1
|
Panda S, Anandan A, Shafi KM, Naika MBN, Sowdhamini R, Vanishree G, Sarkar S, Travis AJ, Norton GJ, Price AH. Genome-wide association study reveals effect of nsSNPs on candidate genes in rice during iron deficiency. Funct Integr Genomics 2024; 24:198. [PMID: 39453460 DOI: 10.1007/s10142-024-01478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Resource-poor areas with moisture deficit lands following aerobic and direct seeded rice (DSR) methods of cultivation face severe problems of iron deficiency. In this study, Bengal and Assam Aus rice panel was phenotyped at the seedling stage using an iron-deprived hydroponic medium for various shoot and root traits. A novel iron deficiency scoring scale was used to classify the tolerance reaction and could range anywhere between 0 and 9, indicating the most tolerant and susceptible, respectively. The GWAS results identified four putative candidate genes; OsFLA for number of leaves and shoot length, OsBIDK1 for root traits; average diameter, volume, biomass, projected area, and surface area, OsHPL3 for chlorophyll index of the third leaf and AKR2B (XBOS252) was for Fe score, (which was earlier reported in relation to Xa21). The nsSNP (nsSNPs) variations in these gene sequences were used to group the panel and identify superior haplotypes and donors. BR16 was identified as a superior donor, with higher chlorophyll index and shoot length than RA23, also higher values for root traits like root average diameter, root volume, root projected area and root surface area followed by Shete Bhado. The impact of identified nsSNPs on protein structure and stability was investigated. The conserved domains detected in the mutated proteins of the superior haplotypes are very informative, highlighting that natural selection favors abiotic stress tolerant variants in resource poor areas. Thus, justifying our choice of Aus landraces for association mapping of Fe deficiency tolerant genes in rice.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack, India
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar, India
- Department of Genetics and Plant Breeding, IAS, SOA(DU), Bhubaneswar, India
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack, India.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India.
| | - K Mohamed Shafi
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Mahantesha B N Naika
- Department of Biotechnology and Crop Improvement, KRCCH, Arabhavi, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - R Sowdhamini
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- University of Horticultural Sciences, Bagalkot, Karnataka, India
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - G Vanishree
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sutapa Sarkar
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack, India
| | - Anthony J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Gareth J Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Adam H Price
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Han S, Han X, Li Y, Li K, Yin J, Gong S, Fang Z. Wheat lesion mimic homology gene TaCAT2 enhances plant resistance to biotic and abiotic stresses. Int J Biol Macromol 2024; 277:134197. [PMID: 39069064 DOI: 10.1016/j.ijbiomac.2024.134197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lesion mimic mutants (LMMs) refer to the spontaneous formation of disease-like spots on leaves without any obvious pathogen infection. The LMM genes can regulate plant immunity, thus promoting the defense of crops against pathogens. However, there is a lack of systematic understanding of the regulatory mechanism of LMMs in wheat. This study identified a wheat LMM TaCAT2, a homolog of the Arabidopsis CAT2. The prediction of the cis-regulatory element revealed that TaCAT2 was involved in the response of plants to various hormones and stresses. RT-qPCR analysis indicated that TaCAT2 was significantly up-regulated by NaCl, drought, and Fusarium graminearum infection. Fluorescence microscopy showed that the TaCAT2 was localized to the peroxisome. Overexpression of TaCAT2 enhanced plant resistance to Phytophthora infestation and F. graminearum by constitutionally activating SA and JA pathways. VIGS of TaCAT2 enhanced the sensitivity of wheat to F. graminearum. Further, TaCAT2 enhanced stress resistance by scavenging the excessive ROS and increasing the activities of antioxidative enzymes. This study lays the basis for the functional identification of TaCAT2 and its applicability in the disease resistance of wheat.
Collapse
Affiliation(s)
- Shuo Han
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Xiaowen Han
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Yiting Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Keke Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China; Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China.
