1
|
Rani P, Rajak BK, Mahato GK, Rathore RS, Chandra G, Singh DV. Strategic lead compound design and development utilizing computer-aided drug discovery (CADD) to address herbicide-resistant Phalaris minor in wheat fields. PEST MANAGEMENT SCIENCE 2024. [PMID: 39377567 DOI: 10.1002/ps.8455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Wheat (Triticum aestivum) is a vital cereal crop and a staple food source worldwide. However, wheat grain productivity has significantly declined as a consequence of infestations by Phalaris minor. Traditional weed control methods have proven inadequate owing to the physiological similarities between P. minor and wheat during early growth stages. Consequently, farmers have turned to herbicides, targeting acetyl-CoA carboxylase (ACCase), acetolactate synthase (ALS) and photosystem II (PSII). Isoproturon targeting PSII was introduced in mid-1970s, to manage P. minor infestations. Despite their effectiveness, the repetitive use of these herbicides has led to the development of herbicide-resistant P. minor biotypes, posing a significant challenge to wheat productivity. To address this issue, there is a pressing need for innovative weed management strategies and the discovery of novel herbicide molecules. The integration of computer-aided drug discovery (CADD) techniques has emerged as a promising approach in herbicide research, that facilitates the identification of herbicide targets and enables the screening of large chemical libraries for potential herbicide-like molecules. By employing techniques such as homology modelling, molecular docking, molecular dynamics simulation and pharmacophore modelling, CADD has become a rapid and cost-effective medium to accelerate the herbicide discovery process significantly. This approach not only reduces the dependency on traditional experimental methods, but also enhances the precision and efficacy of herbicide development. This article underscores the critical role of bioinformatics and CADD in developing next-generation herbicides, offering new hope for sustainable weed management and improved wheat cultivation practices. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Priyanka Rani
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Bikash Kumar Rajak
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Gopal Kumar Mahato
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, India
| | - Ravindranath Singh Rathore
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, India
| | - Durg Vijay Singh
- Molecular Modelling and Computer-Aided Drug Discovery Laboratory Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
2
|
Zambrano-Navea C, Bastida F, Aguilera MJ, Gonzalez-Andujar JL. Economical Evaluation of Reduced Herbicide Doses Application Rates to Control Phalaris brachystachys (Short-Spiked Canary Grass) in a Biennial Wheat-Sunflower Rotation in Mediterranean Dryland: A Modelling Approach. PLANTS (BASEL, SWITZERLAND) 2024; 13:212. [PMID: 38256765 PMCID: PMC10821078 DOI: 10.3390/plants13020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Phalaris brachystachys (short-spiked canary grass) is considered to be among the most troublesome cereal weeds in Mediterranean areas. A bioeconomic model, based on population dynamics, competition and economic sub-models, was developed to simulate the long-term economic consequence of using herbicide-based strategies: no herbicide application, full herbicide dose (standard rate) and two reduced dose rates (75 and 50% of the standard rate) to control P. brachystachys in a biennial wheat-sunflower rotation. Simulation results indicated that only herbicide application at a full dose (90% control) and 3/4 dose (80% control) produced positive economic results, with the full dose being the best strategy (EUR 98.65 ha-1 year-1). A sensitivity analysis showed that the economic outcome, in terms of annualized net return, was strongly influenced by changes in yield, price, and fixed costs. In addition, the annualized net return was more sensitive to parameter changes at reduced herbicide doses than at full rate. In the wheat-sunflower rotation system, the application of the full dose of herbicide was the most economical and stable strategy in the long-term. Reduced doses are not a recommended option from an economic point of view. Bioeconomic models provide practical insight into different management approaches for effective weed control.
