1
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
2
|
Zhou JW, Jia AQ, Tan XJ, Chen H, Sun B, Huang TZ, He Y, Li PL, Liu EQ. 1-(4-Amino-2-Hydroxyphenyl)Ethenone Suppresses Agrobacterium tumefaciens Virulence and Metabolism. Front Microbiol 2020; 11:584767. [PMID: 33281779 PMCID: PMC7688917 DOI: 10.3389/fmicb.2020.584767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The impact of 1-(4-amino-2-hydroxyphenyl)ethanone (AHPE) from the metabolites of endophytic fungus Phomopsis liquidambari on quorum sensing (QS) of Agrobacterium tumefaciens was evaluated for the first time in this study. Exposure to AHPE at concentrations ranging from 12.5 to 50 μg/mL, the β-galactosidase activity, acyl-homoserine lactone level, swimming motility, chemotaxis, and flagella formation were significantly inhibited. qRT-PCR quantification combined with the docking analysis demonstrated that AHPE affected the QS system of A. tumefaciens by repressing the transcriptional levels of traI and traR rather than signal mimicry. 1H NMR-based metabolic analysis indicated that the metabolism of A. tumefaciens was notably disturbed with AHPE treatment. AHPE treatment also resulted in the enhanced oxidative stress in A. tumefaciens. The enhanced oxidative stress lead to the disorder of energy supply, protein synthesis, and nucleotide metabolism, and ultimately attenuated the pathogenicity of A. tumefaciens. Our study indicated that AHPE can serve as a potential pesticide to defend against A. tumefaciens.
Collapse
Affiliation(s)
- Jin-Wei Zhou
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiao-Juan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tian-Zi Huang
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Yu He
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Pei-Li Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - En-Qi Liu
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
3
|
Barton IS, Platt TG, Rusch DB, Fuqua C. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (BETHESDA, MD.) 2019; 9:3489-3500. [PMID: 31451548 PMCID: PMC6778807 DOI: 10.1534/g3.119.400554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
Bacteria with multi-replicon genome organizations, including members of the family Rhizobiaceae, often carry a variety of niche-associated functions on large plasmids. While evidence exists for cross-replicon interactions and co-evolution between replicons in many of these systems, remarkable strain-to-strain variation is also observed for extrachromosomal elements, suggesting increased genetic plasticity. Here, we show that curing of the tumor-inducing virulence plasmid (pTi) of an octopine-type Agrobacterium tumefaciens lineage leads to a large deletion in the co-resident At megaplasmid (pAt). The deletion event is mediated by a repetitive IS-element, IS66, and results in a variety of environment-dependent fitness consequences, including loss of independent conjugal transfer of the plasmid. Interestingly, a related and otherwise wild-type A. tumefaciens strain is missing exactly the same large pAt segment as the pAt deletion derivatives, suggesting a similar event over its natural history. Overall, the findings presented here uncover a novel genetic interaction between the two large plasmids of A. tumefaciens and provide evidence for cross-replicon integration and co-evolution of these plasmids.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS 66506, and
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
4
|
Gan HM, Lee MVL, Savka MA. Improved genome of Agrobacterium radiobacter type strain provides new taxonomic insight into Agrobacterium genomospecies 4. PeerJ 2019; 7:e6366. [PMID: 30775173 PMCID: PMC6369824 DOI: 10.7717/peerj.6366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The reported Agrobacterium radiobacter DSM 30174T genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative genomics of these contentious Agrobacterium species. We provide concrete evidence that the previously reported Agrobacterium radiobacter type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as Agrobacterium radiobacter subsp. tumefaciens and that Agrobacterium radiobacter retains it species status with the proposed name of Agrobacterium radiobacter subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both Agrobacterium radiobacter and Agrobacterium tumefaciens into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that Agrobacterium radiobacter NCPPB3001 is sufficiently divergent from Agrobacterium tumefaciens to propose two independent sub-clades. Third, Agrobacterium tumefaciens demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than Agrobacterium radiobacter.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Melvin V L Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Michael A Savka
- College of Science, The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
5
|
Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, Petersen J. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316 T-A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae. Front Microbiol 2017; 8:1787. [PMID: 28983283 PMCID: PMC5613091 DOI: 10.3389/fmicb.2017.01787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.
