1
|
Detection of Acquired Antibiotic Resistance Genes in Domestic Pig (Sus scrofa) and Common Carp (Cyprinus carpio) Intestinal Samples by Metagenomics Analyses in Hungary. Antibiotics (Basel) 2022; 11:antibiotics11101441. [PMID: 36290099 PMCID: PMC9598914 DOI: 10.3390/antibiotics11101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), β-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like β-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations.
Collapse
|
2
|
The Specificity of ParR Binding Determines the Incompatibility of Conjugative Plasmids in Clostridium perfringens. mBio 2022; 13:e0135622. [PMID: 35726914 PMCID: PMC9426499 DOI: 10.1128/mbio.01356-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plasmids that encode the same replication machinery are generally unable to coexist in the same bacterial cell. However, Clostridium perfringens strains often carry multiple conjugative toxin or antibiotic resistance plasmids that are closely related and encode similar Rep proteins. In many bacteria, plasmid partitioning upon cell division involves a ParMRC system; in C. perfringens plasmids, there are approximately 10 different ParMRC families, with significant differences in amino acid sequences between each ParM family (15% to 54% identity). Since plasmids carrying genes belonging to the same ParMRC family are not observed in the same strain, these families appear to represent the basis for plasmid compatibility in C. perfringens. To understand this process, we examined the key recognition steps between ParR DNA-binding proteins and their parC binding sites. The ParR proteins bound to sequences within a parC site from the same ParMRC family but could not interact with a parC site from a different ParMRC family. These data provide evidence that compatibility of the conjugative toxin plasmids of C. perfringens is mediated by their parMRC-like partitioning systems. This process provides a selective advantage by enabling the host bacterium to maintain separate plasmids that encode toxins that are specific for different host targets.
Collapse
|
3
|
Combinatorial strategy towards the efficient expression of lipoxygenase in Escherichia coli at elevated temperatures. Appl Microbiol Biotechnol 2020; 104:10047-10057. [PMID: 33037915 DOI: 10.1007/s00253-020-10941-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) are a family of non-heme iron oxidoreductases, which catalyze the addition of oxygen into polyunsaturated fatty acids. They have applications in the food and medical industries. In most studies, the soluble expression of LOXs in microbes requires low temperature (< 20 °C), which increases the cost and fermentation time. Achievement of soluble expression in elevated temperatures (> 30 °C) would shorten the production phase, leading to cost-efficient industrial applications. In this study, a combinatorial strategy was used to enhance the expression of soluble LOXs, comprising plasmid stability systems plus optimized carbon source used for auto-induction expression. Plasmid stability analysis suggested that both active partition systems and plasmid-dependent systems were essential for plasmid stability. Among them, the parBCA in it resulted in the enzyme activity increasing by a factor of 2 (498 ± 13 units per gram dry cell weight (U/g-DCW) after 6-h induction). Furthermore, the optimized carbon source, composed of glucose, lactose, and glycerol, could be used as an auto-induction expression medium and effectively improve the total and soluble expression of LOX, which resulted in the soluble expression of LOX increased by 7 times. Finally, the soluble expression of LOX was 11 times higher with a combinatorial strategy that included both optimized plasmid partition and auto-induction medium. Our work provides a broad, generalizable, and combinatorial strategy for the efficient production of heterologous proteins at elevated temperatures in the E. coli system. KEY POINTS : • Soluble expression of lipoxygenase at 30 °C or higher temperatures is industrially beneficial. • Strategies comprise plasmid partition and optimized auto-induction medium with glucose, lactose, and glycerol as carbon source. • Combinatorial strategy further improved LOX soluble expression at 30 °C and 37 °C.
Collapse
|
4
|
Addressing the role of centromere sites in activation of ParB proteins for partition complex assembly. PLoS One 2020; 15:e0226472. [PMID: 32379828 PMCID: PMC7205306 DOI: 10.1371/journal.pone.0226472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 11/19/2022] Open
Abstract
The ParB-parS partition complexes that bacterial replicons use to ensure their faithful inheritance also find employment in visualization of DNA loci, as less intrusive alternatives to fluorescent repressor-operator systems. The ability of ParB molecules to interact via their N-terminal domains and to bind to non-specific DNA enables expansion of the initial complex to a size both functional in partition and, via fusion to fluorescent peptides, visible by light microscopy. We have investigated whether it is possible to dispense with the need to insert parS in the genomic locus of interest, by determining whether ParB fused to proteins that bind specifically to natural DNA sequences can still assemble visible complexes. In yeast cells, coproduction of fusions of ParB to a fluorescent peptide and to a TALE protein targeting an endogenous sequence did not yield visible foci; nor did any of several variants of these components. In E.coli, coproduction of fusions of SopB (F plasmid ParB) to fluorescent peptide, and to dCas9 together with specific guide RNAs, likewise yielded no foci. The result of coproducing analogous fusions of SopB proteins with distinct binding specificities was also negative. Our observations imply that in order to assemble higher order partition complexes, ParB proteins need specific activation through binding to their cognate parS sites.