Collapse
Affiliation(s)
- Casto Zambrano-Navea
- Departamento de Agronomia, Facultad de Agronomia, Universidad Central de Venezuela, Maracay 4579, Venezuela;
| | - Fernando Bastida
- Departamento de Ciencias Agroforestales, Universidad de Huelva, 21007 Huelva, Spain;
| | - Maria J. Aguilera
- Departamento de Fisica Aplicada, Universidad de Cordoba, 14071 Cordoba, Spain;
| | | |
Collapse
|
3
|
Hwang JI, Norsworthy JK, McElroy JS, Rutland CA, Barber LT, Butts TR. Metabolic Exploration for Cyhalofop-Butyl Antagonism in Barnyardgrass [ Echinochloa crus-galli (L.) P. Beauv.] Following Pretreatment of Malathion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6617-6625. [PMID: 37094573 DOI: 10.1021/acs.jafc.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present study investigated the effects of broad-spectrum metabolic inhibitors malathion (cytochrome P450 inhibitor) and/or 4-chloro-7-nitrobenzofurazan (NBD-Cl; glutathione S-transferase inhibitor) on the metabolism of cyhalofop-butyl (CyB) in barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] biotypes confirmed previously with multiple resistance to two herbicides CyB and florpyrauxifen-benzyl. The metabolic inhibitors were not effective at recovering the sensitivity of resistant barnyardgrass biotypes to CyB treated at the labeled rate (313 g ai ha-1). Rather, treatment with malathion followed by CyB caused antagonism, reducing the efficacy of CyB and promoting the growth of resistant biotypes. Pretreatment with malathion did not influence absorption/translocation of the applied form CyB and its conversion to the active herbicide form cyhalofop-acid (CyA), in both susceptible and resistant biotypes. In contrast, metabolism of the applied form (CyB) decreased 1.5 to 10.5 times by the malathion pretreatment. Taken together, the maintained CyA production against the reduced CyB metabolism could be the mechanism to account for the cause of CyB antagonism observed in barnyardgrass following malathion pretreatment. Additionally, the evolution of CyB resistance in barnyardgrass might be associated with reduced production of CyA in resistant biotypes, independent of activities of cytochrome P450 or GST enzymes.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704, United States
| | - Jason K Norsworthy
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704, United States
| | - J Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama 36831, United States
| | - Claudia Ann Rutland
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama 36831, United States
| | - L Tom Barber
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704, United States
| | - Thomas R Butts
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72704, United States
| |
Collapse
|
4
|
Vázquez-García JG, de Portugal J, Torra J, Osuna MD, Palma-Bautista C, Cruz-Hipólito HE, De Prado R. Comparison between the mechanisms of Clearfield ® wheat and Lolium rigidum multiple resistant to acetyl CoA carboxylase and acetolactate synthase inhibitors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119438. [PMID: 35561797 DOI: 10.1016/j.envpol.2022.119438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Clearfield® wheat (Triticum aestivum) have helped eliminate the toughest grasses and broadleaf weeds in Spain since 2005. This crop production system includes other tolerant cultivars to the application of imidazolinone (IMI) herbicides. However, the continuous use and off-label rates of IMI herbicides can contribute to the development of resistance in Lolium rigidum and other weed species. In this research, the main objectives were to study the resistance mechanisms to acetolactate synthase (ALS) and acetyl coenzyme A carboxylase (ACCase) inhibitors in a L. rigidum accession (LrR) from a Clearfield® wheat field, with a long history rotating these IMI-tolerant crops and compare them with those present in the IMI-tolerant wheat. The resistance to ACCase inhibitors in LrR was due to point mutations (Ile1781Leu plus Asp2078Gly) of the target site gene plus an enhanced herbicide metabolism (EHM), on the other hand, in wheat accessions was due only by EHM. Mechanisms involved in the resistance to ALS inhibitors were both point mutations of the target gene and EHM in the IMI-tolerant wheat, while only evidence of mutation (Trp574Leu) was found in the multiple herbicide resistant L. rigidum accession. This research demonstrates that if crop rotation is not accompanied by the use of alternative sites of action in herbicide-tolerant crops, resistant weeds to herbicide to which crops are tolerant, can easily be selected. Moreover, repeated and inappropriate use of Clearfield® crops and herbicide rotations can lead to the evolution of multiple resistant weeds, as shown in this study, and have also inestimable environmental impacts.
