1
|
Zhao T, Li N, Kong J, Li X, Huang C, Wang Y, Zhang C, Li Y. An activator-represssor complex of VvWRKYs regulate proanthocyanidins biosynthesis through co-targeting VvLAR in grape. Int J Biol Macromol 2024; 281:136653. [PMID: 39423972 DOI: 10.1016/j.ijbiomac.2024.136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Proanthocyanidins (PAs) are vital polyphenolic compounds in plants with various biological functions. Although WRKY transcription factors are known to play important roles, their specific involvement in regulating PAs metabolism in grapes remains underexplored. In this study, we identified six candidate WRKY genes potentially involved in PAs synthesis by transiently overexpressing them in Nicotiana tabacum leaves. Among these, VvWRKY57 was found to enhance PAs synthesis. Further functional analysis, achieved by overexpressing of VvWRKY57 in grape calli, confirmed its positive role in PAs biosynthesis. Using yeast one-hybrid (Y1H), dual-luciferase reporter (DLR) assays, and electrophoretic mobility shift assay (EMSA), we demonstrated that VvWRKY57 binds to the promoter of leucocyanidin reductase (VvLAR2) and stimulates its activity. Additionally, yeast two-hybrid (Y2H), bimolecular fluorescence complementary (BiFC), and pull-down assays revealed that VvWRKY57 forms heterodimers with VvWRKY20, while VvWTKY20 also forms homodimers. Interestingly, overexpression of VvWRKY20 was found to inhibit PAs synthesis. Y1H, DLR, and EMSA further showed that VvWRKY20 binds to the promoters of VvLAR1 and VvLAR2, repressing their transcription activity. When VvWRKY57 and VvWRKY20 were co-expressed, VvLAR2 promoter activity and PAs synthesis were suppressed. Moreover, we discovered that VvPUB26, an E3 ubiquitin ligase physically interacts with both VvWRKY57 and VvWRKY20. VvPUB26 mediated the degradation of VvWRKY20 but did not influence the degradation of VvWRKY57. In conclusion, this study highlights the regulatory interplay between WRKY transcription factors in PAs biosynthesis, offering insights into their distinct roles in modulating this important metabolic pathway in grapes.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Na Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jixiang Kong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaohan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Congbo Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Peng D, Li L, Wei A, Zhou L, Wang B, Liu M, Lei Y, Xie Y, Li X. TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. PLANTA 2024; 260:52. [PMID: 39003354 DOI: 10.1007/s00425-024-04485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
MAIN CONCLUSION TaMYB44-5A identified as a transcription factor negatively regulates drought tolerance in transgenic Arabidopsis. Drought can severely reduce yields throughout the wheat-growing season. Many studies have shown that R2R3-MYB transcription factors are involved in drought stress responses. In this study, the R2R3-MYB transcription factor MYB44-5A was identified in wheat (Triticum aestivum L.) and functionally analyzed. Three homologs of TaMYB44 were isolated, all of which localized to the nucleus. Overexpression of TaMYB44-5A reduced drought tolerance in Arabidopsis thaliana. Further analysis showed that TaMYB44-5A reduced the sensitivity of transgenic Arabidopsis to ABA. Genetic and transcriptional regulation analyses demonstrated that the expression levels of drought- and ABA-responsive genes were downregulated by TaMYB44-5A, and TaMYB44-5A directly bound to the MYB-binding site on the promoter to repress the transcription level of TaRD22-3A. Our results provide insights into a novel molecular pathway in which the R2R3-MYB transcription factor negatively regulates ABA signaling in response to drought stress.