Collapse
Affiliation(s)
- Pascal Bartling
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Markus Göker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
6
|
Grote J, Krysciak D, Petersen K, Güllert S, Schmeisser C, Förstner KU, Krishnan HB, Schwalbe H, Kubatova N, Streit WR. The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234. Front Microbiol 2016; 7:1858. [PMID: 27917168 PMCID: PMC5114275 DOI: 10.3389/fmicb.2016.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/04/2016] [Indexed: 01/24/2023] Open
Abstract
Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades.
Collapse
Affiliation(s)
- Jessica Grote
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Dagmar Krysciak
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Simon Güllert
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg Würzburg, Germany
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Missouri Columbia, MO, USA
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Nina Kubatova
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| |
Collapse
|
7
|
Mhedbi-Hajri N, Yahiaoui N, Mondy S, Hue N, Pélissier F, Faure D, Dessaux Y. Transcriptome analysis revealed that a quorum sensing system regulates the transfer of the pAt megaplasmid in Agrobacterium tumefaciens. BMC Genomics 2016; 17:661. [PMID: 27543103 PMCID: PMC4992315 DOI: 10.1186/s12864-016-3007-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Background Agrobacterium tumefaciens strain P4 is atypical, as the strain is not pathogenic and produces a for this species unusual quorum sensing signal, identified as N-(3-hydroxy-octanoyl)-homoserine lactone (3OH,C8-HSL). Results By sequence analysis and cloning, a functional luxI-like gene, named cinI, has been identified on the At plasmid of A. tumefaciens strain P4. Insertion mutagenesis in the cinI gene and transcriptome analyses permitted the identification of 32 cinI-regulated genes in this strain, most of them encoding proteins responsible for the conjugative transfer of pAtP4. Among these genes were the avhB genes that encode a type 4 secretion system (T4SS) involved in the formation of the conjugation apparatus, the tra genes that encode the DNA transfer and replication (Dtr) machinery and cinI and two luxR orthologs. These last two genes, cinR and cinX, exhibit an unusual organization, with the cinI gene surrounded by the two luxR orthologs. Conjugation experiments confirmed that the conjugative transfer of pAtP4 is regulated by 3OH,C8-HSL. Root colonization experiments indicated that the quorum sensing regulation of the conjugation of the pAtP4 does not confer a gain or a loss of fitness to the bacterial host in the tomato plant rhizosphere. Conclusion This work is the first identification of the occurrence of a quorum sensing regulation of the pAt conjugation phenomenon in Agrobacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3007-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Mhedbi-Hajri
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France
| | - Noura Yahiaoui
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France.,Present address: CIRAD, 7 chemin de l'IRAT, ligne Paradis, 97410, Saint Pierre de la Réunion, France
| | - Samuel Mondy
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France.,Present address: UMR1347 Agroécologie, INRA, Centre de Dijon, 17 rue Sully, BP 86510, 21065, Dijon, CEDEX, France
| | - Nathalie Hue
- Institut de chimie des substances naturelles, CNRS, Avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Franck Pélissier
- Institut de chimie des substances naturelles, CNRS, Avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Denis Faure
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France
| | - Yves Dessaux
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France.
| |
Collapse
|
8
|
Abstract
Agrobacterium tumefaciens is a plant pathogen with the capacity to deliver a segment of oncogenic DNA carried on a large plasmid called the tumor-inducing or Ti plasmid to susceptible plant cells. A. tumefaciens belongs to the class Alphaproteobacteria, whose members include other plant pathogens (Agrobacterium rhizogenes), plant and insect symbionts (Rhizobium spp. and Wolbachia spp., respectively), human pathogens (Brucella spp., Bartonella spp., Rickettsia spp.), and nonpathogens (Caulobacter crescentus, Rhodobacter sphaeroides). Many species of Alphaproteobacteria carry large plasmids ranging in size from ∼100 kb to nearly 2 Mb. These large replicons typically code for functions essential for cell physiology, pathogenesis, or symbiosis. Most of these elements rely on a conserved gene cassette termed repABC for replication and partitioning, and maintenance at only one or a few copies per cell. The subject of this review is the ∼200-kb Ti plasmids carried by infectious strains of A. tumefaciens. We will summarize the features of this plasmid as a representative of the repABC family of megaplasmids. We will also describe novel features of this plasmid that enable A. tumefaciens cells to incite tumor formation in plants, sense and respond to an array of plant host and bacterial signal molecules, and maintain and disseminate the plasmid among populations of agrobacteria. At the end of this review, we will describe how this natural genetic engineer has been adapted to spawn an entire industry of plant biotechnology and review its potential for use in future therapeutic applications of plant and nonplant species.