Collapse
|
5
|
Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids. Biophys J 2017; 112:1489-1502. [PMID: 28402891 PMCID: PMC5390091 DOI: 10.1016/j.bpj.2017.02.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation.
Collapse
Affiliation(s)
- Longhua Hu
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology (MCDB), University of Michigan, Ann Arbor, Michigan
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Watts TD, Johanesen PA, Lyras D, Rood JI, Adams V. Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies. Plasmid 2017; 91:68-75. [PMID: 28390955 DOI: 10.1016/j.plasmid.2017.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Abstract
Clostridium perfringens produces an extensive repertoire of toxins and extracellular enzymes, many of which are intimately involved in the progression of disease and are encoded by genes on conjugative plasmids. In addition, many C. perfringens strains can carry up to five of these conjugative toxin or antimicrobial resistance plasmids, each of which has a similar 35kb backbone. This conserved backbone includes the tcp conjugation locus and the central control region (CCR), which encodes genes involved in plasmid regulation, replication and partitioning, including a parMRC partitioning locus. Most conjugative plasmids in C. perfringens have a conserved replication protein, raising questions as to how multiple, closely related plasmids are maintained within a single strain. Bioinformatics analysis has highlighted the presence of at least 10 different parMRC partitioning system families (parMRCA-J) in these plasmids, with differences in amino acid sequence identity between each ParM family ranging from 15% to 54%. No two plasmids that encode genes belonging to the same partitioning family have been observed in a single strain, suggesting that these families represent the basis for plasmid incompatibility. In an attempt to validate the proposed parMRC incompatibility groups, genetically marked C. perfringens plasmids encoding identical parMRCC or parMRCD homologues or different combinations of parMRCA, parMRCC and parMRCD family homologues were introduced into a single strain via conjugation. The stability of each plasmid was determined using an incompatibility assay in which the plasmid profile of each strain was monitored over the course of two days in the absence of direct selection. The results showed that plasmids with identical parMRCC or parMRCD homologues were incompatible and could not coexist in the absence of external selection. By contrast, plasmids that encoded different parMRC homologues were compatible and could coexist in the same cell in the absence of selection, with the exception of strains housing parMRCC and parMRCD combinations, which showed a minor incompatibility phenotype. In conclusion, we have provided the first direct evidence of plasmid incompatibility in Clostridium spp. and have shown experimentally that the compatibility of conjugative C. perfringens plasmids correlates with the presence of parMRC-like partitioning systems of different phylogenetic subfamilies.
Collapse
Affiliation(s)
- Thomas D Watts
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Priscilla A Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
7
|
The Interplay between Different Stability Systems Contributes to Faithful Segregation: Streptococcus pyogenes pSM19035 as a Model. Microbiol Spectr 2016; 2:PLAS-0007-2013. [PMID: 26104212 DOI: 10.1128/microbiolspec.plas-0007-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Streptococcus pyogenes pSM19035 low-copy-number θ-replicating plasmid encodes five segregation (seg) loci that contribute to plasmid maintenance. These loci map outside of the minimal replicon. The segA locus comprises β2 recombinase and two six sites, and segC includes segA and also the γ topoisomerase and two ssiA sites. Recombinase β2 plays a role both in maximizing random segregation by resolving plasmid dimers (segA) and in catalyzing inversion between two inversely oriented six sites. segA, in concert with segC, facilitates replication fork pausing at ssiA sites and overcomes the accumulation of "toxic" replication intermediates. The segB1 locus encodes ω, ε, and ζ genes. The short-lived ε2 antitoxin and the long-lived ζ toxin form an inactive ζε2ζ complex. Free ζ toxin halts cell proliferation upon decay of the ε2 antitoxin and enhances survival. If ε2 expression is not recovered, by loss of the plasmid, the toxin raises lethality. The segB2 locus comprises δ and ω genes and six parS sites. Proteins δ2 and ω2, by forming complexes with parS and chromosomal DNA, pair the plasmid copies at the nucleoid, leading to the formation of a dynamic δ2 gradient that separates the plasmids to ensure roughly equal distribution to daughter cells at cell division. The segD locus, which comprises ω2 (or ω2 plus ω22) and parS sites, coordinates expression of genes that control copy number, better-than-random segregation, faithful partition, and antibiotic resistance. The interplay of the seg loci and with the rep locus facilitates almost absolute plasmid stability.