Collapse
Affiliation(s)
- De Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Aosong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Ling Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Mingliu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Yanhong Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, 3 Taicheng Rd, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Vodiasova E, Sinchenko A, Khvatkov P, Dolgov S. Genome-Wide Identification, Characterisation, and Evolution of the Transcription Factor WRKY in Grapevine ( Vitis vinifera): New View and Update. Int J Mol Sci 2024; 25:6241. [PMID: 38892428 PMCID: PMC11172563 DOI: 10.3390/ijms25116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
WRKYs are a multigenic family of transcription factors that are plant-specific and involved in the regulation of plant development and various stress response processes. However, the evolution of WRKY genes is not fully understood. This family has also been incompletely studied in grapevine, and WRKY genes have been named with different numbers in different studies, leading to great confusion. In this work, 62 Vitis vinifera WRKY genes were identified based on six genomes of different cultivars. All WRKY genes were numbered according to their chromosomal location, and a complete revision of the numbering was performed. Amino acid variability between different cultivars was assessed for the first time and was greater than 5% for some WRKYs. According to the gene structure, all WRKYs could be divided into two groups: more exons/long length and fewer exons/short length. For the first time, some chimeric WRKY genes were found in grapevine, which may play a specific role in the regulation of different processes: VvWRKY17 (an N-terminal signal peptide region followed by a non-cytoplasmic domain) and VvWRKY61 (Frigida-like domain). Five phylogenetic clades A-E were revealed and correlated with the WRKY groups (I, II, III). The evolution of WRKY was studied, and we proposed a WRKY evolution model where there were two dynamic phases of complexity and simplification in the evolution of WRKY.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anastasiya Sinchenko
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Pavel Khvatkov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
| | - Sergey Dolgov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (A.S.); (P.K.); (S.D.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 142290 Puschino, Russia
| |
Collapse
|
4
|
Li J, Lv K, Wu J, Xie Y, Zhang J, Zhang N, Xu W. Exogenous Melatonin Promotes Cold Tolerance in Grape Seedlings: Physiological, Transcriptomic, and Functional Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19970-19985. [PMID: 38055343 DOI: 10.1021/acs.jafc.3c05907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Melatonin (MEL) is an antioxidant molecule that enhances plant tolerance to environmental stress. However, the mechanisms by which MEL regulates cold signaling pathways in grapes under cold stress remain elusive. Here, we investigated the physiological and transcriptomic changes in grape seedlings treated with exogenous MEL to determine their protective role under cold stress. Results showed that 150 μM MEL effectively attenuated cold-induced cell damage by reducing reactive oxygen species (ROS) and preserving the chloroplast structure and function. MEL also inhibited tannin degradation, which contributed to its protective effect. Exogenous MEL promoted the synthesis of endogenous MEL, abscisic acid, auxin, and cytokinin while inhibiting gibberellin. Transcriptomic profiling revealed 776 differentially expressed transcripts in MEL-treated samples compared to controls. Functional analysis of a candidate hub gene, VvHSFA6b, showed that its overexpression in grape calli enhances cold tolerance by activating jasmonic acid synthesis pathway genes, promoting JA accumulation, and inhibiting JAZ-repressed transcription factors.
Collapse
Affiliation(s)
- Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| |
Collapse
|
5
|
Hou L, Wu Q, Zhu X, Li X, Fan X, Hui M, Ye Q, Liu G, Liu X. Transcription Factor VvDREB2A from Vitis vinifera Improves Cold Tolerance. Int J Mol Sci 2023; 24:ijms24119381. [PMID: 37298332 DOI: 10.3390/ijms24119381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar 'Zuoyouhong' tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 amino acids, which contained an AP2 conserved domain belonging to the AP2 family. Using transient expression in leaves of tobacco, VvDREB2A was localized to the nucleus, and it potentiated transcriptional activity in yeasts. Expression analysis revealed that VvDREB2A was expressed in various grapevine tissues, with the highest expression in leaves. VvDREB2A was induced by cold and the stress-signaling molecules H2S, nitric oxide, and abscisic acid. Furthermore, VvDREB2A-overexpressing Arabidopsis was generated to analyze its function. Under cold stress, the Arabidopsis overexpressing lines exhibited better growth and higher survival rates than the wild type. The content of oxygen free radicals, hydrogen peroxide, and malondialdehyde decreased, and antioxidant enzyme activities were enhanced. The content of raffinose family oligosaccharides (RFO) also increased in the VvDREB2A-overexpressing lines. Moreover, the expression of cold stress-related genes (COR15A, COR27, COR6.6, and RD29A) was also enhanced. Taken together, as a transcription factor, VvDREB2A improves plants resistance to cold stress by scavenging reactive oxygen species, increasing the RFO amount, and inducing cold stress-related gene expression levels.