Collapse
|
9
|
Succinic Semialdehyde Promotes Prosurvival Capability of Agrobacterium tumefaciens. J Bacteriol 2016; 198:930-40. [PMID: 26755630 DOI: 10.1128/jb.00373-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/10/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Succinic semialdehyde (SSA), an important metabolite of γ-aminobutyric acid (GABA), is a ligand of the repressor AttJ regulating the expression of the attJ-attKLM gene cluster in the plant pathogen Agrobacterium tumefaciens. While the response of A. tumefaciens to GABA and the function of attKLM have been extensively studied, genetic and physiological responses of A. tumefaciens to SSA remain unknown. In combination with microarray and genetic approaches, this study sets out to explore new roles of the SSA-AttJKLM regulatory mechanism during bacterial infection. The results showed that SSA plays a key role in regulation of several bacterial activities, including C4-dicarboxylate utilization, nitrate assimilation, and resistance to oxidative stress. Interestingly, while the SSA relies heavily on the functional AttKLM in mediating nitrate assimilation and oxidative stress resistance, the compound could regulate utilization of C4-dicarboxylates independent of AttJKLM. We further provide evidence that SSA controls C4-dicarboxylate utilization through induction of an SSA importer and that disruption of attKLM attenuates the tumorigenicity of A. tumefaciens. Taken together, these findings indicate that SSA could be a potent plant signal which, together with AttKLM, plays a vital role in promoting the bacterial prosurvival abilities during infection. IMPORTANCE Agrobacterium tumefaciens is a plant pathogen causing crown gall diseases and has been well known as a powerful tool for plant genetic engineering. During the long history of microbe-host interaction, A. tumefaciens has evolved the capabilities of recognition and response to plant-derived chemical metabolites. Succinic semialdehyde (SSA) is one such metabolite. Previous results have demonstrated that SSA functions to activate a quorum-quenching mechanism and thus to decrease the level of quorum-sensing signals, thereby avoiding the elicitation of a plant defense. Here, we studied the effect of SSA on gene expression at a genome-wide level and reported that SSA also promotes bacterial survival during infection. These findings provide a new insight on the biological significance of chemical signaling between agrobacteria and plant hosts.
Collapse
|
10
|
Żebracki K, Koper P, Marczak M, Skorupska A, Mazur A. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome. PLoS One 2015; 10:e0131907. [PMID: 26147968 PMCID: PMC4492784 DOI: 10.1371/journal.pone.0131907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/08/2015] [Indexed: 12/05/2022] Open
Abstract
Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome.
Collapse
Affiliation(s)
- Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
- * E-mail:
| |
Collapse
|
11
|
Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415020167] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Rivera-Urbalejo A, Pérez-Oseguera Á, Carreón-Rodríguez OE, Cevallos MA. Mutations in an antisense RNA, involved in the replication control of a repABC plasmid, that disrupt plasmid incompatibility and mediate plasmid speciation. Plasmid 2015; 78:48-58. [PMID: 25644116 DOI: 10.1016/j.plasmid.2015.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 11/18/2022]
Abstract
The maintenance of large plasmid in a wide variety of alpha-proteobacteria depends on the repABC replication/segregation unit. The intergenic repB-repC region of these plasmids encodes a countertranscribed RNA (ctRNA) that modulates the transcription/translation rate of RepC, the initiator protein. The ctRNA acts as a strong incompatibility factor when expressed in trans. We followed a site directed mutagenesis approach to map those sequences of the ctRNA that are required for plasmid incompatibility and for plasmid replication control. We found that the first three nucleotides of the 5'-end of the ctRNA are essential for interactions with its target RNA. We also found that stretches of 4-5 nucleotides of non-complementarity within the first 10 nucleotides of the left arm of the ctRNA and the target RNA are sufficient to avoid plasmid incompatibility. Additionally, miniplasmid derivatives expressing ctRNAs with mutations in the 5' end or small deletions in the ctRNA are capable of controlling their own replication and coexisting with the parental plasmid. We suggest that a mechanism that could have a crucial role in the speciation process of repABC plasmids is to accumulate enough changes in this small region of the ctRNA gene to disrupt heteroduplex formation between the target RNA of one plasmid and the ctRNA of the other. Plasmids carrying these changes will not have defects in their maintenance.
