1
|
Guo L, Zhao J, Zhang X, Liu Y, Zhang A, Sun J, Fan X, Yan X, Pang Q. Bacillus licheniformis Jrh14-10 enhances alkaline tolerance in Arabidopsis thaliana by regulating crosstalk between ethylene and polyamine pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14411. [PMID: 38973028 DOI: 10.1111/ppl.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/09/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.
Collapse
Affiliation(s)
- Lifeng Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xuchen Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Yaning Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Jingzheng Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaoya Fan
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | | |
Collapse
|
2
|
Li F, Xi K, Li Y, Ming T, Huang Y, Zhang L. Genome-wide analysis of transmembrane 9 superfamily genes in wheat ( Triticum aestivum) and their expression in the roots under nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatment conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1324974. [PMID: 38259936 PMCID: PMC10800943 DOI: 10.3389/fpls.2023.1324974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kuanling Xi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tang Ming
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yufeng Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lijun Zhang
- Science and Technology Division, Guizhou Normal University, Guiyang, China
| |
Collapse
|
3
|
Guo L, Zhang X, Zhao J, Zhang A, Pang Q. Enhancement of sulfur metabolism and antioxidant machinery confers Bacillus sp. Jrh14-10-induced alkaline stress tolerance in plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108063. [PMID: 37827044 DOI: 10.1016/j.plaphy.2023.108063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/11/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Alkaline stress is a major environmental challenge that restricts plant growth and agricultural productivity worldwide. Plant growth-promoting rhizobacteria (PGPR) can be used to effectively enhance plant abiotic stress in an environment-friendly manner. However, PGPR that can enhance alkalinity tolerance are not well-studied and the mechanisms by which they exert beneficial effects remain elusive. In this study, we isolated Jrh14-10 from the rhizosphere soil of halophyte Halerpestes cymbalaria (Pursh) Green and found that it can produce indole-3-acetic acid (IAA) and siderophore. By 16S rRNA gene sequencing, it was classified as Bacillus licheniformis. Inoculation Arabidopsis seedlings with Jrh14-10 significantly increased the total fresh weight (by 148.1%), primary root elongation (by 1121.7%), and lateral root number (by 108.8%) under alkaline stress. RNA-Seq analysis showed that 3389 genes were up-regulated by inoculation under alkaline stress and they were associated with sulfur metabolism, photosynthetic system, and oxidative stress response. Significantly, the levels of Cys and GSH were increased by 144.3% and 48.7%, respectively, in the inoculation group compared to the control under alkaline stress. Furthermore, Jrh14-10 markedly enhanced the activities of antioxidant enzymes, resulting in lower levels of O2•-, H2O2, and MDA as well as higher levels of Fv/Fm in alkaline-treated seedlings. In summary, Jrh14-10 can improve alkaline stress resistance in seedlings which was accompanied by an increase in sulfur metabolism-mediated GSH synthesis and antioxidant enzyme activities. These results provide a mechanistic understanding of the interactions between a beneficial bacterial strain and plants under alkaline stress.
Collapse
Affiliation(s)
- Lifeng Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Xuchen Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
4
|
Yao H, Wang W, Cao Y, Liang Z, Zhang P. Interaction Network Construction and Functional Analysis of the Plasma Membrane H +-ATPase in Bangia fuscopurpurea (Rhodophyta). Int J Mol Sci 2023; 24:ijms24087644. [PMID: 37108805 PMCID: PMC10142769 DOI: 10.3390/ijms24087644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Salinity is a serious threat to most land plants. Although seaweeds adapt to salty environments, intertidal species experience wide fluctuations in external salinities, including hyper- and hypo-saline stress. Bangia fuscopurpurea is an economic intertidal seaweed with a strong tolerance to hypo-salinity. Until now, the salt stress tolerance mechanism has remained elusive. Our previous study showed that the expression of B. fuscopurpurea plasma membrane H+-ATPase (BfPMHA) genes were the most upregulated under hypo-salinity. In this study, we obtained the complete sequence of BfPMHA, traced the relative expression of this BfPMHA gene in B. fuscopurpurea under hypo-salinity, and analyzed the protein structure and properties based on the gene's sequence. The result showed that the expression of BfPMHA in B. fuscopurpurea increased significantly with varying hypo-salinity treatments, and the higher the degree of low salinity stress, the higher the expression level. This BfPMHA had typical PMHA structures with a Cation-N domain, an E1-E2 ATPase domain, a Hydrolase domain, and seven transmembrane domains. In addition, through the membrane system yeast two-hybrid library, three candidate proteins interacting with BfPMHA during hypo-saline stress were screened, fructose-bisphosphate aldolase (BfFBA), glyceraldehyde 3-phosphate dehydrogenase (NADP+) (phosphorylating) (BfGAPDH), and manganese superoxide dismutase (BfMnSOD). The three candidates and BfPMHA genes were successfully transferred and overexpressed in a BY4741 yeast strain. All of them significantly enhanced the yeast tolerance to NaCl stress, verifying the function of BfPMHA in salt stress response. This is the first study to report the structure and topological features of PMHA in B. fuscopurpurea and its candidate interaction proteins in response to salt stress.