Collapse
|
8
|
Chan KM, Liu YT, Ma CH, Jayaram M, Sau S. The 2 micron plasmid of Saccharomyces cerevisiae: A miniaturized selfish genome with optimized functional competence. Plasmid 2013; 70:2-17. [DOI: 10.1016/j.plasmid.2013.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/21/2013] [Accepted: 03/02/2013] [Indexed: 01/24/2023]
|
9
|
Pinto UM, Flores-Mireles AL, Costa ED, Winans SC. RepC protein of the octopine-type Ti plasmid binds to the probable origin of replication within repC and functions only in cis. Mol Microbiol 2011; 81:1593-606. [PMID: 21883520 DOI: 10.1111/j.1365-2958.2011.07789.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vegetative replication and partitioning of many plasmids and some chromosomes of alphaproteobacteria are directed by their repABC operons. RepA and RepB proteins direct the partitioning of replicons to daughter cells, while RepC proteins are replication initiators, although they do not resemble any characterized replication initiation protein. Here we show that the replication origin of an Agrobacterium tumefaciens Ti plasmid resides fully within its repC gene. Purified RepC bound to a site within repC with moderate affinity, high specificity and with twofold cooperativity. The binding site was localized to an AT-rich region that contains a large number of GANTC sites, which have been implicated in replication regulation in related organisms. A fragment of RepC containing residues 26-158 was sufficient to bind DNA, although with limited sequence specificity. This portion of RepC is predicted to have structural homology to members of the MarR family of transcription factors. Overexpression of RepC in A. tumefaciens caused large increases in copy number in cis but did not change the copy number of plasmids containing the same oriV sequence in trans, confirming other observations that RepC functions only in cis.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
10
|
Soberón NE, Lioy VS, Pratto F, Volante A, Alonso JC. Molecular anatomy of the Streptococcus pyogenes pSM19035 partition and segrosome complexes. Nucleic Acids Res 2010; 39:2624-37. [PMID: 21138966 PMCID: PMC3074150 DOI: 10.1093/nar/gkq1245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vancomycin or erythromycin resistance and the stability determinants, δω and ωεζ, of Enterococci and Streptococci plasmids are genetically linked. To unravel the mechanisms that promoted the stable persistence of resistance determinants, the early stages of Streptococcus pyogenes pSM19035 partitioning were biochemically dissected. First, the homodimeric centromere-binding protein, ω2, bound parS DNA to form a short-lived partition complex 1 (PC1). The interaction of PC1 with homodimeric δ [δ2 even in the apo form (Apo-δ2)], significantly stimulated the formation of a long-lived ω2·parS complex (PC2) without spreading into neighbouring DNA sequences. In the ATP·Mg2+ bound form, δ2 bound DNA, without sequence specificity, to form a transient dynamic complex (DC). Second, parS bound ω2 interacted with and promoted δ2 redistribution to co-localize with the PC2, leading to transient segrosome complex (SC, parS·ω2·δ2) formation. Third, δ2, in the SC, interacted with a second SC and promoted formation of a bridging complex (BC). Finally, increasing ω2 concentrations stimulated the ATPase activity of δ2 and the BC was disassembled. We propose that PC, DC, SC and BC formation were dynamic processes and that the molar ω2:δ2 ratio and parS DNA control their temporal and spatial assembly during partition of pSM19035 before cell division.
Collapse
Affiliation(s)
- Nora E Soberón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
11
|
Popp D, Xu W, Narita A, Brzoska AJ, Skurray RA, Firth N, Goshdastider U, Maéda Y, Robinson RC, Schumacher MA. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J Biol Chem 2010; 285:10130-10140. [PMID: 20106979 DOI: 10.1074/jbc.m109.071613] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II plasmid partition systems utilize ParM NTPases in coordination with a centromere-binding protein called ParR to mediate accurate DNA segregation, a process critical for plasmid retention. The Staphylococcus aureus pSK41 plasmid is a medically important plasmid that confers resistance to multiple antibiotics, disinfectants, and antiseptics. In the first step of partition, the pSK41 ParR binds its DNA centromere to form a superhelical partition complex that recruits ParM, which then mediates plasmid separation. pSK41 ParM is homologous to R1 ParM, a known actin homologue, suggesting that it may also form filaments to drive partition. To gain insight into the partition function of ParM, we examined its ability to form filaments and determined the crystal structure of apoParM to 1.95 A. The structure shows that pSK41 ParM belongs to the actin/Hsp70 superfamily. Unexpectedly, however, pSK41 ParM shows the strongest structural homology to the archaeal actin-like protein Thermoplasma acidophilum Ta0583, rather than its functional homologue, R1 ParM. Consistent with this divergence, we find that regions shown to be involved in R1 ParM filament formation are not important in formation of pSK41 ParM polymers. These data are also consonant with our finding that pSK41 ParM forms 1-start 10/4 helices very different from the 37/17 symmetry of R1 ParM. The polymerization kinetics of pSK41 ParM also differed from that of R1 ParM. These results indicate that type II NTPases utilize different polymeric structures to drive plasmid segregation.
Collapse
Affiliation(s)
- David Popp
- ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore.
