1
|
Cao M, Lv W, Wang F, Ma S, Geng H, Li J, Gao Z, Xu Q, Guo J, Leng W, Chen K, Tan Z, Zhang P, Sun K, Xing B. Foliar Application of Zinc Oxide Nanoparticles Alleviates Phenanthrene and Cadmium-Induced Phytotoxicity in Lettuce: Regulation of Plant-Rhizosphere-Microbial Long Distance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:730-743. [PMID: 39704184 DOI: 10.1021/acs.est.4c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Foliar application of beneficial nanoparticles exhibits potential in mitigating combined stresses from heavy metals and polycyclic aromatic hydrocarbons (PAHs) in crops, necessitating a comprehensive understanding of plant-rhizosphere-microbial processes to promote sustainable nanotechnology in agriculture. Herein, we investigated the mitigating mechanisms of foliar application of zinc oxide nanoparticles (nZnO) on lettuce growth under phenanthrene (Phe) and cadmium (Cd) costress. Compared to Phe + Cd treatment, low (L-nZnO) and high (H-nZnO) concentration of nZnO increased fresh biomass (27.2% and 8.42%) and root length (20.4% and 39.6%) and decreased MDA (35.0% and 40.0%) and H2O2 (29.0% and 15.6%) levels. L-nZnO and H-nZnO decreased Cd in roots (26.8% and 41.8%) and enhanced Zn in roots (19.9% and 107%), stems (221% and 2510%), and leaves (233% and 1500%), suggesting the long-distance migration of Zn from leaves to roots and subsequently regulating the metabolic pathways and microbial communities. Metabolomics revealed that nZnO modulated leaf glycerophospholipid metabolism and amino acid pathways and promoted rhizosphere soil carbon and phosphorus metabolism. Additionally, nZnO enriched the plant-growth-promoting, extreme, and stress-resistant bacteria in roots and leaves and heavy-metal-resistant and PAH-degrading bacteria in rhizosphere soil. These findings underscore the promising nanostrategy of nZnO to benefit plant growth in soil cocontaminated with heavy metals and PAHs.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wenxiao Lv
- Zhongcheng Yuan (Beijing) Environmental Technology Co., Ltd., Beijing 100120, China
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Ziqi Gao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Qing Xu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Jing Guo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenjun Leng
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Puttamadanayaka S, Emayavaramban P, Yadav PK, Radhakrishna A, Mehta BK, Chandra A, Ahmad S, Sanivarapu H, Siddaiah CN, Yogendra K. Unravelling the molecular mechanism underlying drought stress tolerance in Dinanath (Pennisetum pedicellatum Trin.) grass via integrated transcriptomic and metabolomic analyses. BMC PLANT BIOLOGY 2024; 24:928. [PMID: 39367330 PMCID: PMC11452992 DOI: 10.1186/s12870-024-05579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Dinanath grass (Pennisetum pedicellatum Trin.) is an extensively grown forage grass known for its significant drought resilience. In order to comprehensively grasp the adaptive mechanism of Dinanath grass in response to water deficient conditions, transcriptomic and metabolomics were applied in the leaves of Dinanath grass exposed to two distinct drought intensities (48-hour and 96-hour). Transcriptomic analysis of Dinanath grass leaves revealed that a total of 218 and 704 genes were differentially expressed under 48- and 96-hour drought conditions, respectively. The genes that were expressed differently (DEGs) and the metabolites that accumulated in response to 48-hour drought stress mainly showed enrichment in the biosynthesis of secondary metabolites, particularly phenolics and flavonoids. Conversely, under 96-hour drought conditions, the enriched pathways predominantly involved lipid metabolism, specifically sterol lipids. In particular, phenylpropanoid pathway and brassinosteroid signaling played a crucial role in drought response to 48- and 96-hour water deficit conditions, respectively. This variation in drought response indicates that the adaptation mechanism in Dinanath grass is highly dependent on the intensity of drought stress. In addition, different genes associated with phenylpropanoid and fatty acid biosynthesis, as well as signal transduction pathways namely phenylalanine ammonia-lyase, putrescine hydroxycinnamoyl transferase, abscisic acid 8'-hydroxylase 2, syntaxin-61, lipoxygenase 5, calcium-dependent protein kinase and phospholipase D alpha one, positively regulated with drought tolerance. Combined transcriptomic and metabolomic analyses highlights the outstanding involvement of regulatory pathways related to secondary cell wall thickening and lignin biosynthesis in imparting drought tolerance to Dinanath grass leaves. These findings collectively contribute to an enhanced understanding of candidate genes and key metabolites relevant to drought response in Dinanath grass. Furthermore, they establish a groundwork for the creation of a transcriptome database aimed at developing abiotic stress-tolerant grasses and major crop varieties through both transgenic and genome editing approaches.