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China.
| | - Zhengwu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
3
|
Wang B, Xue P, Zhang Y, Zhan X, Wu W, Yu P, Chen D, Fu J, Hong Y, Shen X, Sun L, Cheng S, Liu Q, Cao L. OsCPK12 phosphorylates OsCATA and OsCATC to regulate H 2O 2 homeostasis and improve oxidative stress tolerance in rice. PLANT COMMUNICATIONS 2024; 5:100780. [PMID: 38130060 PMCID: PMC10943579 DOI: 10.1016/j.xplc.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Calcium-dependent protein kinases (CPKs), the best-characterized calcium sensors in plants, regulate many aspects of plant growth and development as well as plant adaptation to biotic and abiotic stresses. However, how CPKs regulate the antioxidant defense system remains largely unknown. We previously found that impaired function of OsCPK12 leads to oxidative stress in rice, with more H2O2, lower catalase (CAT) activity, and lower yield. Here, we explored the roles of OsCPK12 in oxidative stress tolerance in rice. Our results show that OsCPK12 interacts with and phosphorylates OsCATA and OsCATC at Ser11. Knockout of either OsCATA or OsCATC leads to an oxidative stress phenotype accompanied by higher accumulation of H2O2. Overexpression of the phosphomimetic proteins OsCATAS11D and OsCATCS11D in oscpk12-cr reduced the level of H2O2 accumulation. Moreover, OsCATAS11D and OsCATCS11D showed enhanced catalase activity in vivo and in vitro. OsCPK12-overexpressing plants exhibited higher CAT activity as well as higher tolerance to oxidative stress. Our findings demonstrate that OsCPK12 affects CAT enzyme activity by phosphorylating OsCATA and OsCATC at Ser11 to regulate H2O2 homeostasis, thereby mediating oxidative stress tolerance in rice.
Collapse
Affiliation(s)
- Beifang Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China; Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Pao Xue
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Ping Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Junlin Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yongbo Hong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Lianping Sun
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; Northern Rice Research Center of Bao Qing, Shuangyashan 155600, China; Zhejiang Key Laboratory of Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
4
|
Xue P, Wen XX, Gong K, Wang BF, Xu P, Lin ZC, Peng ZQ, Fu JL, Yu P, Sun LP, Zhang YX, Cao LM, Cao LY, Cheng SH, Wu WX, Zhan XD. qHD5 encodes an AP2 factor that suppresses rice heading by down-regulating Ehd2 expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111446. [PMID: 36041562 DOI: 10.1016/j.plantsci.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Heading date is crucial for rice reproduction and the geographical expansion of cultivation. We fine-mapped qHD5 and identified LOC_Os05g03040, a gene that encodes an AP2 transcription factor, as the candidate gene of qHD5 in our previous study. In this article, using two near-isogenic lines NIL(BG1) and NIL(XLJ), which were derived from the progeny of the cross between BigGrain1 (BG1) and Xiaolijing (XLJ), we verified that LOC_Os05g03040 represses heading date in rice through genetic complementation and CRISPR/Cas9 gene-editing experiments. Complementary results showed that qHD5 is a semi-dominant gene and that the qHD5XLJ and qHD5BG1 alleles are both functional. The homozygous mutant line generated from knocking out qHD5XLJ in NIL(XLJ) headed earlier than NIL(XLJ) under both short-day and long-day conditions. In addition, the homozygous mutant line of qHD5BG1 in NIL(BG1) also headed slightly earlier than NIL(BG1). All of these results show that qHD5 represses the heading date in rice. Transient expression showed that the qHD5 protein localizes to the nucleus. Transactivation activity assays showed that the C-terminus is the critical site that affects self-activation in qHD5XLJ. qRT-PCR analysis revealed that qHD5 represses flowering by down-regulating Ehd2. qHD5 may have been selected during indica rice domestication.