| | - Weijun Xu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Akihiro Narita
- ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anthony J Brzoska
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ronald A Skurray
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Neville Firth
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Umesh Goshdastider
- Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuichiro Maéda
- ERATO "Actin Filament Dynamics" Project, Japan Science and Technology Corporation, c/o RIKEN, Harima Institute at Spring 8, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Nagoya University Graduate School of Science, Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
12
|
Wide dispersal and possible multiple origins of low-copy-number plasmids in rickettsia species associated with blood-feeding arthropods. Appl Environ Microbiol 2010; 76:1718-31. [PMID: 20097813 DOI: 10.1128/aem.02988-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plasmids are mobile genetic elements of bacteria that can impart important adaptive traits, such as increased virulence or antibiotic resistance. We report the existence of plasmids in Rickettsia (Rickettsiales; Rickettsiaceae) species, including Rickettsia akari, "Candidatus Rickettsia amblyommii," R. bellii, R. rhipicephali, and REIS, the rickettsial endosymbiont of Ixodes scapularis. All of the rickettsiae were isolated from humans or North and South American ticks. R. parkeri isolates from both continents did not possess plasmids. We have now demonstrated plasmids in nearly all Rickettsia species that we have surveyed from three continents, which represent three of the four major proposed phylogenetic groups associated with blood-feeding arthropods. Gel-based evidence consistent with the existence of multiple plasmids in some species was confirmed by cloning plasmids with very different sequences from each of two "Ca. Rickettsia amblyommii" isolates. Phylogenetic analysis of rickettsial ParA plasmid partitioning proteins indicated multiple parA gene origins and plasmid incompatibility groups, consistent with possible multiple plasmid origins. Phylogenetic analysis of potentially host-adaptive rickettsial small heat shock proteins showed that hsp2 genes were plasmid specific and that hsp1 genes, found only on plasmids of "Ca. Rickettsia amblyommii," R. felis, R. monacensis, and R. peacockii, were probably acquired independently of the hsp2 genes. Plasmid copy numbers in seven Rickettsia species ranged from 2.4 to 9.2 per chromosomal equivalent, as determined by real-time quantitative PCR. Plasmids may be of significance in rickettsial evolution and epidemiology by conferring genetic plasticity and host-adaptive traits via horizontal gene transfer that counteracts the reductive genome evolution typical of obligate intracellular bacteria.
Collapse
|
13
|
P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation. J Bacteriol 2009; 192:1175-83. [PMID: 19897644 DOI: 10.1128/jb.01245-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-copy-number plasmids, such as P1 and F, encode a type Ia partition system (P1par or Fsop) for active segregation of copies to daughter cells. Typical descriptions show a single central plasmid focus dividing and the products moving to the cell quarter regions, ensuring segregation. However, using improved optical and analytical tools and large cell populations, we show that P1 plasmid foci are very broadly distributed. Moreover, under most growth conditions, more than two foci are frequently present. Each focus contains either one or two plasmid copies. Replication and focus splitting occur at almost any position in the cell. The products then move rapidly apart for approximately 40% of the cell length. They then tend to maintain their relative positions. The segregating foci often pass close to or come to rest close to other foci in the cell. Foci frequently appear to fuse during these encounters. Such events occur several times in each cell and cell generation on average. We argue that foci pair with their neighbors and then actively separate again. The net result is an approximately even distribution of foci along the long cell axis on average. We show mathematically that trans-pairing and active separation could greatly increase the accuracy of segregation and would produce the distributions of foci that we observe. Plasmid pairing and separation may constitute a novel fine-tuning mechanism that takes the basic pattern created when plasmids separate after replication and converts it to a roughly even pattern that greatly improves the fidelity of plasmid segregation.
Collapse
|
14
|
Philip DS, Sarovich DS, Pemberton JM. Complete sequence and analysis of the stability functions of pPSX, a vector that allows stable cloning and expression of Streptomycete genes in Escherichia coli K12. Plasmid 2009; 62:39-43. [PMID: 19303899 DOI: 10.1016/j.plasmid.2009.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
The broad host range, cloning and expression vector pPSX has been completely sequenced and analysed. pPSX is 14.7kb in length and contains the fusion of two continuous segments of the parental 34kb, IncW plasmid pR388. pPSX appears to have retained at least three sets of gene/s which contribute in different ways to plasmid stability. The first of these parB, is a known participant in the partitioning of low-copy number plasmids. While the adjoining gene, orf35, has high homology with kfrA, a putative plasmid nucleoid organiser that is often associated with the ParAB family of proteins. The second set of genes; orfs18, 19, 20, whose exact functions are not clear, have homology to the stability operons of both IncW and IncN plasmids. The third is the resolvase, resP, which may resolve plasmid multimers that can lead to plasmid instability. pPSX is a small, stable cloning vector good for cloning and expression of a wide range of genes, including those from streptomycetes.
Collapse
Affiliation(s)
- Daniel S Philip
- Department of Microbiology and Parasitology, University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
15
|
Kolatka K, Witosinska M, Pierechod M, Konieczny I. Bacterial partitioning proteins affect the subcellular location of broad-host-range plasmid RK2. MICROBIOLOGY-SGM 2008; 154:2847-2856. [PMID: 18757818 DOI: 10.1099/mic.0.2008/018762-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been demonstrated that plasmids are not randomly distributed but are located symmetrically in mid-cell, or (1/4), (3/4) positions in bacterial cells. In this work we compared the localization of broad-host-range plasmid RK2 mini-replicons, which lack an active partitioning system, in Escherichia coli and Pseudomonas putida cells. In E. coli the location of the plasmid mini-replicon cluster was at the cell poles. In contrast, in Pseudomonas cells, as a result of the interaction of chromosomally encoded ParB protein with RK2 centromere-like sequences, these mini-derivatives were localized in the proximity of mid-cell, or (1/4), (3/4) positions. The expression of the Pseudomonas parAB genes in E. coli resulted in a positional change in the RK2 mini-derivative to the mid-cell or (1/4), (3/4) positions. Moreover, in a P. putida parAB mutant, both RK2 mini-derivatives and the entire RK2 plasmid exhibited disturbances of subcellular localization. These observations raise the possibility that in certain bacteria chromosomally encoded partitioning machinery could affect subcellular plasmid positioning.