Collapse
Affiliation(s)
| | | | | | - Auji Radhakrishna
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | | | - Amaresh Chandra
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Shahid Ahmad
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India
| | | | - Kalenahalli Yogendra
- International Crops Research Institute for Semi-Arid Tropics, Patancheru, 502324, India.
| |
Collapse
|
3
|
Jiang X, Zhou W, Li D, Wang H, Yang Y, You J, Liu H, Ai L, Zhang M. Combined transcriptome and metabolome analyses reveal the effects of selenium on the growth and quality of Lilium lancifolium. FRONTIERS IN PLANT SCIENCE 2024; 15:1399152. [PMID: 38828223 PMCID: PMC11140108 DOI: 10.3389/fpls.2024.1399152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Lilium lancifolium Thunb (L. lancifolium) is an important medicinal and edible plant with outstanding functionality for selenium (Se) biofortification. However, the molecular response of L. lancifolium to exogenous Se has not been fully elucidated. In this study, the effects of different levels of Se on L. lancifolium growth and quality were explored by transcriptome, metabolome and biochemical analyses. The results showed that the total Se and organic Se content in L. lancifolium bulbs increased with increasing Se dosage (0-8.0 mmol/L). Moreover, Se stimulated the growth of L. lancifolium at low level (2.0 mmol/L) but showed an inhibitory effect at high levels (≥4.0 mmol/L). Metabolomic and biochemical analyses revealed that the bulb weight and the content of amino acid, soluble sugar, and soluble protein were significantly increased in the 2.0 mmol/L Se treatment compared with those in the control (0 mmol/L Se). Transcriptome and metabolome analyses revealed that the significant upregulation of the GPD1, GPAT and ADPRM genes promoted glycerophospholipid accumulation. Additionally, the significantly upregulated glyA and downregulated asnB, nadB, thrA and SAT genes coordinate to the regulation of amino acid biosynthesis. The significantly upregulated SUS, bgl B, BAM, and SGA1 genes were involved in soluble sugar accumulation under Se treatment. In summary, this study identified the optimal Se concentration (2.0 mmol/L), which significantly improved the growth and nutritional quality of L. lancifolium and contributed to understanding the combined effects of Se treatment on the expression of genes and the accumulation of metabolites in L. lancifolium bulbs.