Collapse
Affiliation(s)
- Pao Xue
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
| | - Xiao-Xia Wen
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ke Gong
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Bei-Fang Wang
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Peng Xu
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ze-Chuan Lin
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ze-Qun Peng
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jun-Lin Fu
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ping Yu
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lian-Ping Sun
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ying-Xin Zhang
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li-Ming Cao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Li-Yong Cao
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Northern Center of China National Rice Research Institute, Shuangyashan 155600, China
| | - Shi-Hua Cheng
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Wei-Xun Wu
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiao-Deng Zhan
- China National Center for Rice Improvement & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
5
|
Qiu Z, Chen D, Teng L, Guan P, Yu G, Zhang P, Song J, Zeng Q, Zhu L. OsWHY1 Interacts with OsTRX z and is Essential for Early Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2022; 15:50. [PMID: 36208371 PMCID: PMC9547768 DOI: 10.1186/s12284-022-00596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
WHIRLY (WHY) family proteins, a small family of single-stranded DNA (ssDNA) binding proteins, are widely found in plants and have multiple functions to regulate plant growth and development. However, WHY in rice has received less attention. In this study, we continued our previous study on OsTRX z that is important for chloroplast development. OsTRX z was discovered to interact with OsWHY1, which was confirmed using yeast two-hybrid, pull-down, and BiFC assays. Subsequently, the oswhy1 mutants were obtained by CRISPR/Cas9, which exhibited an albino phenotype and died after the three-leaf stage. Consistent with this albino phenotype, low amounts of Chl a, Chl b, and Car were detected in the oswhy1-1 mutant. Moreover, the oswhy1-1 mutant had chloroplasts with disrupted architecture and no stacked grana and thylakoid membranes. Subcellular localization showed that the OsWHY1-GFP fusion protein was targeted to the chloroplast. What's more, OsWHY1 was found to be preferentially expressed in young leaves and was involved in chloroplast RNA editing and splicing. Mutation of OsWHY1 significantly affected the expression of chloroplast and ribosome development-related and chlorophyll synthesis-related genes. In conclusion, OsWHY1 contributes to early chloroplast development and normal seedling survival in rice. These results will further elucidate the molecular mechanism of chloroplast development and expand our understanding of WHY1 functions.
Collapse
Affiliation(s)
- Zhennan Qiu
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Linhong Teng
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Peiyan Guan
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Guoping Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Peiliang Zhang
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Jian Song
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Qiangcheng Zeng
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Wang H, Tu R, Ruan Z, Wu D, Peng Z, Zhou X, Liu Q, Wu W, Cao L, Cheng S, Sun L, Zhan X, Shen X. STRIPE3, encoding a human dNTPase SAMHD1 homolog, regulates chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111395. [PMID: 35878695 DOI: 10.1016/j.plantsci.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast is an important organelle for photosynthesis and numerous essential metabolic processes, thus ensuring plant fitness or survival. Although many genes involved in chloroplast development have been identified, mechanisms underlying such development are not fully understood. Here, we isolated and characterized the stripe3 (st3) mutant which exhibited white-striped leaves with reduced chlorophyll content and abnormal chloroplast development during the seedling stage, but gradually produced nearly normal green leaves as it developed. Map-based cloning and transgenic tests demonstrated that a splicing mutation in ST3, encoding a human deoxynucleoside triphosphate triphosphohydrolase (dNTPase) SAMHD1 homolog, was responsible for st3 phenotypes. ST3 is highly expressed in the third leaf at three-leaf stage and expressed constitutively in root, stem, leaf, sheath, and panicle, and the encoded protein, OsSAMHD1, is localized to the cytoplasm. The st3 mutant showed more severe albino leaf phenotype under exogenous 1-mM dATP/dA, dCTP/dC, and dGTP/dG treatments compared with the control conditions, indicating that ST3 is involved in dNTP metabolism. This study reveals a gene associated with dNTP catabolism, and propose a model in which chloroplast development in rice is regulated by the dNTP pool, providing a potential application of these results to hybrid rice breeding.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Ranran Tu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Duo Wu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zequn Peng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China
| | - Lianping Sun
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401 China.
| |
Collapse
|
7
|
Yan J, Fang Y, Xue D. Advances in the Genetic Basis and Molecular Mechanism of Lesion Mimic Formation in Rice. PLANTS 2022; 11:plants11162169. [PMID: 36015472 PMCID: PMC9412831 DOI: 10.3390/plants11162169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Plant lesion mutation usually refers to the phenomenon of cell death in green tissues before senescence in the absence of external stress, and such mutants also show enhanced resistance to some plant pathogens. The occurrence of lesion mimic mutants in rice is affected by gene mutation, reactive oxygen species accumulation, an uncontrolled programmed cell death system, and abiotic stress. At present, many lesion mimic mutants have been identified in rice, and some genes have been functionally analyzed. This study reviews the occurrence mechanism of lesion mimic mutants in rice. It analyzes the function of rice lesion mimic mutant genes to elucidate the molecular regulation pathways of rice lesion mimic mutants in regulating plant disease resistance.