Collapse
Affiliation(s)
- Katarzyna Kolatka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Marcin Pierechod
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
16
|
Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation. Biochem J 2008; 412:1-18. [PMID: 18426389 DOI: 10.1042/bj20080359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNA segregation or partition is an essential process that ensures stable genome transmission. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to study the mechanistic underpinnings of DNA segregation at a detailed atomic level owing to their simplicity. Specifically, plasmid partition requires only three elements: a centromere-like DNA site and two proteins: a motor protein, generally an ATPase, and a centromere-binding protein. In the first step of the partition process, multiple centromere-binding proteins bind co-operatively to the centromere, which typically consists of several tandem repeats, to form a higher-order nucleoprotein complex called the partition complex. The partition complex recruits the ATPase to form the segrosome and somehow activates the ATPase for DNA separation. Two major families of plasmid par systems have been delineated based on whether they utilize ATPase proteins with deviant Walker-type motifs or actin-like folds. In contrast, the centromere-binding proteins show little sequence homology even within a given family. Recent structural studies, however, have revealed that these centromere-binding proteins appear to belong to one of two major structural groups: those that employ helix-turn-helix DNA-binding motifs or those with ribbon-helix-helix DNA-binding domains. The first structure of a higher-order partition complex was recently revealed by the structure of pSK41 centromere-binding protein, ParR, bound to its centromere site. This structure showed that multiple ParR ribbon-helix-helix motifs bind symmetrically to the tandem centromere repeats to form a large superhelical structure with dimensions suitable for capture of the filaments formed by the actinlike ATPases. Surprisingly, recent data indicate that the deviant Walker ATPase proteins also form polymer-like structures, suggesting that, although the par families harbour what initially appeared to be structurally and functionally divergent proteins, they actually utilize similar mechanisms of DNA segregation. Thus, in the present review, the known Par protein and Par-protein complex structures are discussed with regard to their functions in DNA segregation in an attempt to begin to define, at a detailed atomic level, the molecular mechanisms involved in plasmid segregation.
Collapse
|
17
|
Pratto F, Cicek A, Weihofen WA, Lurz R, Saenger W, Alonso JC. Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res 2008; 36:3676-89. [PMID: 18477635 PMCID: PMC2441792 DOI: 10.1093/nar/gkn170] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The accurate partitioning of Firmicute plasmid pSM19035 at cell division depends on ATP binding and hydrolysis by homodimeric ATPase δ2 (ParA) and binding of ω2 (ParB) to its cognate parS DNA. The 1.83 Å resolution crystal structure of δ2 in a complex with non-hydrolyzable ATPγS reveals a unique ParA dimer assembly that permits nucleotide exchange without requiring dissociation into monomers. In vitro, δ2 had minimal ATPase activity in the absence of ω2 and parS DNA. However, stoichiometric amounts of ω2 and parS DNA stimulated the δ2 ATPase activity and mediated plasmid pairing, whereas at high (4:1) ω2 : δ2 ratios, stimulation of the ATPase activity was reduced and δ2 polymerized onto DNA. Stimulation of the δ2 ATPase activity and its polymerization on DNA required ability of ω2 to bind parS DNA and its N-terminus. In vivo experiments showed that δ2 alone associated with the nucleoid, and in the presence of ω2 and parS DNA, δ2 oscillated between the nucleoid and the cell poles and formed spiral-like structures. Our studies indicate that the molar ω2 : δ2 ratio regulates the polymerization properties of (δ•ATP•Mg2+)2 on and depolymerization from parS DNA, thereby controlling the temporal and spatial segregation of pSM19035 before cell division.
Collapse
Affiliation(s)
- Florencia Pratto
- Department of Microbial Biotechnology, National Centre of Biotechnology, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Purification and properties of the plasmid maintenance proteins from the Borrelia burgdorferi linear plasmid lp17. J Bacteriol 2008; 190:3992-4000. [PMID: 18375548 DOI: 10.1128/jb.00057-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi carries more plasmids than any other bacterium, many of which are linear with covalently closed hairpin ends. These plasmids have also been referred to as mini-chromosomes and essential genetic elements and are integral components of its segmented genome. We have investigated two plasmid maintenance proteins, BBD14 (the replication initiator) and BBD21 (a presumptive ParA orthologue), encoded by the linear plasmid lp17; these proteins are representatives of paralogous families 62 and 32, respectively. We have purified recombinant 6-his-BBD21 and shown it possesses an ATPase activity. 6-his-BBD14 initially could not be overexpressed in Escherichia coli by itself. It was only effectively overproduced in recombinant form through coexpression with other B. burgdorferi proteins and codon optimization. Although the mechanism for increased production through coexpression is not clear, this method holds promise for expression and purification of other B. burgdorferi proteins, a number of which have remained recalcitrant to purification from E. coli. Finally, we present evidence for the physical interaction of BBD14 and BBD21, a feature suggesting that BBD21 and the paralogous family 32 proteins are more likely involved in DNA replication than functioning as simple ParA orthologues as previously surmised based upon sequence homology. Such a role would not preclude a function in plasmid partitioning through interaction with the replication initiator.
