1
|
Zhang Y, Chen R, Liu Y, Xu S, Gao S, Zhang H, Miao H, Qin L, Zhou X, Thakur K, Li C, Li J, Wei P, Wei ZJ. Metabolite differences and molecular mechanism between dehiscent and indehiscent capsule of mature sesame. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100231. [PMID: 39687584 PMCID: PMC11648792 DOI: 10.1016/j.fochms.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
The loss of sesame capsule seed prior to harvest poses a significant economical challenge in mechanized production. The metabolites involved in capsule closure are still unclear. Using comparative metabolome and transcriptome analysis, this work investigated the molecular regulation and enrichment pathways in two sesame types of indehiscent capsule WanZhi28 (ND) and dehiscent capsule WanZhi2 (WZ2). The findings demonstrated that genes and metabolites were significantly enriched in lignin synthesis-related pathways. Furthermore, data suggests that lipid and sugar metabolism may have an impact on capsule closure. Apart from its function in cell signaling, the latter may contribute to the glycosylation of lignin monomers, while the former may provide ATP for cellular microtubule movement. This work concurrently focused on a large number of differentially expressed transcription factors linked to the sesame capsule's anti-cleft mechanism, providing new evidence for the discovery and use of functional markers and genes for capsule dehiscence. The identification of key pathways and regulatory mechanisms offers valuable information for developing strategies to mitigate seed loss during harvest, ultimately contributing to more efficient and profitable sesame production.
Collapse
Affiliation(s)
- Yinping Zhang
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, Anhui province, PR China
| | - Ruirui Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, Anhui province, PR China
| | - Yujun Liu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, Anhui province, PR China
| | - Shuwen Xu
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei 230031, Anhui province, PR China
| | - Shuguang Gao
- Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, Henan province, PR China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450099, Henan Province, PR China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450099, Henan Province, PR China
| | - Lingling Qin
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450099, Henan Province, PR China
| | - Xiangyu Zhou
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, Anhui province, PR China
| | - Kiran Thakur
- School of Biological Science And Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Cheng Li
- Anhui Academy of Agricultural Sciences, Crop Research Institute, Hefei 230031, Anhui province, PR China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Pengcheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Zhao-Jun Wei
- School of Biological Science And Engineering, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
2
|
Li H, Hu F, Zhou J, Yang L, Li D, Zhou R, Zhou T, Zhang Y, Wang L, You J. Genome-wide characterization of the DIR gene family in sesame reveals the function of SiDIR21 in lignan biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109282. [PMID: 39527898 DOI: 10.1016/j.plaphy.2024.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Furofuran-type lignans, mainly sesamin and sesamolin, are the most representative functional active ingredients in sesame (Sesamum indicum L.). Their exceptional antioxidant properties, medicinal benefits, and health-promoting functions have garnered significant attention. Dirigent (DIR) proteins, found in vascular plants, are crucial for the biosynthesis of secondary metabolites, like lignans, and essential for responding to abiotic and biotic stresses. Despite their importance, they have yet to be systematically analyzed, especially those involved in lignan synthesis in sesame. This study unveiled 44 DIR genes in sesame. Phylogenetic analysis categorized these SiDIRs into five subgroups (DIR-a, DIR-b/d, DIR-e, DIR-f, and DIR-g), aligning with conserved motifs and gene structures analyses. Expression analysis unveiled distinct tissue-specific and hormone-responsive expression patterns among the SiDIR gene family members. Particularly, SiDIR21, a member of the DIR-a subgroup, exhibited robust expression in lignan-accumulating tissues and consistently high expression levels in germplasm during seed development with high sesamin content. Furthermore, SiDIR21 overexpression in hairy roots significantly increased sesamin and sesamolin contents, confirming its role in lignan synthesis. Overall, our study offers a valuable resource for exploring SiDIRs' functions and the lignan biosynthesis pathway in sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
3
|
Dossou SSK, Luo Z, Deng Q, Zhou R, Zhang Y, Li D, Li H, Tozo K, You J, Wang L. Biochemical and Molecular Insights into Variation in Sesame Seed Antioxidant Capability as Revealed by Metabolomics and Transcriptomics Analysis. Antioxidants (Basel) 2024; 13:514. [PMID: 38790619 PMCID: PMC11117558 DOI: 10.3390/antiox13050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Sesame seeds are important resources for relieving oxidation stress-related diseases. Although a significant variation in seeds' antioxidant capability is observed, the underlying biochemical and molecular basis remains elusive. Thus, this study aimed to reveal major seed components and key molecular mechanisms that drive the variability of seeds' antioxidant activity (AOA) using a panel of 400 sesame accessions. The seeds' AOA, total flavonoid, and phenolic contents varied from 2.03 to 78.5%, 0.072 to 3.104 mg CAE/g, and 2.717 to 21.98 mg GAE/g, respectively. Analyses revealed that flavonoids and phenolic acids are the main contributors to seeds' AOA variation, irrespective of seed coat color. LC-MS-based polyphenol profiling of high (HA) and low (LA) antioxidant seeds uncovered 320 differentially accumulated phenolic compounds (DAPs), including 311 up-regulated in HA seeds. Tricin, persicoside, 5,7,4',5'-tetrahydro-3',6-dimethoxyflavone, 8-methoxyapigenin, and 6,7,8-tetrahydroxy-5-methoxyflavone were the top five up-regulated in HA. Comparative transcriptome analysis at three seed developmental stages identified 627~2357 DEGs and unveiled that differential regulation of flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbene biosynthesis were the key underlying mechanisms of seed antioxidant capacity variation. Major differentially regulated phenylpropanoid structural genes and transcription factors were identified. SINPZ0000571 (MYB), SINPZ0401118 (NAC), and SINPZ0500871 (C3H) were the most highly induced TFs in HA. Our findings may enhance quality breeding.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lomé 01 BP 1515, Togo;
| | - Zishu Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Koffi Tozo
- Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lomé 01 BP 1515, Togo;
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
4
|
Ma J, Jia B, Bian Y, Pei W, Song J, Wu M, Wang W, Kashif, Shahzad, Wang L, Zhang B, Feng P, Yang L, Zhang J, Yu J. Genomic and co-expression network analyses reveal candidate genes for oil accumulation based on an introgression population in Upland cotton (Gossypium hirsutum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:23. [PMID: 38231256 DOI: 10.1007/s00122-023-04527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
KEY MESSAGE Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Yingying Bian
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | | | - Shahzad
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Liupeng Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China.