Collapse
Affiliation(s)
- José G Vázquez-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Joao de Portugal
- Biosciences Department, Polytechnic Institute of Beja, Beja, Portugal; VALORIZA-Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, Portalegre, Portugal
| | - Joel Torra
- Department d'Hortofructicultura, Botànica i Jardineria, Agrotecnio-CERCA Center, Universitat de Lleida, Lleida, Spain
| | - Maria D Osuna
- Plant Protection Department, Extremadura Scientific and Technological Research Center (CICYTEX), Ctra. de AV, km 372, Badajoz, 06187, Guadajira, Spain
| | - Candelario Palma-Bautista
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| | | | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
5
|
Hwang JI, Norsworthy JK, González-Torralva F, Piveta LB, Barber LT, Butts TR. Cross-resistance of barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] to aryloxyphenoxypropionate herbicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105089. [PMID: 35715035 DOI: 10.1016/j.pestbp.2022.105089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/02/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Managing emerged weeds that have evolved resistance to acetyl CoA carboxylase (ACCase)-inhibiting herbicides is a challenging task. A dose-response experiment was conducted on barnyardgrass biotypes resistant (R) and susceptible (S) to three aryloxyphenoxypropionate herbicides cyhalofop-butyl (CyB), fenoxaprop-ethyl (FeE), and quizalofop-ethyl (QuE) along with investigations into the potential resistance mechanism of these biotypes. The tested R barnyardgrass biotypes had strong resistance to CyB and FeE (resistant/susceptible ratio: 7.9-14.4) but weak resistance to QuE (resistant/susceptible ratio: 2.4-3.1). Absorption, translocation, and total metabolism of CyB and QuE were not associated with differences among S and R barnyardgrass biotypes. However, differences between S and R barnyardgrass were observed in production of active acid forms of each herbicide (cyhalofop-acid and quizalofop-acid). Production of cyhalofop-acid was >1.6-fold less in R barnyardgrass (3-8%) for 24 h after herbicide application than in the S barnyardgrass (8-16%). Meanwhile, production of quizalofop-acid was less in R barnyardgrass (< 14%) throughout the study period than in the S barnyardgrass (< 22%). Sequencing results of ACCase gene showed no difference between S and R barnyardgrass. Overall results show that a non-target-site resistance mechanism altering metabolism of CyB and QuE likely contributes to resistance of the barnyardgrass biotypes to these herbicides.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Jason K Norsworthy
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
| | - Fidel González-Torralva
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
| | - Leonard B Piveta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
| | - L Tom Barber
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
| | - Thomas R Butts
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704, USA
| |
Collapse
|
6
|
Gherekhloo J, Hassanpour-bourkheili S, Hejazirad P, Golmohammadzadeh S, Vazquez-Garcia JG, De Prado R. Herbicide Resistance in Phalaris Species: A Review. PLANTS 2021; 10:plants10112248. [PMID: 34834611 PMCID: PMC8621942 DOI: 10.3390/plants10112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Weeds, such as Phalaris spp., can drastically reduce the yield of crops, and the evolution of resistance to herbicides has further exacerbated this issue. Thus far, 23 cases of herbicide resistance in 11 countries have been reported in Phalaris spp., including Phalaris minor Retz., Phalaris paradoxa L., and Phalaris brachystachys L., for photosystem II (PS-II), acetyl-CoA carboxylase (ACCase), and acetolactate synthase (ALS)-inhibiting herbicides. This paper will first review the cases of herbicide resistance reported in P. minor, P. paradoxa, and P. brachystachys. Then, the mechanisms of resistance in Phalaris spp. are discussed in detail. Finally, the fitness cost of herbicide resistance and the literature on the management of herbicide-resistant weeds from these species are reviewed.