Collapse
Affiliation(s)
- América Rivera-Urbalejo
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | - Ángeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | - Ofelia E Carreón-Rodríguez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México.
| |
Collapse
|
13
|
Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. FRONTIERS IN PLANT SCIENCE 2014; 5:635. [PMID: 25452760 PMCID: PMC4231840 DOI: 10.3389/fpls.2014.00635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/27/2014] [Indexed: 05/15/2023]
Abstract
As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.
Collapse
Affiliation(s)
| | | | | | | | - Clay Fuqua
- Department of Biology, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
14
|
Lang J, Faure D. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2014; 5:14. [PMID: 24550924 PMCID: PMC3907764 DOI: 10.3389/fpls.2014.00014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/12/2014] [Indexed: 05/05/2023]
Abstract
In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI synthesizes N-acyl-homoserine lactone molecules which act as diffusible QS-signals. Beyond a threshold concentration, these molecules bind and activate the LuxR-like transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last 20 years, A. tumefaciens has stood as a prominent model in the understanding of the LuxR/LuxI type of QS systems. A number of studies also unveiled features which are unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic lifestyle of the bacteria. In this review, we will present the current knowledge of QS in A. tumefaciens at both the genetic and molecular levels. We will also describe how interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what could be the advantages for the agrobacteria to use such a tightly regulated QS-system to disseminate the Ti plasmids.
Collapse
Affiliation(s)
| | - Denis Faure
- *Correspondence: Denis Faure, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91 198 Gif-sur-Yvette, France e-mail:
| |
Collapse
|
15
|
RepA and RepB exert plasmid incompatibility repressing the transcription of the repABC operon. Plasmid 2013; 70:362-76. [PMID: 24016735 DOI: 10.1016/j.plasmid.2013.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/06/2013] [Accepted: 08/16/2013] [Indexed: 11/22/2022]
Abstract
Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process.
Collapse
|
16
|
Moelling K. What contemporary viruses tell us about evolution: a personal view. Arch Virol 2013; 158:1833-48. [PMID: 23568292 PMCID: PMC3755228 DOI: 10.1007/s00705-013-1679-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
Recent advances in information about viruses have revealed novel and surprising properties such as viral sequences in the genomes of various organisms, unexpected amounts of viruses and phages in the biosphere, and the existence of giant viruses mimicking bacteria. Viruses helped in building genomes and are driving evolution. Viruses and bacteria belong to the human body and our environment as a well-balanced ecosystem. Only in unbalanced situations do viruses cause infectious diseases or cancer. In this article, I speculate about the role of viruses during evolution based on knowledge of contemporary viruses. Are viruses our oldest ancestors?
Collapse
Affiliation(s)
- Karin Moelling
- Max Planck Institute for Molecular Genetics, Ihnestr 63-73, 14195, Berlin, Germany.
