1
|
Zhang F, Liu Y, Ma J, Su S, Chen L, Cheng Y, Buter S, Zhao X, Yi L, Lu Z. Analyzing the Diversity of MYB Family Response Strategies to Drought Stress in Different Flax Varieties Based on Transcriptome Data. PLANTS (BASEL, SWITZERLAND) 2024; 13:710. [PMID: 38475556 DOI: 10.3390/plants13050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The MYB transcription factor family has numerous members, and is involved in biological activities, such as ABA signaling, which plays an important role in a plant's resistance to abiotic stresses such as drought. However, the diversity of MYB members that respond to drought stress and their regulatory mechanisms in different flax varieties were unclear. In this study, we obtained 855.69 Gb of clean data from 120 flax root samples from 20 flax (Linum usitatissimum L.) varieties, assembled 92,861 transcripts, and identified 434 MYB family members in each variety. The expression profiles of the MYB transcription factor family from 20 flax varieties under drought stress were analyzed. The results indicated that there are four strategies by which the MYB family responds to drought stress in these 20 flax varieties, each of which has its own specific processes, such as development, reproduction, and localization processes. The four strategies also include common biological processes, such as stimulus responses, metabolic processes, and biological regulation. The WGCNA method was subsequently employed to identify key members of the MYB family involved in response strategies to drought stress. The results demonstrated that a 1R-MYB subfamily gene co-expression network is significantly related to the gibberellin response and cytokinin-activated signaling pathway processes in the 'Strategy 4' for MYB family response to drought, identifying core genes such as Lus.scaffold70.240. Our results showed a diversity of MYB family responses to drought stress within flax varieties, and these results contribute to deciphering the mechanisms of the MYB family regulation of drought resistance. This will promote the more accurate breeding development of flax to adapt to agricultural production under drought conditions.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Ying Liu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liyu Chen
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Siqin Buter
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liuxi Yi
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| |
Collapse
|
2
|
Xiong W, Liao L, Ni Y, Gao H, Yang J, Guo Y. The Effects of Epicuticular Wax on Anthracnose Resistance of Sorghum bicolor. Int J Mol Sci 2023; 24:ijms24043070. [PMID: 36834482 PMCID: PMC9964091 DOI: 10.3390/ijms24043070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Cuticular waxes are mixtures of hydrophobic compounds covering land plant surfaces and play key roles in plant resistance to abiotic and biotic stresses. However, it is still not clear whether the epicuticular wax could protect the plants from infection by anthracnose, one of the most important plant diseases worldwide, which seriously infects sorghum and causes great yield loss. In this study, Sorghum bicolor L., an important C4 crop with high wax coverage, was selected to analyze the relationship between epicuticular wax (EW) and anthracnose resistance. In vitro analysis indicated that the sorghum leaf wax significantly inhibited the anthracnose mycelium growth of anthracnose on potato dextrose agar (PDA) medium, with the plaque diameter smaller than that grown on medium without wax. Then, the EWs were removed from the intact leaf with gum acacia, followed by the inoculation of Colletotrichum sublineola. The results indicated that the disease lesion was remarkably aggravated on leaves without EW, which showed decreased net photosynthetic rate and increased intercellular CO2 concentrations and malonaldehyde content three days after inoculation. Transcriptome analysis further indicated that 1546 and 2843 differentially expressed genes (DEGs) were regulated by C. sublineola infection in plants with and without EW, respectively. Among the DEG encoded proteins and enriched pathways regulated by anthracnose infection, the cascade of the mitogen-activated protein kinases (MAPK) signaling pathway, ABC transporters, sulfur metabolism, benzoxazinoid biosynthesis, and photosynthesis were mainly regulated in plants without EW. Overall, the EW increases plant resistance to C. sublineola by affecting physiological and transcriptome responses through sorghum epicuticular wax, improving our understanding of its roles in defending plants from fungi and ultimately benefiting sorghum resistance breeding.