Collapse
|
19
|
Derome A, Hoischen C, Bussiek M, Grady R, Adamczyk M, Kędzierska B, Diekmann S, Barillà D, Hayes F. Centromere anatomy in the multidrug-resistant pathogen Enterococcus faecium. Proc Natl Acad Sci U S A 2008; 105:2151-6. [PMID: 18245388 PMCID: PMC2538891 DOI: 10.1073/pnas.0704681105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
Multidrug-resistant variants of the opportunistic human pathogen Enterococcus have recently emerged as leading agents of nosocomial infection. The acquisition of plasmid-borne resistance genes is a driving force in antibiotic-resistance evolution in enterococci. The segregation locus of a high-level gentamicin-resistance plasmid, pGENT, in Enterococcus faecium was identified and dissected. This locus includes overlapping genes encoding PrgP, a member of the ParA superfamily of segregation proteins, and PrgO, a site-specific DNA binding homodimer that recognizes the cenE centromere upstream of prgPO. The centromere has a distinctive organization comprising three subsites, CESII separates CESI and CESIII, each of which harbors seven TATA boxes spaced by half-helical turns. PrgO independently binds both CESI and CESIII, but with different affinities. The topography of the complex was probed by atomic force microscopy, revealing discrete PrgO foci positioned asymmetrically at the CESI and CESIII subsites. Bending analysis demonstrated that cenE is intrinsically curved. The organization of the cenE site and of certain other plasmid centromeres mirrors that of yeast centromeres, which may reflect a common architectural requirement during assembly of the mitotic apparatus in yeast and bacteria. Moreover, segregation modules homologous to that of pGENT are widely disseminated on vancomycin and other resistance plasmids in enterococci. An improved understanding of segrosome assembly may highlight new interventions geared toward combating antibiotic resistance in these insidious pathogens.
Collapse
Affiliation(s)
- Andrew Derome
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christian Hoischen
- Leibniz Institute for Age Research, Fritz–Lipmann Institute, D-07745 Jena, Germany
| | - Malte Bussiek
- Biophysical Engineering Group, University of Twente, 7500 AE, Enschede, The Netherlands; and
| | | | - Malgorzata Adamczyk
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Barbara Kędzierska
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Stephan Diekmann
- Leibniz Institute for Age Research, Fritz–Lipmann Institute, D-07745 Jena, Germany
| | - Daniela Barillà
- **Department of Biology, University of York, York Y0105 YW, United Kingdom
| | - Finbarr Hayes
- *Faculty of Life Sciences and
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
20
|
Small multidrug resistance plasmids in Actinobacillus porcitonsillarum. Plasmid 2008; 59:144-52. [PMID: 18190962 DOI: 10.1016/j.plasmid.2007.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/29/2007] [Accepted: 11/27/2007] [Indexed: 11/21/2022]
Abstract
The complete nucleotide sequences of six Actinobacillus porcitonsillarum plasmids pKMA202 (13.425-kb), pKMA1467 (11.115-kb), pKMA5 (9.549-kb), pIMD50 (8.751-kb), pKMA505 (8.632-kb) and pKMA757 (4.556-kb) and three Actinobacillus pleuropneumoniae plasmids pPSAS1522 (4.244-kb), pARD3079 (3.884-kb) and pKMA2425 (3.156-kb) were determined. All the plasmids contain the sulfonamide resistance gene sul2. One A. pleuropneumoniae plasmid and five A. porcitonsillarum plasmids also have the streptomycin resistance gene strA. Among these latter five A. porcitonsillarum plasmids, four also harbor the beta-lactam resistance gene bla(ROB-1). This study is the first report of multidrug resistance plasmids in the non-pathogenic A. porcitonsillarum.
Collapse
|
21
|
Hoischen C, Bussiek M, Langowski J, Diekmann S. Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR. Nucleic Acids Res 2007; 36:607-15. [PMID: 18056157 PMCID: PMC2241845 DOI: 10.1093/nar/gkm672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Escherichia coli low-copy-number plasmid R1 contains a segregation machinery composed of parC, ParR and parM. The R1 centromere-like site parC contains two separate sets of repeats. By atomic force microscopy (AFM) we show here that ParR molecules bind to each of the 5-fold repeated iterons separately with the intervening sequence unbound by ParR. The two ParR protein complexes on parC do not complex with each other. ParR binds with a stoichiometry of about one ParR dimer per each single iteron. The measured DNA fragment lengths agreed with B-form DNA and each of the two parC 5-fold interon DNA stretches adopts a linear path in its complex with ParR. However, the overall parC/ParR complex with both iteron repeats bound by ParR forms an overall U-shaped structure: the DNA folds back on itself nearly completely, including an angle of ∼150°. Analysing linear DNA fragments, we never observed dimerized ParR complexes on one parC DNA molecule (intramolecular) nor a dimerization between ParR complexes bound to two different parC DNA molecules (intermolecular). This bacterial segrosome is compared to other bacterial segregation complexes. We speculate that partition complexes might have a similar overall structural organization and, at least in part, common functional properties.