Collapse
Affiliation(s)
- Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
- Correspondence: (J.G.); (R.D.P.)
| | - Saeid Hassanpour-bourkheili
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Parvin Hejazirad
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Sajedeh Golmohammadzadeh
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Jose G. Vazquez-Garcia
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071 Cordoba, Spain;
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071 Cordoba, Spain;
- Correspondence: (J.G.); (R.D.P.)
| |
Collapse
|
7
|
Vázquez-García JG, Torra J, Palma-Bautista C, Alcántara-de la Cruz R, Prado RD. Point Mutations and Cytochrome P450 Can Contribute to Resistance to ACCase-Inhibiting Herbicides in Three Phalaris Species. PLANTS 2021; 10:plants10081703. [PMID: 34451748 PMCID: PMC8401167 DOI: 10.3390/plants10081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022]
Abstract
Species of Phalaris have historically been controlled by acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides; however, overreliance on herbicides with this mechanism of action has resulted in the selection of resistant biotypes. The resistance to ACCase-inhibiting herbicides was characterized in Phalaris brachystachys, Phalaris minor, and Phalaris paradoxa samples collected from winter wheat fields in northern Iran. Three resistant (R) biotypes, one of each Phalaris species, presented high cross-resistance levels to diclofop-methyl, cycloxydim, and pinoxaden, which belong to the chemical families of aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazolines (DENs), respectively. The metabolism of 14C-diclofop-methyl contributed to the resistance of the P. brachystachys R biotype, while no evidence of herbicide metabolism was found in P. minor or P. paradoxa. ACCase in vitro assays showed that the target sites were very sensitive to FOP, DIM, and DEN herbicides in the S biotypes of the three species, while the R Phalaris spp. biotypes presented different levels of resistance to these herbicides. ACCase gene sequencing confirmed that cross-resistance in Phalaris species was conferred by specific point mutations. Resistance in the P. brachystachys R biotype was due to target site and non-target-site resistance mechanisms, while in P. minor and P. paradoxa, only an altered target site was found.
Collapse
Affiliation(s)
- José G. Vázquez-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014 Córdoba, Spain;
- Correspondence: (J.G.V.-G.); (R.D.P.); Tel.: +34-95-721-8600 (R.D.P.)
| | - Joel Torra
- Department d’Hortofruticultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, 25198 Lleida, Spain;
| | - Candelario Palma-Bautista
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014 Córdoba, Spain;
| | - Ricardo Alcántara-de la Cruz
- Centro de Ciências da Natureza, Campus Lagoa do Sino, Universidade Federal de São Carlos, Buri 18290-000, Brazil;
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014 Córdoba, Spain;
- Correspondence: (J.G.V.-G.); (R.D.P.); Tel.: +34-95-721-8600 (R.D.P.)
| |
Collapse
|
8
|
Vázquez-García JG, Alcántara-de la Cruz R, Rojano-Delgado AM, Palma-Bautista C, de Portugal Vasconcelos JM, De Prado R. Multiple Herbicide Resistance Evolution: The Case of Eleusine indica in Brazil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1197-1205. [PMID: 33470815 DOI: 10.1021/acs.jafc.0c03999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The occurrence of multiple herbicide resistant weeds has increased considerably in glyphosate-resistant soybean fields in Brazil; however, the mechanisms governing this resistance have not been studied. In its study, the target-site and nontarget-site mechanisms were characterized in an Eleusine indica population (R-15) with multiple resistance to the acetyl-CoA carboxylase (ACCase) inhibitors, glyphosate, imazamox, and paraquat. Absorption and translocation rates of 14C-diclofop-methyl14C-imazamox and 14C-glyphosate of the R-15 population were similar to those of a susceptible (S-15) population; however, the R-15 population translocated ∼38% less 14C-paraquat to the rest of plant and roots than the S-15 population. Furthermore, the R-15 plants metabolized (by P450 cytochrome) 55% and 88% more diclofop-methyl (conjugate) and imazamox (imazamox-OH and conjugate), respectively, than the S-15 plants. In addition, the Pro-106-Ser mutation was found in the EPSPS gene of this population. This report describes the first characterization of the resistance mechanisms in a multiple herbicide resistant weed from Brazil.
Collapse
Affiliation(s)
- José G Vázquez-García
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| | | | - Antonia M Rojano-Delgado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| | | | - João M de Portugal Vasconcelos
- Biosciences Department, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
- VALORIZA-Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Cordoba, 14071, Cordoba, Spain
| |
Collapse
|