Collapse
Affiliation(s)
- Wangdan Xiong
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Longxin Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yu Ni
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Hanchi Gao
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianfeng Yang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
3
|
Wang Y, Guo H, Wu X, Wang J, Li H, Zhang R. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:928897. [PMID: 35991451 PMCID: PMC9381927 DOI: 10.3389/fpls.2022.928897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 05/27/2023]
Abstract
Drought is a significant environmental stress factor that adversely affects maize productivity. However, many details regarding the molecular mechanisms of maize against drought are still unclear. In this study, leaf transcriptomics and physiological traits of two maize genotypes with differing drought resistance were analyzed. Transcriptome sequencing identified 8985 and 7305 differentially expressed genes (DEGs) in SD902 and SD609, respectively. Functional analysis suggested that numerous genes are highly involved in oxidative defense, protein modification, photosynthesis, phytohormone response, MAPK signaling, and transcription factors (TFs). Compared to SD902, SD609 had a higher expression of DEGs related to antioxidant enzymes, photosynthetic electron transport, heat shock proteins, and indole-3-acetic acid (IAA) signaling under drought conditions, which might contribute to its tolerance mechanisms to drought. Stress-induced TFs may play a crucial regulatory role in genotypic differences. Moreover, the physiological changes and gene expression abundance determined using quantitative reverse transcription polymerase chain reaction were consistent with the RNA sequencing data. The study results suggest that the higher drought tolerance of SD609 than SD902 can be attributed to stronger stress defense capabilities, IAA signal transduction, and more stable photosynthesis. Our findings provide new insights into the molecular mechanisms of maize against drought stress, and the candidate genes identified may be used in breeding drought-tolerant maize cultivars.
Collapse
|
4
|
Fang S, Zhao P, Tan Z, Peng Y, Xu L, Jin Y, Wei F, Guo L, Yao X. Combining Physio-Biochemical Characterization and Transcriptome Analysis Reveal the Responses to Varying Degrees of Drought Stress in Brassica napus L. Int J Mol Sci 2022; 23:ijms23158555. [PMID: 35955689 PMCID: PMC9368929 DOI: 10.3390/ijms23158555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Brassica napus L. has become one of the most important oil-bearing crops, and drought stress severely influences its yield and quality. By combining physio-biochemical characterization and transcriptome analysis, we studied the response of B. napus plants to different degrees of drought stress. Some physio-biochemical traits, such as fresh weight (FW), dry weight (DW), abscisic acid (ABA) content, net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr), were measured, and the total content of the epidermal wax/cutin, as well as their compositions, was determined. The results suggest that both stomatal transpiration and cuticular transpiration are affected when B. napus plants are subjected to varying degrees of drought stress. A total of 795 up-regulated genes and 1050 down-regulated genes were identified under severe drought stress by transcriptome analysis. Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) revealed that the up-regulated genes were mainly enriched in the stress response processes, such as response to water deprivation and abscisic acid, while the down-regulated genes were mainly enriched in the chloroplast-related parts affecting photosynthesis. Moreover, overexpression of BnaA01.CIPK6, an up-regulated DEG, was found to confer drought tolerance in B. napus. Our study lays a foundation for a better understanding of the molecular mechanisms underlying drought tolerance in B. napus.