Collapse
Affiliation(s)
- Lixia Hou
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiqi Wu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Zhu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyu Li
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Fan
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengling Hui
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Ye
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
6
|
Shen QQ, Wang TJ, Wang JG, He LL, Zhao TT, Zhao XT, Xie LY, Qian ZF, Wang XH, Liu LF, Chen SY, Zhang SZ, Li FS. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107706. [PMID: 37119548 DOI: 10.1016/j.plaphy.2023.107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.
Collapse
Affiliation(s)
- Qing-Qing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Tian-Ju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, Yunnan, 675000, People's Republic of China
| | - Jun-Gang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Li-Lian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Xue-Ting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lin-Yan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zhen-Feng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Xian-Hong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lu-Feng Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Ying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China.
| | - Fu-Sheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China; Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
7
|
Sun M, Xu QY, Zhu ZP, Liu PZ, Yu JX, Guo YX, Tang S, Yu ZF, Xiong AS. AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:151. [PMID: 36941578 PMCID: PMC10029358 DOI: 10.1186/s12870-023-04157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Water shortage caused by global warming seriously affects the yield and quality of vegetable crops. β-carotene, the lipid-soluble natural product with important pharmacological value, is abundant in celery. Transcription factor MYB family extensively disperses in plants and plays regulatory roles in carotenoid metabolism and water scarcity response. RESULTS Here, the AgMYB5 gene encoding 196 amino acids was amplified from celery cv. 'Jinnanshiqin'. In celery, the expression of AgMYB5 exhibited transactivation activity, tissue specificity, and drought-condition responsiveness. Further analysis proved that ectopic expression of AgMYB5 increased β-carotene content and promoted drought tolerance in transgenic Arabidopsis thaliana. Moreover, AgMYB5 expression promoted β-carotene biosynthesis by triggering the expression of AtCRTISO and AtLCYB, which in turn increased antioxidant enzyme activities, and led to the decreased contents of H2O2 and MDA, and the inhibition of O2- generation. Meanwhile, β-carotene accumulation promoted endogenous ABA biosynthesis of transgenic Arabidopsis, which resulted in ABA-induced stomatal closing and delayed water loss. In addition, ectopic expression of AgMYB5 increased expression levels of AtERD1, AtP5CS1, AtRD22, and AtRD29. CONCLUSIONS The findings indicated that AgMYB5 up-regulated β-carotene biosynthesis and drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Qin-Yi Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Pei-Zhuo Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian-Xiang Yu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Yao-Xian Guo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Shu Tang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002, Jiangsu, China
| | - Zhi-Fang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Niu S, Gu X, Zhang Q, Tian X, Chen Z, Liu J, Wei X, Yan C, Liu Z, Wang X, Zhu Z. Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1128002. [PMID: 36844077 PMCID: PMC9947540 DOI: 10.3389/fpls.2023.1128002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Drought is a severe environmental condition that restricts the vegetative growth and reduces the yield of grapevine (Vitis vinifera L.). However, the mechanisms underlying grapevine response and adaptation to drought stress remain unclear. In the present study, we characterized an ANNEXIN gene, VvANN1, which plays a positive role in the drought stress response. The results indicated that VvANN1 was significantly induced by osmotic stress. Expression of VvANN1 in Arabidopsis thaliana enhanced osmotic and drought tolerance through modulating the level of MDA, H2O2, and O2 ·- at the seedling stage, implying that VvANN1 might be involved in the process of ROS homeostasis under drought or osmotic stress conditions. Moreover, we used yeast one-hybridization and chromatin immunoprecipitation assays to show that VvbZIP45 could regulate VvANN1 expression by directly binding to the promoter region of VvANN1 in response to drought stress. We also generated transgenic Arabidopsis that constitutively expressed the VvbZIP45 gene (35S::VvbZIP45) and further produced VvANN1Pro::GUS/35S::VvbZIP45 Arabidopsis plants via crossing. The genetic analysis results subsequently indicated that VvbZIP45 could enhance GUS expression in vivo under drought stress. Our findings suggest that VvbZIP45 may modulate VvANN1 expression in response to drought stress and reduce the impact of drought on fruit quality and yield.
