1
|
Bai Y, Yu H, Chen L, Meng Y, Ma Y, Wang D, Qian Y, Zhang D, Feng X, Zhou Y. Time-Course Transcriptome Analysis of Aquilegia vulgaris Root Reveals the Cell Wall's Roles in Salinity Tolerance. Int J Mol Sci 2023; 24:16450. [PMID: 38003641 PMCID: PMC10671252 DOI: 10.3390/ijms242216450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress has a considerable impact on the development and growth of plants. The soil is currently affected by salinisation, a problem that is becoming worse every year. This means that a significant amount of salt-tolerant plant material needs to be added. Aquilegia vulgaris has aesthetically pleasing leaves, unique flowers, and a remarkable tolerance to salt. In this study, RNA-seq technology was used to sequence and analyse the transcriptome of the root of Aquilegia vulgaris seedlings subjected to 200 mM NaCl treatment for 12, 24, and 48 h. In total, 12 Aquilegia vulgaris seedling root transcriptome libraries were constructed. At the three time points of salt treatment compared with the control, 3888, 1907, and 1479 differentially expressed genes (DEGs) were identified, respectively. Various families of transcription factors (TFs), mainly AP2, MYB, and bHLH, were identified and might be linked to salt tolerance. Gene Ontology (GO) analysis of DEGs revealed that the structure and composition of the cell wall and cytoskeleton may be crucial in the response to salt stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed a significant enrichment of the pentose and glucuronate interconversion pathway, which is associated with cell wall metabolism after 24 and 48 h of salt treatment. Based on GO and KEGG analyses of DEGs, the pentose and glucuronate interconversion pathway was selected for further investigation. AP2, MYB, and bHLH were found to be correlated with the functional genes in this pathway based on a correlation network. This study provides the groundwork for understanding the key pathways and gene networks in response to salt stress, thereby providing a theoretical basis for improving salt tolerance in Aquilegia vulgaris.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yunwei Zhou
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (Y.B.); (H.Y.); (L.C.); (Y.M.); (Y.M.); (D.W.); (Y.Q.); (D.Z.); (X.F.)
| |
Collapse
|
2
|
Toscano S, Romano D, Ferrante A. Molecular Responses of Vegetable, Ornamental Crops, and Model Plants to Salinity Stress. Int J Mol Sci 2023; 24:ijms24043190. [PMID: 36834600 PMCID: PMC9965374 DOI: 10.3390/ijms24043190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
Vegetable and ornamental plants represent a very wide group of heterogeneous plants, both herbaceous and woody, generally without relevant salinity-tolerant mechanisms. The cultivation conditions-almost all are irrigated crops-and characteristics of the products, which must not present visual damage linked to salt stress, determine the necessity for a deep investigation of the response of these crops to salinity stress. Tolerance mechanisms are linked to the capacity of a plant to compartmentalize ions, produce compatible solutes, synthesize specific proteins and metabolites, and induce transcriptional factors. The present review critically evaluates advantages and disadvantages to study the molecular control of salt tolerance mechanisms in vegetable and ornamental plants, with the aim of distinguishing tools for the rapid and effective screening of salt tolerance levels in different plants. This information can not only help in suitable germplasm selection, which is very useful in consideration of the high biodiversity expressed by vegetable and ornamental plants, but also drive the further breeding activities.