Collapse
Affiliation(s)
- Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peimin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lintang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yutong Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China;
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.F.); (P.Z.); (Z.T.); (Y.P.); (L.X.); (Y.J.); (L.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
5
|
Xu D, Ni Y, Zhang X, Guo Y. Multiomic analyses of two sorghum cultivars reveals the change of membrane lipids in their responses to water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:44-56. [PMID: 35217329 DOI: 10.1016/j.plaphy.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Drought is one of the main abiotic stresses influencing crop production all over the world. Membranes are sensitive to drought stress and easy to be degraded and modified. Lipidome and transcriptome analyses were applied to analyze the responses of membrane lipids to drought stress in two sorghum (Sorghum bicolor (L.) Moench) cultivars, drought-sensitive cv. Hongyingzi and drought-tolerant cv. Kangsi. In total, 156 lipid compounds were identified and the contents of the predominant ones changed significantly under drought stress. Drought significantly decreased the unsaturation indices (UI) of digalactosyl-diacylglycerol (DGDG), monogalactosyl-diacylglycerol (MGDG), phosphatidylglycerol (PG) and phosphatidylcholine (PC) in both cultivars, except for insignificant changes of UI for DGDG in cv. Kangsi. Transcriptome sequencing analysis identified genes related to membrane lipid remodeling such as phospholipase D α1 (PLDα1), phospholipase D δ (PLDδ), and phospholipase A 2 (PLA2). By integrating transcriptome data and lipidome data, weighted gene co-expression network analysis (WGCNA) identified hub genes, transcription factors and the genes involved in lipid metabolism. Then, the protein and protein interaction (PPI) was analyzed using STRING and the possible candidate genes regulating membrane lipids under drought stress were obtained, including CCT2, CER1, DGK1, DGK5, EMB3174, KCS4, LCB2, PAH1, PLDP1, PKP-β1, and KCS11. The results from this study have the potential to accelerate the process to breed drought-tolerant sorghum lines.
Collapse
Affiliation(s)
- Daixiang Xu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, 266109, China; College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xuefeng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yanjun Guo
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Zhang H, Wang J, Zhao J, Sun C, Wang J, Wang Q, Qu F, Yun X, Feng Z. Integrated Lipidomic and Transcriptomic Analysis Reveals Lipid Metabolism in Foxtail Millet ( Setaria italica). Front Genet 2021; 12:758003. [PMID: 34868233 PMCID: PMC8635157 DOI: 10.3389/fgene.2021.758003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Foxtail millet (Setaria italica) as the main traditional crop in China, is rich in many kinds of high quality fatty acids (FAs). In this study, Ultra-high performance liquid chromatography-time-of-flight-tandem mass spectrometer (UHPLC-Q-TOF-MS/MS) was used to determine the lipids of JG35 and JG39. A total of 2,633 lipid molecules and 31 lipid subclasses were identified, mainly including thirteen kinds of glycerophospholipids (GP), eleven kinds of glycerolipids (GL), four kinds of sphingolipids (SP), two kinds of fatty acyls (FA) and one kind of sterol (ST). Among them JG35 had higher contents of diacylglycerols (DG) and ceramides (Cer), while triacylglycerols, phosphatidyl ethanolamine, phosphatidic acid, sterol, fatty acyls and pardiolipin (TG, PE, PA, ST, FA and CL) were higher in JG39. Meantime, the correlation analysis of lipidomics and transcriptomics was used to map the main differential lipid metabolism pathways of foxtail millet. The results shown that a differentially expressed genes (DEGs) of FATA/B for the synthesis of FA was highly expressed in JG35, and the related genes for the synthesis DG (ACCase, KAS, HAD, KCS, LACS and GAPT), TG (DGAT and PDAT) and CL (CLS) were highly expressed in JG39. The results of this study will provide a theoretical basis for the future study of lipidomics, improvement of lipid quality directionally and breeding of idiosyncratic quality varieties in foxtail millet.
Collapse
Affiliation(s)
- Haiying Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Junyou Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Jing Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Changqing Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Jin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Qian Wang
- Hebei Zhihai Technology Co., Ltd., Xingtai, China
| | - Fei Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaodong Yun
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Zhiwei Feng
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
7
|
Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int J Mol Sci 2021; 22:ijms22179108. [PMID: 34502020 PMCID: PMC8431676 DOI: 10.3390/ijms22179108] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways. Physio-biochemical and molecular strategies involved in plant tolerance mechanisms could be exploited to increase plant survival under drought stress. This review summarizes the most updated findings on primary and secondary metabolites involved in drought stress. We also examine the application of useful metabolic genes and their molecular responses to drought tolerance in plants and discuss possible strategies to help plants to counteract unfavorable drought periods.
Collapse
|