Collapse
|
8
|
Chen Z, Yin W, Li X, Lu T, Ye H, Dai G, Mao Y, Li S, Duan P, Lu M, Rao Y, Wang Y. OsSPL88 Encodes a Cullin Protein that Regulates Rice Growth and Development. Front Genet 2022; 13:918973. [PMID: 35899195 PMCID: PMC9309799 DOI: 10.3389/fgene.2022.918973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Plant lesion mimics refer to necrotic spots spontaneously produced by the plant without mechanical damage, pathogen invasion, and adversity stress. Here, we isolated and characterized two rice (Oryza sativa L) mutants, namely, spl88-1 (spotted leaf88-1) and spl88-2 (spotted leaf88-2), which were identified from an ethyl methanesulfonate-mutagenized japonica cultivar Xiushui 11 population. Physiological and biochemical experiments indicated that more ROS accumulated in spl88-1 and spl88-2 than in wild type. spl88-1 and spl88-2 displayed spontaneous cell death and enhanced their resistance to bacterial blight by affecting the expression of defense-related genes. We isolated SPL88 by map-based cloning, which encoded a highly conserved Cullin protein. A single base deletion was detected in spl88-1 and spl88-2, in which the 132nd base C of SPL88-1 and the 381th base T of SPL88-2 were deleted, causing premature termination of protein translation. SPL88 was expressed in root, stem, leaf, leaf sheath, and panicle. The Cullin protein was localized in the cytoplasm and nucleus. The aforementioned results indicate that SPL88 regulates the growth and development of rice by affecting the expression of defense-related genes.
Collapse
Affiliation(s)
- Zhengai Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Wenjing Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xuan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Tao Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hanfei Ye
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Gaoxing Dai
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yijian Mao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Penggen Duan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mei Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
9
|
Li R, Sun J, Ning X, Liu D, Chen X. BpEIL1 negatively regulates resistance to Rhizoctonia solani and Alternaria alternata in birch. Gene 2022; 97:81-91. [PMID: 35675986 DOI: 10.1266/ggs.21-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogen attacks affect tree health, causing considerable economic losses as well as serious damage to the surrounding environment. Understanding the disease resistance mechanisms of trees is important for tree breeding. In previous studies on birch (Betula platyphylla × B. pendula), we identified a lesion mimic mutant called lmd. We found that reduced expression of BpEIL1 was responsible for the phenotype in lmd. Following cloning, we acquired several BpEIL1 overexpression and suppression lines in birch. In this study, we cloned the BpEIL1 promoter and found that BpEIL1 was primarily expressed in leaves, particularly in veins. We further studied the traits of transgenic lines and the function of BpEIL1 in disease resistance in birch using the BpEIL1 overexpression line OE9, the suppression line SE13 and the non-transgenic line NT. We found that hydrogen peroxide accumulated in SE13 leaves. Ascorbate peroxidase and catalase activity significantly increased in SE13. SE13 was more resistant to the fungal pathogens Alternaria alternata and Rhizoctonia solani than were the OE9 and NT lines. RNA-seq indicated that pathways related to signal transduction, disease resistance and plant immunity were enriched in SE13. BpEIL1 is thus a negative regulatory transcription factor for disease resistance in birch. This study provides a reference for disease resistance of birch and other trees.
Collapse
Affiliation(s)
- Ranhong Li
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Jingjing Sun
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Xiaomeng Ning
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Dan Liu
- Department of Life Science and Technology, Mudanjiang Normal University
| | - Xin Chen
- Department of Life Science and Technology, Mudanjiang Normal University
| |
Collapse
|
10
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|
11
|
The Rice Malectin Regulates Plant Cell Death and Disease Resistance by Participating in Glycoprotein Quality Control. Int J Mol Sci 2022; 23:ijms23105819. [PMID: 35628631 PMCID: PMC9144812 DOI: 10.3390/ijms23105819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
In animals, malectin is well known to play an essential role in endoplasmic reticulum quality control (ERQC) by interacting with ribophorin I, one unit of the oligosaccharyltransferase (OST) complex. However, the functions of malectin in plants remain largely unknown. Here, we demonstrate the rice OsMLD1 is an ER- and Golgi-associated malectin protein and physically interacts with rice homolog of ribophorin I (OsRpn1), and its disruption leads to spontaneous lesion mimic lesions, enhanced disease resistance, and prolonged ER stress. In addition, there are many more N-glycosites and N-glycoproteins identified from the mld1 mutant than wildtype. Furthermore, OsSERK1 and OsSERK2, which have more N-glycosites in mld1, were demonstrated to interact with OsMLD1. OsMLD1 can suppress OsSERK1- or OsSERK2-induced cell death. Thus, OsMLD1 may play a similar role to its mammalian homologs in glycoprotein quality control, thereby regulating cell death and immunity of rice, which uncovers the function of malectin in plants.