Collapse
Affiliation(s)
- C Hoischen
- Molecular Biology, FLI, Leibniz-Institute for Age Research, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
The mitotic apparatus that a plasmid uses to ensure its stable inheritance responds to the appearance of an additional copy of the plasmid's centromere by segregating it from the pre-existing copies: if the new copy arises by replication of the plasmid the result is partition, if it arrives on a different plasmid the result is incompatibility. Incompatibility thus serves as a probe of the partition mechanism. Coupling of distinct plasmids via their shared centromeres to form mixed pairs has been the favoured explanation for centromere-based incompatibility, because it supports a long-standing assumption that pairing of plasmid replicas is a prerequisite for their partition into daughter cells. Recent results from molecular genetic and fluorescence microscopy studies challenge this mixed pairing model. Partition incompatibility is seen to result from various processes, including titration, randomized positioning and a form of mixed pairing that is based on co-activation of the same partition event rather than direct contact between partition complexes. The perspectives thus opened onto the partition mechanism confirm the continuing utility of incompatibility as an approach to understanding bacterial mitosis. The results considered are compatible with the view that direct pairing of plasmids is not essential to plasmid partition.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Campus Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
23
|
Lasocki K, Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 2007; 189:5762-72. [PMID: 17545287 PMCID: PMC1951838 DOI: 10.1128/jb.00371-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/22/2007] [Indexed: 11/20/2022] Open
Abstract
The parA and parB genes of Pseudomonas aeruginosa are located approximately 8 kb anticlockwise from oriC. ParA is a cytosolic protein present at a level of around 600 molecules per cell in exponential phase, but the level drops about fivefold in stationary phase. Overproduction of full-length ParA or the N-terminal 85 amino acids severely inhibits growth of P. aeruginosa and P. putida. Both inactivation of parA and overexpression of parA in trans in P. aeruginosa also lead to accumulation of anucleate cells and changes in motility. Inactivation of parA also increases the turnover rate (degradation) of ParB. This may provide a mechanism for controlling the level of ParB in response to the growth rate and expression of the parAB operon.
Collapse
Affiliation(s)
- Krzysztof Lasocki
- The Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | | | | | | | | |
Collapse
|
24
|
Schumacher MA, Mansoor A, Funnell BE. Structure of a Four-way Bridged ParB-DNA Complex Provides Insight into P1 Segrosome Assembly. J Biol Chem 2007; 282:10456-64. [PMID: 17293348 DOI: 10.1074/jbc.m610603200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid partition process is essential for plasmid propagation and is mediated by par systems, consisting of centromere-like sites and two proteins, ParA and ParB. In the first step of partition by the archetypical P1 system, ParB binds a complicated centromere-like site to form a large nucleoprotein segrosome. ParB is a dimeric DNA-binding protein that can bridge between both A-boxes and B-boxes located on the centromere. Its helix-turn-helix domains bind A-boxes and the dimer domain binds B-boxes. Binding of the first ParB dimer nucleates the remaining ParB molecules onto the centromere site, which somehow leads to the formation of a condensed segrosome superstructure. To further understand this unique DNA spreading capability of ParB, we crystallized and determined the structure of a 1:2 ParB-(142-333):A3-B2-box complex to 3.35A resolution. The structure reveals a remarkable four-way, protein-DNA bridged complex in which both ParB helix-turn-helix domains simultaneously bind adjacent A-boxes and the dimer domain bridges between two B-boxes. The multibridging capability and the novel dimer domain-B-box interaction, which juxtaposes the DNA sites close in space, suggests a mechanism for the formation of the wrapped solenoid-like segrosome superstructure. This multibridging capability of ParB is likely critical in its partition complex formation and pairing functions.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA. maschuma@mdanderson
| | | | | |
Collapse
|
25
|
Doi M, Katagiri T, Katagiri M. Basic Study of Multipurpose K-Dental Fiberscope for Clinical Application. J HARD TISSUE BIOL 2007. [DOI: 10.2485/jhtb.16.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Schumacher MA. Structural biology of plasmid segregation proteins. Curr Opin Struct Biol 2006; 17:103-9. [PMID: 17161598 DOI: 10.1016/j.sbi.2006.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/18/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
DNA segregation, or partition, ensures stable genome transmission during cell division. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to decipher the molecular underpinnings of this process. Plasmid partition is mediated by par systems, composed of three essential elements: a centromere-like site and the proteins ParA and ParB. In the first step, ParB binds the centromere to form a large segrosome. Subsequently, ParA, an ATPase, binds the segrosome and mediates plasmid separation. Recently determined ParB-centromere structures have revealed key insights into segrosome assembly, whereas ParA structures have shed light on the mechanism of plasmid separation. These structures represent important steps in elucidating the molecular details of plasmid segregation.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Unit 1000, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Bell PJL. Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. J Theor Biol 2006; 243:54-63. [PMID: 16846615 DOI: 10.1016/j.jtbi.2006.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 04/11/2006] [Accepted: 05/20/2006] [Indexed: 12/31/2022]
Abstract
The origin of the eukaryotic cell cycle, including mitosis, meiosis, and sex are as yet unresolved aspects of the evolution of the eukaryotes. The wide phylogenetic distribution of both mitosis and meiosis suggest that these processes are integrally related to the origin of the earliest eukaryotic cells. According to the viral eukaryogenesis (VE) hypothesis, the eukaryotes are a composite of three phylogenetically unrelated organisms: a viral lysogen that evolved into the nucleus, an archaeal cell that evolved into the eukaryotic cytoplasm, and an alpha-proteobacterium that evolved into the mitochondria. In the extended VE hypothesis presented here, the eukaryotic cell cycle arises as a consequence of the derivation of the nucleus from a lysogenic DNA virus.