| |
Collapse
|
17
|
Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 2013; 10:755-65. [PMID: 23070556 DOI: 10.1038/nrmicro2882] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To ensure faithful transmission of low-copy plasmids to daughter cells, these plasmids must replicate once per cell cycle and distribute the replicated DNA to the nascent daughter cells. RepABC family plasmids are found exclusively in alphaproteobacteria and carry a combined replication and partitioning locus, the repABC cassette, which is also found on secondary chromosomes in this group. RepC and a replication origin are essential for plasmid replication, and RepA, RepB and the partitioning sites distribute the replicons to predivisional cells. Here, we review our current understanding of the transcriptional and post-transcriptional regulation of the Rep proteins and of their functions in plasmid replication and partitioning.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Departamento de Alimentos, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | | | | |
Collapse
|
18
|
The repAC replication system of the Rhizobium leguminosarum pRL7 plasmid is functional: Implications regarding the origin and evolution of repABC plasmids. Plasmid 2013; 69:49-57. [DOI: 10.1016/j.plasmid.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 11/19/2022]
|
19
|
Platt TG, Bever JD, Fuqua C. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc Biol Sci 2012; 279:1691-9. [PMID: 22113028 PMCID: PMC3297450 DOI: 10.1098/rspb.2011.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022] Open
Abstract
Harbouring a plasmid often imposes a fitness cost on the bacterial host. Motivated by implications for public health, the majority of studies on plasmid cost are focused on elements that impart antibiotic resistance. Plasmids, however, can provide a wide range of ecologically important phenotypes to their bacterial hosts-such as virulence, specialized catabolism and metal resistance. The Agrobacterium tumefaciens tumour-inducing (Ti) plasmid confers both the ability to infect dicotyledonous plants and to catabolize the metabolites that plants produce as a result of being infected. We demonstrate that this virulence and catabolic plasmid imposes a measurable fitness cost on host cells under resource-limiting, but not resource replete, environmental conditions. Additionally, we show that the expression of Ti-plasmid-borne pathogenesis genes necessary to initiate cooperative pathogenesis is extremely costly to the host cell. The benefits of agrobacterial pathogenesis stem from the catabolism of public goods produced by infected host plants. Thus, the virulence-plasmid-dependent costs we demonstrate constitute costs of cooperation typically associated with the ability to garner the benefits of cooperation. Interestingly, genotypes that harbour derived opine catabolic plasmids minimize this trade-off, and are thus able to freeload upon the pathogenesis initiated by other individuals.
Collapse
Affiliation(s)
- Thomas G Platt
- Department of Biology, Indiana University, 1001 East Third Street, Jordan Hall 142, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
20
|
Pinto UM, Flores-Mireles AL, Costa ED, Winans SC. RepC protein of the octopine-type Ti plasmid binds to the probable origin of replication within repC and functions only in cis. Mol Microbiol 2011; 81:1593-606. [PMID: 21883520 DOI: 10.1111/j.1365-2958.2011.07789.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vegetative replication and partitioning of many plasmids and some chromosomes of alphaproteobacteria are directed by their repABC operons. RepA and RepB proteins direct the partitioning of replicons to daughter cells, while RepC proteins are replication initiators, although they do not resemble any characterized replication initiation protein. Here we show that the replication origin of an Agrobacterium tumefaciens Ti plasmid resides fully within its repC gene. Purified RepC bound to a site within repC with moderate affinity, high specificity and with twofold cooperativity. The binding site was localized to an AT-rich region that contains a large number of GANTC sites, which have been implicated in replication regulation in related organisms. A fragment of RepC containing residues 26-158 was sufficient to bind DNA, although with limited sequence specificity. This portion of RepC is predicted to have structural homology to members of the MarR family of transcription factors. Overexpression of RepC in A. tumefaciens caused large increases in copy number in cis but did not change the copy number of plasmids containing the same oriV sequence in trans, confirming other observations that RepC functions only in cis.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
21
|
Cervantes-Rivera R, Pedraza-López F, Pérez-Segura G, Cevallos MA. The replication origin of a repABC plasmid. BMC Microbiol 2011; 11:158. [PMID: 21718544 PMCID: PMC3155836 DOI: 10.1186/1471-2180-11-158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The oriV of this plasmid resides within the repC gene and is located close to or inside of a large A+T region. RepC can act as an incompatibility factor, and the last 39 amino acid residues of the carboxy-terminal region of this protein are involved in promoting this phenotype.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
22
|
Dessaux Y, Chapelle E, Faure D. Quorum Sensing and Quorum Quenching in Soil Ecosystems. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-14512-4_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
argC Orthologs from Rhizobiales show diverse profiles of transcriptional efficiency and functionality in Sinorhizobium meliloti. J Bacteriol 2010; 193:460-72. [PMID: 21075924 DOI: 10.1128/jb.01010-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Several factors can influence ortholog replacement between closely related species. We evaluated the transcriptional expression and metabolic performance of ortholog substitution complementing a Sinorhizobium meliloti argC mutant with argC from Rhizobiales (Agrobacterium tumefaciens, Rhizobium etli, and Mesorhizobium loti). The argC gene is necessary for the synthesis of arginine, an amino acid that is central to protein and cellular metabolism. Strains were obtained carrying plasmids with argC orthologs expressed under the speB and argC (S. meliloti) and lac (Escherichia coli) promoters. Complementation analysis was assessed by growth, transcriptional activity, enzymatic activity, mRNA levels, specific detection of ArgC proteomic protein, and translational efficiency. The argC orthologs performed differently in each complementation, reflecting the diverse factors influencing gene expression and the ability of the ortholog product to function in a foreign metabolic background. Optimal complementation was directly related to sequence similarity with S. meliloti, and was inversely related to species signature, with M. loti argC showing the poorest performance, followed by R. etli and A. tumefaciens. Different copy numbers of genes and amounts of mRNA and protein were produced, even with genes transcribed from the same promoter, indicating that coding sequences play a role in the transcription and translation processes. These results provide relevant information for further genomic analyses and suggest that orthologous gene substitutions between closely related species are not completely functionally equivalent.
