1
|
Chen L, Fang L, Tan W, Bing H, Zeng Y, Chen X, Li Z, Hu W, Yang X, Shaheen SM, White JC, Xing B. Nano-enabled strategies to promote safe crop production in heavy metal(loid)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174505. [PMID: 38971252 DOI: 10.1016/j.scitotenv.2024.174505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nanobiotechnology is a potentially safe and sustainable strategy for both agricultural production and soil remediation, yet the potential of nanomaterials (NMs) application to remediate heavy metal(loid)-contaminated soils is still unclear. A meta-analysis with approximately 6000 observations was conducted to quantify the effects of NMs on safe crop production in soils contaminated with heavy metal(loid) (HM), and a machine learning approach was used to identify the major contributing features. Applying NMs can elevate the crop shoot (18.2 %, 15.4-21.2 %) and grain biomass (30.7 %, 26.9-34.9 %), and decrease the shoot and grain HM concentration by 31.8 % (28.9-34.5 %) and 46.8 % (43.7-49.8 %), respectively. Iron-NMs showed a greater potential to inhibit crop HM uptake compared to other types of NMs. Our result further demonstrates that NMs application substantially reduces the potential health risk of HM in crop grains by human health risk assessment. The NMs-induced reduction in HM accumulation was associated with decreasing HM bioavailability, as well as increased soil pH and organic matter. A random forest model demonstrates that soil pH and total HM concentration are the two significant features affecting shoot HM accumulation. This analysis of the literature highlights the significant potential of NMs application in promoting safe agricultural production in HM-contaminated agricultural lands.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China.
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 71000, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Xing Yang
- College of Ecology and Environment, Hainan University, Haikou 570100, China
| | - Sabry M Shaheen
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Wuppertal, Germany; Faculty of Environmental Sciences, Department of Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Faculty of Agriculture, Department of Soil and Water Sciences, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, USA
| |
Collapse
|
2
|
Alsiary WA, Madany MMY, AbdElgawad H. The pleiotropic role of Salinicoccus bacteria in enhancing ROS homeostasis and detoxification metabolism in soybean and oat to cope with pollution of triclosan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108327. [PMID: 38271860 DOI: 10.1016/j.plaphy.2023.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.
Collapse
Affiliation(s)
- Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt; Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 41411, Saudi Arabia.
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Madany MMY, AbdElgawad H, Galilah DA, Khalil AMA, Saleh AM. Elevated CO 2 Can Improve the Tolerance of Avena sativa to Cope with Zirconium Pollution by Enhancing ROS Homeostasis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3792. [PMID: 38005689 PMCID: PMC10674191 DOI: 10.3390/plants12223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023]
Abstract
Zirconium (Zr) is one of the toxic metals that are heavily incorporated into the ecosystem due to intensive human activities. Their accumulation in the ecosystem disrupts the food chain, causing undesired alterations. Despite Zr's phytotoxicity, its impact on plant growth and redox status remains unclear, particularly if combined with elevated CO2 (eCO2). Therefore, a greenhouse pot experiment was conducted to test the hypothesis that eCO2 can alleviate the phytotoxic impact of Zr upon oat (Avena sativa) plants by enhancing their growth and redox homeostasis. A complete randomized block experimental design (CRBD) was applied to test our hypothesis. Generally, contamination with Zr strikingly diminished the biomass and photosynthetic efficiency of oat plants. Accordingly, contamination with Zr triggered remarkable oxidative damage in oat plants, with concomitant alteration in the antioxidant defense system of oat plants. Contrarily, elevated levels of CO2 (eCO2) significantly mitigated the adverse effect of Zr upon both fresh and dry weights as well as the photosynthesis of oat plants. The improved photosynthesis consequently quenched the oxidative damage caused by Zr by reducing the levels of both H2O2 and MDA. Moreover, eCO2 augmented the total antioxidant capacity with the concomitant accumulation of molecular antioxidants (e.g., polyphenols, flavonoids). In addition, eCO2 not only improved the activities of antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) but also boosted the ASC/GSH metabolic pool that plays a pivotal role in regulating redox homeostasis in plant cells. In this regard, our research offers a novel perspective by delving into the previously unexplored realm of the alleviative effects of eCO2. It sheds light on how eCO2 distinctively mitigates oxidative stress induced by Zr, achieving this by orchestrating adjustments to the redox balance within oat plants.
Collapse
Affiliation(s)
- Mahmoud M. Y. Madany
- Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Doaa A. Galilah
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Khalil
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, Yanbu El-Bahr 46423, Saudi Arabia
| |
Collapse
|
4
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|