Collapse
Affiliation(s)
- Haiqin Yao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
| | - Wenjun Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yuan Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
| | - Zhourui Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Pengyan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Kong WL, Wang WY, Zuo SH, Wu XQ. Genome Sequencing of Rahnella victoriana JZ-GX1 Provides New Insights Into Molecular and Genetic Mechanisms of Plant Growth Promotion. Front Microbiol 2022; 13:828990. [PMID: 35464970 PMCID: PMC9020876 DOI: 10.3389/fmicb.2022.828990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Genomic information for bacteria within the genus Rahnella remains limited. Rahnella sp. JZ-GX1 was previously isolated from the Pinus massoniana rhizosphere in China and shows potential as a plant growth-promoting (PGP) bacterium. In the present work, we combined the GridION Nanopore ONT and Illumina sequencing platforms to obtain the complete genome sequence of strain JZ-GX1, and the application effects of the strain in natural field environment was assessed. The whole genome of Rahnella sp. JZ-GX1 comprised a single circular chromosome (5,472,828 bp, G + C content of 53.53%) with 4,483 protein-coding sequences, 22 rRNAs, and 77 tRNAs. Based on whole genome phylogenetic and average nucleotide identity (ANI) analysis, the JZ-GX1 strain was reidentified as R. victoriana. Genes related to indole-3-acetic acid (IAA), phosphorus solubilization, nitrogen fixation, siderophores, acetoin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, gamma-aminobutyric acid (GABA) production, spermidine and volatile organic compounds (VOCs) biosynthesis were present in the genome of strain JZ-GX1. In addition, these functions were also confirmed by in vitro experiments. Importantly, compared to uninoculated control plants, Pyrus serotina, Malus spectabilis, Populus euramericana (Dode) Guinier cv. “San Martino” (I-72 poplar) and Pinus elliottii plants inoculated with strain JZ-GX1 showed increased heights and ground diameters. These findings improve our understanding of R. victoriana JZ-GX1 as a potential biofertilizer in agriculture.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Sheng-Han Zuo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Kong WL, Wang YH, Wu XQ. Enhanced Iron Uptake in Plants by Volatile Emissions of Rahnella aquatilis JZ-GX1. FRONTIERS IN PLANT SCIENCE 2021; 12:704000. [PMID: 34394158 PMCID: PMC8362888 DOI: 10.3389/fpls.2021.704000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Iron deficiency in soil has crucially restricted agricultural and forestry production. Volatile organic compounds (VOCs) produced by beneficial microorganisms have been proven to play an important role in inducing abiotic stress tolerance in plants. We investigated the effects of VOCs released by the rhizobacterium Rahnella aquatilis JZ-GX1 on the growth and root parameters of Arabidopsis thaliana under iron deficiency. The effect of the rhizobacterial VOCs on the gene expression in iron uptake and hormone signaling pathways were detected by RT-qPCR. Finally, the VOCs of the JZ-GX1 strain that could promote plant growth under iron deficiency stress were screened. The results showed that the JZ-GX1 strain could induce A. thaliana tolerance to iron deficiency stress by promoting the development of lateral roots and root hairs and increasing the activities of H+ ATPase and Fe3+ reductase. In addition, the AHA2, FRO2, and IRT1 genes of A. thaliana exposed to JZ-GX1-emitted VOCs were upregulated 25-, 1. 81-, and 1.35-fold, respectively, and expression of the abscisic acid (ABA) synthesis gene NCED3 was upregulated on both the 3rd and 5th days. Organic compounds were analyzed in the headspace of JZ-GX1 cultures, 2-undecanone and 3-methyl-1-butanol were found to promote Medicago sativa and A. thaliana growth under iron-limited conditions. These results demonstrated that the VOCs of R. aquatilis JZ-GX1 have good potential in promoting iron absorption in plants.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Gong J, Shi T, Li Y, Wang H, Li F. Genome-Wide Identification and Characterization of Calcium Metabolism Related Gene Families in Arabidopsis thaliana and Their Regulation by Bacillus amyloliquefaciens Under High Calcium Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:707496. [PMID: 34456948 PMCID: PMC8387222 DOI: 10.3389/fpls.2021.707496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 05/05/2023]
Abstract
Several gene families involved in calcium signaling have been detected in plants, including calmodulin (CaM), calcium dependent protein kinases (CDPK), calcineurin B-like (CBL) and cyclic nucleotide-gated channels (CNGCs). In our previous study, we demonstrated that Bacillus amyloliquefaciens LZ04 (B. amyloliquefaciens LZ04) regulate genes involved in calcium stress in Arabidopsis thaliana (A. thaliana). Here, we aimed to explore the potential involvement of calcium-related gene families in the response of A. thaliana to calcium stress and the potential regulatory effects of B. amyloliquefaciens LZ04 on these genes. The structure, duplication, synteny, and expression profiles of 102 genes in calcium-related gene families in A. thaliana were investigated. Hidden Markov Models (HMMs) and BLASTP were used to predict candidate genes and conserved domains of the candidate genes were confirmed in SMART and NCBI CDD databases. Gene duplications and synteny were uncovered by BLASTP and phylogenetic analysis. The transcriptome expression profiles of candidate genes were investigated by strand-specific sequencing. Cluster analysis was used to find the expression profiles of calcium-related genes families under different treatment conditions. A total of 102 genes in calcium-related gene families were detected in A. thaliana genome, including 34 CDPK genes, 20 CNGC genes, 18 CIPK genes, 22 IQD genes, and 10 CBP genes. Additionally, of the 102 genes, 33 duplications (32.35%) and 26 gene pairs including 48 genes (47.06%) were detected. Treatment with B. amyloliquefaciens LZ04 enhanced the resistance of A. thaliana under high calcium stress by regulating some of the genes in the calcium-related gene families. Functional enrichment analysis revealed that the genes clustered in the 42nd expression profile which may be B. amyloliquefaciens-responsive genes under calcium stress were enriched in protein phosphorylation and protein modification process. Transcriptome data was validated by RT-PCR and the results generally corroborated the transcriptome sequencing results. These results may be useful for agricultural improvement in high calcium stress regions.
Collapse
Affiliation(s)
- Jiyi Gong
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tianlong Shi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hancheng Wang
- Upland Flue-cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
- Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, China
- *Correspondence: Fei Li, ; ;
| |
Collapse
|