Collapse
|
12
|
Zou H, Han L, Yuan M, Zhang M, Zhou L, Wang Y. Sequence Analysis and Functional Verification of the Effects of Three Key Structural Genes, PdTHC2'GT, PdCHS and PdCHI, on the Isosalipurposide Synthesis Pathway in Paeonia delavayi var. lutea. Int J Mol Sci 2022; 23:5696. [PMID: 35628506 PMCID: PMC9147737 DOI: 10.3390/ijms23105696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 01/05/2023] Open
Abstract
Isosalipurposide (ISP) is the most important yellow pigment in tree peony. In ISP biosynthesis, CHS catalyzes 1-molecule coumaroyl-CoA and 3-molecule malonyl-CoA to form 2',4',6',4-tetrahyroxychalcone (THC), and THC generates a stable ISP in the vacuole under the action of chalcone2'-glucosyltransferases (THC2'GT). In tree peony, the details of the THC2'GT gene have not yet been reported. In this study, the candidate THC2'GT gene (PdTHC2'GT) in Paeonia delavayi var. lutea was screened. At the same time, we selected the upstream CHS gene (PdCHS) and the competitive CHI gene (PdCHI) to study the biosynthesis pathway of ISP. We successfully cloned three genes and sequenced them; subcellular localization showed that the three genes were located in the nucleus and cytoplasm. The overexpression of PdTHC2'GT in tobacco caused the accumulation of ISP in tobacco petals, which indicated that PdTHC2'GT was the key structural gene in the synthesis of ISP. After the overexpression of PdCHS and PdCHI in tobacco, the accumulation of anthocyanins in tobacco petals increased to different degrees, showing the role of PdCHS and PdCHI in anthocyanin accumulation. The analysis of NtCHS and NtCHI of transgenic tobacco lines by qRT-PCR showed that the THC2'GT gene could increase the expression of CHS. THC2'GT and CHI were found to be competitive; hence, the overexpression of THC2'GT could lead to a decrease in CHI expression. The CHS gene and CHI gene could increase the expression of each other. In conclusion, we verified the key structural gene PdTHC2'GT and studied the operation of the genes in its upstream and competitive pathway, providing a new perspective for the biosynthesis of ISP and new candidate genes for the directional breeding of tree peony.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (H.Z.); (L.H.); (M.Y.); (M.Z.)
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (H.Z.); (L.H.); (M.Y.); (M.Z.)
| |
Collapse
|
13
|
Enhanced SA and Ca 2+ signaling results in PCD-mediated spontaneous leaf necrosis in wheat mutant wsl. Mol Genet Genomics 2021; 296:1249-1262. [PMID: 34426888 DOI: 10.1007/s00438-021-01811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Leaf is the major photosynthesis organ and the key source of wheat (Triticum aestivum L.) grain. Spotted leaf (spl) mutant is a kind of leaf lesion mimic mutants (LMMs) in plants, which is an ideal material for studying the mechanisms of leaf development. In this study, we report the leaf abnormal development molecular mechanism of a spl mutant named white stripe leaf (wsl) derived from wheat cultivar Guomai 301 (WT). Histochemical observation indicated that the leaf mesophyll cells of the wsl were destroyed in the necrosis regions. To explore the molecular regulatory network of the leaf development in mutant wsl, we employed transcriptome analysis, histochemistry, quantitative real-time PCR (qRT-PCR), and observations of the key metabolites and photosynthesis parameters. Compared to WT, the expressions of the chlorophyll synthesis and photosynthesis-related homeotic genes were repressed; many genes in the WRKY transcription factor (TF) families were highly expressed; the salicylic acid (SA) and Ca2+ signal transductions were enhanced in wsl. Both the chlorophyll contents and the photosynthesis rate were lower in wsl. The contents of SA and reactive oxygen species (ROS) were significantly higher, and the leaf rust resistance was enhanced in wsl. Based on the experimental data, a primary molecular regulatory model for leaf development in wsl was established. The results indicated that the SA accumulation and enhanced Ca2+ signaling led to programmed cell death (PCD), and ultimately resulted in spontaneous leaf necrosis of wsl. These results laid a solid foundation for further research on the molecular mechanism of leaf development in wheat.