Collapse
Affiliation(s)
- Shuaike Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Grape Breeding, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuemin Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhan Chen
- Grape Breeding, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jingru Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoju Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chengxiang Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ziwen Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
9
|
Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, Alshegaihi RM, Meng Q, Ali M, Zaman W, Brohi RD, Liu F, Manghwar H. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039329. [PMID: 36426143 PMCID: PMC9679293 DOI: 10.3389/fpls.2022.1039329] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Department of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Qinglin Meng
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Rahim Dad Brohi
- Department of Animal Reproduction/Theriogenology, Faculty of Veterinary Science, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| |
Collapse
|
10
|
Wan Z, Li X, Cheng H, Zhang J, Chen Y, Xu Y, Jin S. Comprehensive Genomic Survey, Structural Classification, and Expression Analysis of WRKY Transcription Factor Family in Rhododendron simsii. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212967. [PMID: 36365420 PMCID: PMC9654210 DOI: 10.3390/plants11212967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/01/2023]
Abstract
(1) Rhododendron is one of the top ten traditional flowers in China, with both high ornamental and economic values. However, with the change of the environment, Rhododendron suffers from various biological stresses. The WRKY transcription factor is a member of the most crucial transcription factor families, which plays an essential regulatory role in a variety of physiological processes and developmental stresses. (2) In this study, 57 RsWRKYs were identified using genome data and found to be randomly distributed on 13 chromosomes. Based on gene structure and phylogenetic relationships, 57 proteins were divided into three groups: I, II, and III. Multiple alignments of RsWRKYs with Arabidopsis thaliana homologous genes revealed that WRKY domains in different groups had different conserved sites. RsWRKYs have a highly conserved domain, WRKYGQK, with three variants, WRKYGKK, WRKYGEK, and WRKYGRK. Furthermore, cis-acting elements analysis revealed that all of the RsWRKYs had stress and plant hormone cis-elements, with figures varying by group. Finally, the expression patterns of nine WRKY genes treated with gibberellin acid (GA), methyl jasmonate (MeJA), heat, and drought in Rhododendron were also measured using quantitative real-time PCR (qRT-PCR). The results showed that the expression levels of the majority of RsWRKY genes changed in response to multiple phytohormones and abiotic stressors. (3) This current study establishes a theoretical basis for future studies on the response of RsWRKY transcription factors to various hormone and abiotic stresses as well as a significant foundation for the breeding of new stress-tolerant Rhododendron varieties.