Collapse
Affiliation(s)
| | - Wuxian Zhou
- *Correspondence: Wuxian Zhou, ; Lunqiang Ai, ; Meide Zhang,
| | | | | | | | | | | | - Lunqiang Ai
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
4
|
Guo A, Yang Y, Wu J, Qin N, Hou F, Gao Y, Li K, Xing G, Li S. Lipidomic and transcriptomic profiles of glycerophospholipid metabolism during Hemerocallis citrina Baroni flowering. BMC PLANT BIOLOGY 2023; 23:50. [PMID: 36683035 PMCID: PMC9869519 DOI: 10.1186/s12870-022-04020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hemerocallis citrina Baroni (daylily) is a horticultural ornamental plant and vegetable with various applications as a raw material in traditional Chinese medicine and as a flavouring agent. Daylily contains many functional substances and is rich in lecithin, which is mostly composed of glycerophospholipids. To study the comprehensive dynamic changes in glycerophospholipid during daylily flowering and the underlying signalling mechanisms, we performed comprehensive, time-resolved lipidomic and transcriptomic analyses of 'Datong Huanghua 6' daylily. RESULTS Labelling with PKH67 fluorescent antibodies clearly and effectively helped visualise lipid changes in daylily, while relative conductivity and malonaldehyde content detection revealed that the early stages of flowering were controllable processes; however, differences became non-significant after 18 h, indicating cellular damage. In addition, phospholipase D (PLD) and lipoxygenase (LOX) activities increased throughout the flowering process, suggesting that lipid hydrolysis and oxidation had intensified. Lipidomics identified 558 lipids that changed during flowering, with the most different lipids found 12 h before and 12 h after flowering. Transcriptome analysis identified 13 key functional genes and enzymes in the glycerophospholipid metabolic pathway. The two-way orthogonal partial least squares analysis showed that diacylglycerol diphosphate phosphatase correlated strongly and positively with phosphatidic acid (PA)(22:0/18:2), PA(34:2), PA(34:4), and diacylglycerol(18:2/21:0) but negatively with phospholipase C. In addition, ethanolamine phosphotransferase gene and phospholipid-N-methyltransferase gene correlated positively with phosphatidylethanolamine (PE)(16:0/18:2), PE(16:0/18:3), PE(33:2), and lysophosphatidylcholine (16:0) but negatively with PE(34:1). CONCLUSIONS Overall, this study elucidated changes in the glycerophospholipid metabolism pathway during the daylily flowering process, as well as characteristic genes, thus providing a basis for future studies of glycerophospholipids and signal transduction in daylilies.
Collapse
Affiliation(s)
- Aihua Guo
- Department of life science, Lyuliang University, Lvliang, 033000, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yang Yang
- Department of life science, Lyuliang University, Lvliang, 033000, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jiang Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China
| | - Nannan Qin
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Feifan Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China
| | - Yang Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China
| | - Ke Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| |
Collapse
|
5
|
Wei P, Yu X, Yang Y, Chen Z, Zhao S, Li X, Zhang W, Liu C, Li X, Liu X. Biased gene expression reveals the contribution of subgenome to altitude adaptation in allopolyploid Isoetes sinensis. Ecol Evol 2022; 12:e9677. [PMID: 36619709 PMCID: PMC9797765 DOI: 10.1002/ece3.9677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Allopolyploids are believed to inherit the genetic characteristics of its progenitors and exhibit stronger adaptability and vigor. The allotetraploid Isoetes sinensis was formed by the natural hybridization and polyploidization of two diploid progenitors, Isoetes taiwanensis and Isoetes yunguiensis, and was believed to have the potential to adapt to plateau environments. To explore the expression pattern of homoeologous genes and their contributions to altitude adaptation, we transplanted natural allotetraploid I. sinensis (TnTnYnYn) along the altitude gradient for a long-term, and harvested them in summer and winter, respectively. One year after transplanting, it still lived well, even in the extreme environment of the Qinghai-Tibet Plateau. Then, we performed high-throughput RNA sequencing to measure their gene expression level. A total of 7801 homoeologous genes were expressed, among which 5786 were identified as shared expression in different altitudes and seasons. We further found that altitude variations could change the subgenome bias trend of I. sinensis, but season could not. Moreover, the functions of uniquely expressed genes indicated that temperature might be an important restrictive factor during the adaptation process. Through the analysis of DEGs and uniquely expressed genes, we found that Y subgenome provided more contributions to high altitude adaptation than T subgenome. These adaptive traits to high altitude may be inherited from its plateau progenitor I. yunguiensis. Through weighted gene co-expression network analysis, pentatricopeptide repeats gene family and glycerophospholipid metabolism pathway were considered to play important roles in high-altitude adaptation. Totally, this study will enrich our understanding of allopolyploid in environmental adaptation.