Collapse
|
14
|
Rice Lesion Mimic Mutants (LMM): The Current Understanding of Genetic Mutations in the Failure of ROS Scavenging during Lesion Formation. PLANTS 2021; 10:plants10081598. [PMID: 34451643 PMCID: PMC8400881 DOI: 10.3390/plants10081598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rice lesion mimic mutants (LMMs) form spontaneous lesions on the leaves during vegetative growth without pathogenic infections. The rice LMM group includes various mutants, including spotted leaf mutants, brown leaf mutants, white-stripe leaf mutants, and other lesion-phenotypic mutants. These LMM mutants exhibit a common phenotype of lesions on the leaves linked to chloroplast destruction caused by the eruption of reactive oxygen species (ROS) in the photosynthesis process. This process instigates the hypersensitive response (HR) and programmed cell death (PCD), resulting in lesion formation. The reasons for lesion formation have been studied extensively in terms of genetics and molecular biology to understand the pathogen and stress responses. In rice, the lesion phenotypes of most rice LMMs are inherited according to the Mendelian principles of inheritance, which remain in the subsequent generations. These rice LMM genetic traits have highly developed innate self-defense mechanisms. Thus, although rice LMM plants have undesirable agronomic traits, the genetic principles of LMM phenotypes can be used to obtain high grain yields by deciphering the efficiency of photosynthesis, disease resistance, and environmental stress responses. From these ailing rice LMM plants, rice geneticists have discovered novel proteins and physiological causes of ROS in photosynthesis and defense mechanisms. This review discusses recent studies on rice LMMs for the Mendelian inheritances, molecular genetic mapping, and the genetic definition of each mutant gene.
Collapse
|
15
|
Wang D, Wang H, Liu Q, Tu R, Zhou X, Zhang Y, Wu W, Yu P, Chen D, Zhan X, Cao L, Cheng S, Shen X. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in rice. PLANT CELL REPORTS 2021; 40:835-850. [PMID: 33730215 DOI: 10.1007/s00299-021-02679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The R89 is essential for the kinase activity of OsMPK6 which negatively regulates cell death and defense response in rice. Mitogen-activated protein kinase cascade plays critical roles in various vital activities, including the plant immune response, but the mechanisms remain elusive. Here, we identified and characterized a rice lesion mimic mutant osmpk6 which displayed hypersensitive response-like lesions in company with cell death and hydrogen peroxide hyperaccumulation. Map-based cloning and complementation demonstrated that a G702A single-base substitution in the second exon of OsMPK6 led to the lesion mimic phenotype of the osmpk6 mutant. OsMPK6 encodes a cytoplasm and nucleus-targeted mitogen-activated protein kinase and is expressed in the various organs. Compared with wild type, the osmpk6 mutant exhibited high resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), likely due to the increased ROS production induced by flg22 and chitin and up-regulated expression of genes involved in pathogenesis, as well as activation of SA and JA signaling pathways after inoculation. By contrast, the OsMPK6-overexpression line (OE-1) was found to be susceptible to the bacterial pathogens, indicating that OsMPK6 negatively regulated Xoo resistance. Furthermore, the G702A single-base substitution caused a R89K mutation at both polypeptide substrate-binding site and active site of OsMPK6, and kinase activity assay revealed that the R89K mutation led to reduction of OsMPK6 activity, suggesting that the R89 is essential for the function of OsMPK6. Our findings provide insight into a vital role of the R89 of OsMPK6 in regulating cell death and defense response in rice.
Collapse
Affiliation(s)
- Dongfei Wang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ranran Tu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ping Yu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| |
Collapse
|