Collapse
Affiliation(s)
- Ziyun Wan
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Hefeng Cheng
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Jing Zhang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yujia Chen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
- School of Life Science and Health, Huzhou College, Huzhou 313000, China
| |
Collapse
|
11
|
Zhang L, Zhang R, Ye X, Zheng X, Tan B, Wang W, Li Z, Li J, Cheng J, Feng J. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153741. [PMID: 35690029 DOI: 10.1016/j.jplph.2022.153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The growth of grapevine [Vitis vinifera L.] is commonly limited by drought stress. The mechanisms by which grapevine copes with drought stress have not yet been extensively clarified. In this study, the drought and abscisic acid (ABA)-induced gene VvWRKY18 was demonstrated to decreased drought tolerance of Arabidopsis thaliana overexpression (VvWRKY18-OE) lines. Compared to wild-type plants, VvWRKY18-OE lines showed increased levels of malonaldehyde (MDA) and the reactive oxygen species (ROS) H2O2 and O2- decreased levels of proline, weakened activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and decreased sensitivity to ABA with respect to stomatal closure.VvWRKY18-OE lines also showed an increase in stomatal density and a higher water loss rate. Negative regulators of stomatal development including SDD1, YDA, TMM, and MPK6, were downregulated in VvWRKY18-OE lines. Transcript levels of the stress-related genes DREB1A and CBF2 were significantly reduced in VvWRKY18-OE lines under drought stress. Taken together, these findings demonstrate that VvWRKY18 reduced drought tolerance in Arabidopsis. Our results contribute to understanding of the roles that WRKY genes play in drought stress and stomatal development.
Collapse
Affiliation(s)
- Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Rui Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Liu X, Yang Y, Wang R, Cui R, Xu H, Sun C, Wang J, Zhang H, Chen H, Zhang D. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111148. [PMID: 35067311 DOI: 10.1016/j.plantsci.2021.111148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) deficiency affects soybean growth and development, resulting in significant reduction of yields. However, the regulatory mechanism of P deficiency tolerance in soybean is still largely unclear. WRKY transcription factors are a family of regulators involved in a variety of abiotic stresses in plants while rarely reported in P deficiency. Here, we demonstrated that a soybean GmWRKY46 gene, belonging to group III of WRKY TF family, was involved in the regulation of P deficiency tolerance in soybean. The expression of GmWRKY46 in low P sensitive soybean varieties was significantly higher than that in tolerant soybean varieties. It was primarily expressed in roots and strongly induced by P deprivation. GmWRKY46 was localized in the nucleus. Compared with the control expressing the empty vector, overexpression of GmWRKY46 in soybean hairy roots exhibited more sensitive phenotypes to low P stress, while the RNA interfered GmWRKY46 significantly enhanced P deficiency tolerance by increasing the proliferation, elongation and P absorption efficiency of hairy roots. Expression patterns of a number of P-responsive genes (GmPht1;1, GmPht1;4, GmPTF1, GmACP1, GmPAP21 and GmExpansin-A7) were altered in both overexpression and gene silenced plants. The results provided a novel insight into how soybean responds to low P stress and new gene that may be used to improve soybean low P tolerance through gene editing approach.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huanqing Xu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chongyuan Sun
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinshe Wang
- Zhengzhou National Subcenter for Soybean Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Hengyou Zhang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
13
|
Dietz KJ, Zörb C, Geilfus CM. Drought and crop yield. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:881-893. [PMID: 34396653 DOI: 10.1111/plb.13304] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/28/2021] [Indexed: 05/27/2023]
Abstract
Episodes of water shortage occur in most agricultural regions of the world. Their durations and intensities increase, and their seasonal timing alters with changing climate. During the ontogenic cycle of crop plants, each development stage, such as seed germination, seedling establishment, vegetative root and shoot growth, flowering, pollination and seed and fruit development, is specifically sensitive to dehydration. Desiccation threatens yield and leads to specific patterns, depending on the type of crop plant and the harvested plant parts, e.g. leafy vegetables, tubers, tap roots or fruits. This review summarizes the effects of drought stress on crop plants and relates the dehydration-dependent yield penalty to the harvested organ and tissue. The control of shoot transpiration and the reorganization of root architecture are of core importance for maintaining proper plant water relationships. Upon dehydration, the provision and partitioning of assimilates and the uptake and distribution of nutrients define remaining growth activity. Domestication of crops by selection for high yield under high input has restricted the genetic repertoire for achieving drought stress tolerance. Introgression of suitable alleles from wild relatives into commercial cultivars might improve the ability to grow with less water. Future research activities should focus more on field studies in order to generate more realistic improvements to crops. Robotic field phenotyping should be integrated into genetic mapping for the identification of relevant traits.