Collapse
Affiliation(s)
- Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐lei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Yu‐jiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhu‐yifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Shu‐qi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xin‐zhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Wen‐cai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| | - Chen‐lai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiao‐yan Li
- Biology Experimental Teaching Center, School of Life ScienceWuhan UniversityWuhanChina
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life SciencesWuhan UniversityWuhanChina
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of SciencesTibet UniversityLhasaChina
| |
Collapse
|
6
|
Baek G, Lee H, Ko J, Choi HK. Exogenous melatonin enhances the growth and production of bioactive metabolites in Lemna aequinoctialis culture by modulating metabolic and lipidomic profiles. BMC PLANT BIOLOGY 2022; 22:545. [PMID: 36434529 PMCID: PMC9701026 DOI: 10.1186/s12870-022-03941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Lemna species are cosmopolitan floating plants that have great application potential in the food/feed, pharmaceutical, phytoremediation, biofuel, and bioplastic industries. In this study, the effects of exogenous melatonin (0.1, 1, and 10 µM) on the growth and production of various bioactive metabolites and intact lipid species were investigated in Lemna aequinoctialis culture. RESULTS Melatonin treatment significantly enhanced the growth (total dry weight) of the Lemna aequinoctialis culture. Melatonin treatment also increased cellular production of metabolites including β-alanine, ascorbic acid, aspartic acid, citric acid, chlorophyll, glutamic acid, phytosterols, serotonin, and sucrose, and intact lipid species; digalactosyldiacylglycerols, monogalactosyldiacylglycerols, phosphatidylinositols, and sulfoquinovosyldiacylglycerols. Among those metabolites, the productivity of campesterol (1.79 mg/L) and stigmasterol (10.94 mg/L) were the highest at day 28, when 10 µM melatonin was treated at day 7. CONCLUSION These results suggest that melatonin treatment could be employed for enhanced production of biomass or various bioactive metabolites and intact lipid species in large-scale L. aequinoctialis cultivation as a resource for food, feed, and pharmaceutical industries.
Collapse
Affiliation(s)
- GahYoung Baek
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - JuHee Ko
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, 06974, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Lin J, Sun X, Dai X, Zhang S, Zhang X, Wang Q, Zheng Q, Huang M, He Y, Lin R. Integrated Proteomics and Metabolomics Analysis in Pregnant Rat Hippocampus After Circadian Rhythm Inversion. Front Physiol 2022; 13:941585. [PMID: 35936909 PMCID: PMC9355539 DOI: 10.3389/fphys.2022.941585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
To investigate the changes in proteins, metabolites, and related mechanisms in the hypothalamus of pregnant rats after circadian rhythm inversion during the whole pregnancy cycle. A total of 12 Wistar female rats aged 7 weeks were randomly divided into control (six rats) and experimental (six rats) groups at the beginning of pregnancy. The control group followed a 12-h light and dark cycle (6 a.m. to 6 p.m. light, 6 p.m. to 6 a.m. dark the next day), and the experimental group followed a completely inverted circadian rhythm (6 p.m. to 6 a.m. light the next day, 6 a.m. to 6 p.m. dark). Postpartum data were collected until 7–24 h after delivery, and hypothalamus samples were collected in two groups for quantitative proteomic and metabolism analyses. The differential proteins and metabolites of the two groups were screened by univariate combined with multivariate statistical analyses, and the differential proteins and metabolites enriched pathways were annotated with relevant databases to analyze the potential mechanisms after circadian rhythm inversion. A comparison of postpartum data showed that circadian rhythm inversion can affect the number of offspring and the average weight of offspring in pregnant rats. Compared with the control group, the expression of 20 proteins and 37 metabolites was significantly changed in the experimental group. The integrated analysis between proteins and metabolites found that RGD1562758 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) proteins were closely associated with carbon metabolism (choline, NAD+, L-glutamine, theobromine, D-fructose, and pyruvate) and glycerophospholipid metabolism (choline, NAD+, L-glutamine, phosphatidylcholine, theobromine, D-fructose, pyruvate, and arachidonate). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differential metabolites enriched in adenosine triphosphate (ATP)–binding cassette (ABC) transporters. Our study suggested that circadian rhythm inversion in pregnant rats may affect the numbers, the average weight of offspring, and the expressions of proteins and metabolism in the hypothalamus, which may provide a comprehensive overview of the molecular profile of circadian rhythm inversion in pregnant groups.