Collapse
Affiliation(s)
- Stefania Toscano
- Department of Science Veterinary, Università degli Studi di Messina, 98168 Messina, Italy
| | - Daniela Romano
- Department of Agriculture, Food and Environment, Università degli Studi di Catania, 95131 Catania, Italy
- Correspondence:
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
H 2S Enhanced the Tolerance of Malus hupehensis to Alkaline Salt Stress through the Expression of Genes Related to Sulfur-Containing Compounds and the Cell Wall in Roots. Int J Mol Sci 2022; 23:ijms232314848. [PMID: 36499175 PMCID: PMC9736910 DOI: 10.3390/ijms232314848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Malus is an economically important plant that is widely cultivated worldwide, but it often encounters saline-alkali stress. The composition of saline-alkali land is a variety of salt and alkali mixed with the formation of alkaline salt. Hydrogen sulfide (H2S) has been reported to have positive effects on plant responses to abiotic stresses. Our previous study showed that H2S pretreatment alleviated the damage caused by alkaline salt stress to Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) roots by regulating Na+/K+ homeostasis and oxidative stress. In this study, transcriptome analysis was used to investigate the overall mechanism through which H2S alleviates alkaline salt stress in PYTC roots. Simultaneously, differentially expressed genes (DEGs) were explored. Transcriptional profiling of the Control-H2S, Control-AS, Control-H2S + AS, and AS-H2S + AS comparison groups identified 1618, 18,652, 16,575, and 4314 DEGs, respectively. Further analysis revealed that H2S could alleviate alkaline salt stress by increasing the energy maintenance capacity and cell wall integrity of M. hupehensis roots and by enhancing the capacity for reactive oxygen species (ROS) metabolism because more upregulated genes involved in ROS metabolism and sulfur-containing compounds were identified in M. hupehensis roots after H2S pretreatment. qRT-PCR analysis of H2S-induced and alkaline salt-response genes showed that these genes were consistent with the RNA-seq analysis results, which indicated that H2S alleviation of alkaline salt stress involves the genes of the cell wall and sulfur-containing compounds in PYTC roots.
Collapse
|
4
|
Li J, Yu X, Shan Q, Shi Z, Li J, Zhao X, Chang C, Yu J. Integrated volatile metabolomic and transcriptomic analysis provides insights into the regulation of floral scents between two contrasting varieties of Lonicera japonica. FRONTIERS IN PLANT SCIENCE 2022; 13:989036. [PMID: 36172557 PMCID: PMC9510994 DOI: 10.3389/fpls.2022.989036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Lonicera japonica Thunb., belonging to the Caprifoliaceae family, is an important traditional Chinese medicinal plant. The L. japonica flower (LJF) is widely used in medicine, cosmetics, drinks, and food due to its medicinal and sweet-smelling properties. Considerable efforts have been devoted to investigating the pharmacological activities of LJF; however, the regulatory mechanism of the floral scents remains unknown. We previously selected and bred an elite variety of L. japonica var. chinensis Thunb. called 'Yujin2', which has a strong aroma and is used in functional drinks and cosmetics. In order to reveal the regulatory mechanism of the floral scents of LJF, volatile metabolomic and transcriptomic analyses of the LJF at the silver flowering stage of 'Yujin2' (strong aroma) and 'Fengjin1' (bland odor) were performed. Our results revealed that a total of 153 metabolites and 9,523 genes were differentially regulated in LJF between 'Yujin2' and 'Fengjin1'. The integrated analysis of omics data indicated that the biosynthetic pathways of terpenoids (i.e., monoterpenoids, including geraniol and alpha-terpineol; sesquiterpenoids, including farnesol, farnesal, and alpha-farnesene; triterpenoid squalene), tryptophan and its derivatives (methyl anthranilate), and fatty acid derivatives, were major contributors to the stronger aroma of 'Yujin2' compared to 'Fengjin1'. Moreover, several genes involved in the terpenoid biosynthetic pathway were characterized using quantitative real-time PCR. These results provide insights into the metabolic mechanisms and molecular basis of floral scents in LJF, enabling future screening of genes related to the floral scent regulation, such as alpha-terpineol synthase, geranylgeranyl diphosphate synthase, farnesyl pyrophosphate synthase, anthranilate synthase, as well as transcription factors such as MYB, WRKY, and LFY. The knowledge from this study will facilitate the breeding of quality-improved and more fragrant variety of L. japonica for ornamental purpose and functional beverages and cosmetics.