Collapse
|
28
|
Shintani M, Yano H, Habe H, Omori T, Yamane H, Tsuda M, Nojiri H. Characterization of the replication, maintenance, and transfer features of the IncP-7 plasmid pCAR1, which carries genes involved in carbazole and dioxin degradation. Appl Environ Microbiol 2006; 72:3206-16. [PMID: 16672459 PMCID: PMC1472330 DOI: 10.1128/aem.72.5.3206-3216.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Accepted: 02/08/2006] [Indexed: 11/20/2022] Open
Abstract
Isolated from Pseudomonas resinovorans CA10, pCAR1 is a 199-kb plasmid that carries genes involved in the degradation of carbazole and dioxin. The nucleotide sequence of pCAR1 has been determined previously. In this study, we characterized pCAR1 in terms of its replication, maintenance, and conjugation. By constructing miniplasmids of pCAR1 and testing their establishment in Pseudomonas putida DS1, we show that pCAR1 replication is due to the repA gene and its upstream DNA region. The repA gene and putative oriV region could be separated in P. putida DS1, and the oriV region was determined to be located within the 345-bp region between the repA and parW genes. Incompatibility testing using the minireplicon of pCAR1 and IncP plasmids indicated that pCAR1 belongs to the IncP-7 group. Monitoring of the maintenance properties of serial miniplasmids in nonselective medium, and mutation and complementation analyses of the parWABC genes, showed that the stability of pCAR1 is attributable to the products of the parWAB genes. In mating assays, the transfer of pCAR1 from CA10 was detected in a CA10 derivative that was cured of pCAR1 (CA10dm4) and in P. putida KT2440 at frequencies of 3 x 10(-1) and 3 x 10(-3) per donor strain, respectively. This is the first report of the characterization of this completely sequenced IncP-7 plasmid.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Hayes F, Barillà D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 2006; 4:133-43. [PMID: 16415929 DOI: 10.1038/nrmicro1342] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, PO BOX 88, Sackville Street, Manchester M60 1QD, UK.
| | | |
Collapse
|
30
|
Nordström K. Plasmid R1--replication and its control. Plasmid 2005; 55:1-26. [PMID: 16199086 DOI: 10.1016/j.plasmid.2005.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/04/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Plasmid R1 is a low-copy-number plasmid belonging to the IncFII group. The genetics, biochemistry, molecular biology, and physiology of R1 replication and its control are summarised and discussed in the present communication. Replication of R1 starts at a unique origin, oriR1, and proceeds unidirectionally according to the Theta mode. Plasmid R1 replicates during the entire cell cycle and the R1 copies in the cell are members of a pool from which a plasmid copy at random is selected for replication. However, there is an eclipse period during which a newly replicated copy does not belong to this pool. Replication of R1 is controlled by an antisense RNA, CopA, that is unstable and formed constitutively; hence, its concentration is a measure of the concentration of the plasmid. CopA-RNA interacts with its complementary target, CopT-RNA, that is located upstream of the RepA message on the repA-mRNA. CopA-RNA post-transcriptionally inhibits translation of the repA-mRNA. CopA- and CopT-RNA interact in a bimolecular reaction which results in an inverse proportionality between the relative rate of replication (replications per plasmid copy and cell cycle) and the copy number; the number of replications per cell and cell cycle, n, is independent of the actual copy number in the individual cells, the so-called +n mode of control. Single base-pair substitutions in the copA/copT region of the plasmid genome may result in mutants that are compatible with the wild type. Loss of CopA activity results in (uncontrolled) so-called runaway replication, which is lethal to the host but useful for the production of proteins from cloned genes. Plasmid R1 also has an ancillary control system, CopB, that derepresses the synthesis of repA-mRNA in cells that happen to contain lower than normal number of copies. Plasmid R1, as other plasmids, form clusters in the cell and plasmid replication is assumed to take place in the centre of the cells; this requires traffic from the cluster to the replication factories and back to the clusters. The clusters are plasmid-specific and presumably based on sequence homology.
Collapse
Affiliation(s)
- Kurt Nordström
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, P.O. Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|