Collapse
Affiliation(s)
- Jingjing Lin
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Xinyue Sun
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Xiaofeng Dai
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | | | - Xueling Zhang
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Qiaosong Wang
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Qirong Zheng
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Minfang Huang
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Yuanyuan He
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Rongjin Lin
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
- *Correspondence: Rongjin Lin,
| |
Collapse
|
8
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
9
|
Sosa Alderete LG, Ronchi H, Monjes NM, Agostini E. Tobacco hairy root's peroxidases are rhythmically controlled by phenol exposure. Enzyme Microb Technol 2021; 149:109856. [PMID: 34311893 DOI: 10.1016/j.enzmictec.2021.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Plants like almost all living organisms, have developed a biological clock or circadian clock (CC) capable of synchronizing and adjusting various metabolic and physiological processes at certain times of the day and in a period of 24 h. This endogenous timekeeping is able to predict the environmental changes providing adaptive advantages against stressful conditions. Therefore, the aim of this work was to analyze the possible link between metabolism of xenobiotic compounds (MXC) and the CC. Synchronized Nicotiana tabacum hairy roots (HRs) were used as a validated plant model system, and peroxidases (PODs), key enzymes of the phase I in the MCX, were evaluated after phenol treatment. Two POD genes were selected and their temporal expression profiles as well as the total POD activity were analyzed in order to find circadian oscillations either under control conditions or phenol treatment. It was demonstrated that these PODs genes showed oscillatory profiles with an ultradian period (period length shorter than the circadian period), and preserving the same phases and expression peaks still under phenol treatment. The total PODs activity showed also a marked oscillatory behavior mainly in phenol-treated HRs with the highest levels at ZT23. Untreated HRs showed decrease and increase in the intensity of some basic isoforms at light and dark phase, respectively, while in phenol- treated HRs, an increase in the intensity of almost all isoforms was observed, mainly during the dark phase, being coincident with the high PODs activity detected at ZT23. The periodic analysis determined an ultradian period either in total POD activity or in the POD activity of isoform VI, being 18.7 and 15.3 h, respectively. Curiously, in phenol treated HRs, the period length of total POD activity was longer than in untreated HRs, suggesting that phenol could induce a marked oscillatory behavior in the POD activity with better performance during the dark phase, which explain the higher phenol removal efficiencies at ZT23. These findings showed novel information about the performance of PODs, which would be rhythmically controlled at biochemical level, by phenol exposure.
Collapse
Affiliation(s)
- Lucas Gastón Sosa Alderete
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina; Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Ruta Nacional 36 Km 601 (CP 5800), Río Cuarto, Córdoba, Argentina.
| | - Hebe Ronchi
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina; Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Ruta Nacional 36 Km 601 (CP 5800), Río Cuarto, Córdoba, Argentina
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Argentina; Instituto de Biotecnología Ambiental y Salud, INBIAS-CONICET, Ruta Nacional 36 Km 601 (CP 5800), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
10
|
Flor S, Sosa Alderete L, Dobrecky C, Tripodi V, Agostini E, Lucangioli S. LC-ESI-MS/MS Method for the Profiling of Glycerophospholipids and its Application to the Analysis of Tobacco Hairy Roots as Early Indicators of Phenol Pollution. Chromatographia 2021. [DOI: 10.1007/s10337-021-04034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|