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Weldemichael MY, Gebremedhn HM. Omics technologies towards sesame improvement: a review. Mol Biol Rep 2023; 50:6885-6899. [PMID: 37326753 DOI: 10.1007/s11033-023-08551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Genetic improvement of sesame (Sesamum indicum L.), one of the most important oilseed crops providing edible oil, proteins, minerals, and vitamins, is important to ensure a balanced diet for the growing world population. Increasing yield, seed protein, oil, minerals, and vitamins is urgently needed to meet the global demand. The production and productivity of sesame is very low due to various biotic and abiotic stresses. Therefore, various efforts have been made to combat these constraints and increase the production and productivity of sesame through conventional breeding. However, less attention has been paid to the genetic improvement of the crop through modern biotechnological methods, leaving it lagging behind other oilseed crops. Recently, however, the scenario has changed as sesame research has entered the era of "omics" and has made significant progress. Therefore, the purpose of this paper is to provide an overview of the progress made by omics research in improving sesame. This review presents a number of efforts that have been made over past decade using omics technologies to improve various traits of sesame, including seed composition, yield, and biotic and abiotic resistant varieties. It summarizes the advances in genetic improvement of sesame using omics technologies, such as germplasm development (web-based functional databases and germplasm resources), gene discovery (molecular markers and genetic linkage map construction), proteomics, transcriptomics, and metabolomics that have been carried out in the last decade. In conclusion, this review highlights future directions that may be important for omics-assisted breeding in sesame genetic improvement.
Collapse
Affiliation(s)
- Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia.
| | - Hailay Mehari Gebremedhn
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia
| |
Collapse
|
6
|
Li H, Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current Progress, Applications and Challenges of Multi-Omics Approaches in Sesame Genetic Improvement. Int J Mol Sci 2023; 24:3105. [PMID: 36834516 PMCID: PMC9965044 DOI: 10.3390/ijms24043105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Sesame is one of the important traditional oil crops in the world, and has high economic and nutritional value. Recently, due to the novel high throughput sequencing techniques and bioinformatical methods, the study of the genomics, methylomics, transcriptomics, proteomics and metabonomics of sesame has developed rapidly. Thus far, the genomes of five sesame accessions have been released, including white and black seed sesame. The genome studies reveal the function and structure of the sesame genome, and facilitate the exploitation of molecular markers, the construction of genetic maps and the study of pan-genomes. Methylomics focus on the study of the molecular level changes under different environmental conditions. Transcriptomics provide a powerful tool to study abiotic/biotic stress, organ development, and noncoding RNAs, and proteomics and metabonomics also provide some support in studying abiotic stress and important traits. In addition, the opportunities and challenges of multi-omics in sesame genetics breeding were also described. This review summarizes the current research status of sesame from the perspectives of multi-omics and hopes to provide help for further in-depth research on sesame.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crop Research Institute, Nanchang Branch of National Center of Oil Crops Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330000, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
7
|
Nawade B, Kumar A, Maurya R, Subramani R, Yadav R, Singh K, Rangan P. Longer Duration of Active Oil Biosynthesis during Seed Development Is Crucial for High Oil Yield-Lessons from Genome-Wide In Silico Mining and RNA-Seq Validation in Sesame. PLANTS (BASEL, SWITZERLAND) 2022; 11:2980. [PMID: 36365434 PMCID: PMC9657858 DOI: 10.3390/plants11212980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Sesame, one of the ancient oil crops, is an important oilseed due to its nutritionally rich seeds with high protein content. Genomic scale information for sesame has become available in the public databases in recent years. The genes and their families involved in oil biosynthesis in sesame are less studied than in other oilseed crops. Therefore, we retrieved a total of 69 genes and their translated amino acid sequences, associated with gene families linked to the oil biosynthetic pathway. Genome-wide in silico mining helped identify key regulatory genes for oil biosynthesis, though the findings require functional validation. Comparing sequences of the SiSAD (stearoyl-acyl carrier protein (ACP)-desaturase) coding genes with known SADs helped identify two SiSAD family members that may be palmitoyl-ACP-specific. Based on homology with lysophosphatidic acid acyltransferase (LPAAT) sequences, an uncharacterized gene has been identified as SiLPAAT1. Identified key regulatory genes associated with high oil content were also validated using publicly available transcriptome datasets of genotypes contrasting for oil content at different developmental stages. Our study provides evidence that a longer duration of active oil biosynthesis is crucial for high oil accumulation during seed development. This underscores the importance of early onset of oil biosynthesis in developing seeds. Up-regulating, identified key regulatory genes of oil biosynthesis during early onset of seed development, should help increase oil yields.
Collapse
Affiliation(s)
- Bhagwat Nawade
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Ajay Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rasna Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rajkumar Subramani
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Rashmi Yadav
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Kuldeep Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|