Collapse
Affiliation(s)
- K-J Dietz
- Biochemistry and Physiology of Plants, W5-134, Universität Bielefeld, Bielefeld, Germany
| | - C Zörb
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - C-M Geilfus
- Division of Controlled Environment Horticulture, Humboldt Universität Berlin, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Berlin, Germany
| |
Collapse
|
14
|
Ma B, Liu X, Guo S, Xie X, Zhang J, Wang J, Zheng L, Wang Y. RtNAC100 involved in the regulation of ROS, Na + accumulation and induced salt-related PCD through MeJA signal pathways in recretohalophyte Reaumuria trigyna. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110976. [PMID: 34315592 DOI: 10.1016/j.plantsci.2021.110976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
NAM, ATAF1/2, and CUC2 (NAC) proteins regulate plant responses to salt stress. However, the molecular mechanisms by which NAC proteins regulate salt-induced programmed cell death (PCD) are unclear. We identified 56 NAC genes, 35 of which had complete open reading frames with complete NAM domain, in the R. trigyna transcriptome. Salt stress and methyl jasmonate (MeJA) mediated PCD-induced leaf senescence in R. trigyna seedlings. Salt stress accelerated endogenous JA biosynthesis, upregulating RtNAC100 expression. This promoted salt-induced leaf senescence in R. trigyna by regulating RtRbohE and RtSAG12/20 and enhancing ROS accumulation. Transgenic assays showed that RtNAC100 overexpression aggravated salt-induced PCD in transgenic lines by promoting ROS and Na+ accumulation, ROS-Ca2+ hub activation, and PCD-related gene expression. Therefore, RtNAC100 induces PCD via the MeJA signaling pathway in R. trigyna under salt stress.
Collapse
Affiliation(s)
- Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Shuyu Guo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Xinlei Xie
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Jie Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Jianye Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Linlin Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
15
|
Jiang C, Wang D, Zhang J, Xu Y, Zhang C, Zhang J, Wang X, Wang Y. VqMYB154 promotes polygene expression and enhances resistance to pathogens in Chinese wild grapevine. HORTICULTURE RESEARCH 2021; 8:151. [PMID: 34193849 PMCID: PMC8245564 DOI: 10.1038/s41438-021-00585-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 05/23/2023]
Abstract
Resveratrol plays a crucial phytoalexin role in the grapevine and is beneficial to human health. However, the molecular mechanism of resveratrol accumulation in the enhancement of disease resistance is unclear. Here, we report that the transcription factor VqMYB154 from Vitis quinquangularis accession Danfeng-2 is strongly expressed under artificial inoculation with Uncinula necator and regulates resveratrol accumulation. Unlike its homolog, VqMYB154 has a pathogen-induced promoter and responds to stimulation by U. necator, Pseudomonas syringae, and other treatments. Yeast one-hybrid and GUS activity assays confirmed that VqMYB154 can activate the stilbene synthase genes VqSTS9, VqSTS32, and VqSTS42 by directly binding to their promoters. Overexpression of VqMYB154 in grape leaves resulted in activation of the stilbene pathway, upregulation of STS genes, and accumulation of stilbenoids. In addition, heterologous overexpression of VqMYB154 in Arabidopsis activated resistance-related genes and resulted in greater programmed cell death and accumulation of reactive oxygen species, which led to resistance against P. syringae. These results suggest that the transcription factor VqMYB154 from V. quinquangularis accession Danfeng-2 participates in the regulatory mechanism that improves the biosynthesis and accumulation of stilbenes and enhances resistance to disease in grapevine.