Collapse
|
24
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
25
|
Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. MOLECULAR PLANT PATHOLOGY 2010; 11:705-19. [PMID: 20696007 PMCID: PMC6640454 DOI: 10.1111/j.1364-3703.2010.00625.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.
Collapse
Affiliation(s)
- Amita Bhattacharya
- Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | | | | |
Collapse
|
26
|
Cervantes-Rivera R, Romero-López C, Berzal-Herranz A, Cevallos MA. Analysis of the mechanism of action of the antisense RNA that controls the replication of the repABC plasmid p42d. J Bacteriol 2010; 192:3268-3278. [PMID: 20435728 PMCID: PMC2897686 DOI: 10.1128/jb.00118-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/22/2010] [Indexed: 02/08/2023] Open
Abstract
Replication and segregation of the Rhizobium etli symbiotic plasmid (pRetCFN42d) depend on the presence of a repABC operon, which carries all the plasmid-encoded elements required for these functions. All repABC operons share three protein-encoding genes (repA, repB, and repC), an antisense RNA (ctRNA) coding gene, and at least one centromere-like region (parS). The products of repA and repB, in conjunction with the parS region, make up the segregation system, and they negatively regulate operon transcription. The last gene of the operon, repC, encodes the initiator protein. The ctRNA is a negative posttranscriptional regulator of repC. In this work, we analyzed the secondary structures of the ctRNA and its target and mapped the motifs involved in the complex formed between them. Essential residues for the effective interaction localize at the unpaired 5' end of the antisense molecule and the loop of the target mRNA. In light of our results, we propose a model explaining the mechanism of action of this ctRNA in the regulation of plasmid replication in R. etli.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Cristina Romero-López
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Alfredo Berzal-Herranz
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Miguel A. Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México, Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|
27
|
Castillo-Ramírez S, Vázquez-Castellanos JF, González V, Cevallos MA. Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 2009; 10:536. [PMID: 19919719 PMCID: PMC2783167 DOI: 10.1186/1471-2164-10-536] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 11/18/2009] [Indexed: 11/24/2022] Open
Abstract
Background The repABC plasmid family, which is extensively present within Alphaproteobacteria, and some secondary chromosomes of the Rhizobiales have the particular feature that all the elements involved in replication and partitioning reside within one transcriptional unit, the repABC operon. Given the functional interactions among the elements of the repABC operon, and the fact that they all reside in the same operon, a common evolutionary history would be expected if the entire operon had been horizontally transferred. Here, we tested whether there is a common evolutionary history within the repABC operon. We further examined different incompatibility groups in terms of their differentiation and degree of adaptation to their host. Results We did not find a single evolutionary history within the repABC operon. Each protein had a particular phylogeny, horizontal gene transfer events of the individual genes within the operon were detected, and different functional constraints were found within and between the Rep proteins. When different repABC operons coexisted in the same genome, they were well differentiated from one another. Finally, we found different levels of adaptation to the host genome within and between repABC operons coexisting in the same species. Conclusion Horizontal gene transfer with conservation of the repABC operon structure provides a highly dynamic operon in which each member of this operon has its own evolutionary dynamics. In addition, it seems that different incompatibility groups present in the same species have different degrees of adaptation to their host genomes, in proportion to the amount of time the incompatibility group has coexisted with the host genome.
Collapse
Affiliation(s)
- Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|