Collapse
Affiliation(s)
- Jianjun Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xinjie Yu
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qianru Shan
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhaobin Shi
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Junhua Li
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiting Zhao
- Green Medicine Biotechnology Henan Engineering Laboratory, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Juanjuan Yu
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
5
|
PIN3 from Liriodendron May Function in Inflorescence Development and Root Elongation. FORESTS 2022. [DOI: 10.3390/f13040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Auxin, the first discovered phytohormone, is important for the growth and development of plants through the establishment of homeostasis and asymmetry. Here, we cloned the auxin transporter gene PIN-FORMED3 (PIN3) from the valuable timber tree hybrid Liriodendron (Liriodendron chinense × Liriodendron tulipifera). The gene contained a complete open reading frame of 1917 bp that encoded 638 amino acids. Phylogenetic analysis indicated that LhPIN3 exhibited the highest sequence similarity to the PIN3 of Vitis vinifera. Quantitative real-time PCR analysis showed that LhPIN3 was broadly expressed across different tissues/organs of Liriodendron, with the highest expression level in the roots. Heterologous overexpression of LhPIN3 in Arabidopsis thaliana caused considerable phenotypic changes, such as the root length and number of flowers. Genetic complementation of Arabidopsis pin1 mutants by LhPIN3, driven by the cauliflower mosaic virus 35S promoter, fully restored the root length and number of flowers of the pin1 mutant. Overall, our findings reveal that LhPIN3 has similar capacities to regulate the root length and number of flowers of Arabidopsis with AtPIN1.
Collapse
|
6
|
Zhang M, Li M, Fu H, Wang K, Tian X, Qiu R, Liu J, Gao S, Zhong Z, Yang B, Zhang L. Transcriptomic analysis unravels the molecular response of Lonicera japonica leaves to chilling stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1092857. [PMID: 36618608 PMCID: PMC9815118 DOI: 10.3389/fpls.2022.1092857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
Lonicera japonica is not only an important resource of traditional Chinese medicine, but also has very high horticultural value. Studies have been performed on the physiological responses of L. japonica leaves to chilling, however, the molecular mechanism underlying the low temperature-induced leaves morphological changes remains unclear. In this study, it has been demonstrated that the ratio of pigments content including anthocyanins, chlorophylls, and carotenoids was significantly altered in response to chilling condition, resulting in the color transformation of leaves from green to purple. Transcriptomic analysis showed there were 10,329 differentially expressed genes (DEGs) co-expressed during chilling stress. DEGs were mainly mapped to secondary metabolism, cell wall, and minor carbohydrate. The upregulated genes (UGs) were mainly enriched in protein metabolism, transport, and signaling, while UGs in secondary metabolism were mainly involved in phenylpropaoids-flavonoids pathway (PFP) and carotenoids pathway (CP). Protein-protein interaction analysis illustrated that 21 interacted genes including CAX3, NHX2, ACA8, and ACA9 were enriched in calcium transport/potassium ion transport. BR biosynthesis pathway related genes and BR insensitive (BRI) were collectively induced by chilling stress. Furthermore, the expression of genes involved in anthocyanins and CPs as well as the content of chlorogenic acid (CGA) and luteoloside were increased in leaves of L. japonica under stress. Taken together, these results indicate that the activation of PFP and CP in leaves of L. japonica under chilling stress, largely attributed to the elevation of calcium homeostasis and stimulation of BR signaling, which then regulated the PFP/CP related transcription factors.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongwei Fu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kehao Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu Tian
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Renping Qiu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinkun Liu
- Department of Techonology Center, Shandong Anran Nanometer Industry Development Company Limited, Weihai, China
| | - Shuai Gao
- Department of Techonology Center, Shandong Anran Nanometer Industry Development Company Limited, Weihai, China
| | - Zhuoheng Zhong
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bingxian Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Bingxian Yang, ; Lin Zhang,
| | - Lin Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Bingxian Yang, ; Lin Zhang,
| |
Collapse
|