Affiliation(s)
- Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France. .,Genetics, Reproduction and Development, CNRS, Inserm, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Radim Svačina
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia
| | - Ryan Whitford
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, Australia.,South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, UMR 1095, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
10
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|