Collapse
Affiliation(s)
- Changyue Jiang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Jie Zhang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China.
| |
Collapse
|
16
|
Yang X, Zhou Z, Fu M, Han M, Liu Z, Zhu C, Wang L, Zheng J, Liao Y, Zhang W, Ye J, Xu F. Transcriptome-wide identification of WRKY family genes and their expression profiling toward salicylic acid in Camellia japonica. PLANT SIGNALING & BEHAVIOR 2021; 16:1844508. [PMID: 33222651 PMCID: PMC7781758 DOI: 10.1080/15592324.2020.1844508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ornamental plant Camellia japonica is widely distributed worldwide and is susceptible to various environmental stresses. The WRKY transcription factor (TF) is an important node of plant tolerance. However, WRKY TFs from C. japonica have not been reported yet. In this study, 48 CjWRKYs, namely, CjWRKY1 to CjWRKY48, were identified. Protein structure analysis revealed that CjWRKY proteins contain a highly conserved motif (WRKYGQK) and two variant motifs (WRKYGKK and WRKYGRK). Phylogenetic analysis indicated that the 48 CjWRKYs can be divided into three groups, which are further classified into six subgroups, namely, I-C, II-a, II-b, II-c, II-e, and III, which contain 10, 6, 8, 13, 7, and 4 members, respectively. The expression patterns of 15 CjWRKYs under salicylic acid (SA) treatment were investigated by real-time quantitative PCR (qRT-PCR). Results showed that the 15 CjWRKYs could be induced by SA treatment. This study is the first to screen CjWRKYs and identify the expression profile of CjWRKYs under SA treatment and provides a theoretical basis for analyzing the function of CjWRKY genes to SA stress tolerance in C. japonica.
Collapse
Affiliation(s)
- Xu Yang
- Hubei Ecology Polytechnic College, Department of Forestry Ecology, Wuhan, China
| | - Zhongcheng Zhou
- Hubei Ecology Polytechnic College, Department of Forestry Ecology, Wuhan, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Muxian Han
- Hubei Ecology Polytechnic College, Department of Forestry Ecology, Wuhan, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, Wuhan, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Ling Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
- CONTACT Feng Xu College of Horticulture and Gardening, Yangtze University, Nanhuan Road 1#, Jingzhou 434025, Hubei Province, China
| |
Collapse
|
17
|
Li X, Tang Y, Li H, Luo W, Zhou C, Zhang L, Lv J. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110613. [PMID: 32900449 DOI: 10.1016/j.plantsci.2020.110613] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 05/02/2023]
Abstract
MYB transcription factors (TFs) are one of the largest TF families, and R2R3-type MYB TFs participate in the multiply abiotic stress responses in wheat. In this study, an R2R3-type MYB gene Myb protein colourless 1 located on chromosome D (named TaMpc1-D4), was cloned from wheat. TaMpc1-D4-GFP protein was localized in the nucleus. Overexpression of TaMpc1-D4 reduced drought tolerance in transgenic Arabidopsis lines, which was supported by the lower germination rate, the shorter root length, a higher level of O2- and malonaldehyde (MDA), the decreased proline content, and limited activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Furthermore, P5CS1, RD29A, RD29B, DREB2A, ABF3, CBF1, CBF2, CBF3, ERF1, POD1, SOD (Cu/Zn), and CAT1 genes related to the stress and antioxidant system were remarkably down-regulated in TaMpc1-D4 transgenic Arabidopsis lines under drought stress. Silencing TaMpc1-D4 expression in wheat enhanced the relative water content (RWC), the proline content, and the activities of antioxidant enzymes, and activated stress-related and antioxidant-related genes (DREB1, DREB3, ERF3, ERF4b, ABF, P5CS, POD, SOD (Fe), and CAT). Taken together, these results indicated that TaMpc1-D4 negatively modulated drought tolerance by regulating the capacity of the enzyme system and the expression of stress-related and antioxidant-related genes.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Hailan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen Luo
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Chunju Zhou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|