1
|
Curtsinger HD, Martínez-Absalón S, Liu Y, Lopatkin AJ. The metabolic burden associated with plasmid acquisition: An assessment of the unrecognized benefits to host cells. Bioessays 2024:e2400164. [PMID: 39529437 DOI: 10.1002/bies.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bacterial conjugation, wherein DNA is transferred between cells through direct contact, is highly prevalent in complex microbial communities and is responsible for spreading myriad genes related to human and environmental health. Despite their importance, much remains unknown regarding the mechanisms driving the spread and persistence of these plasmids in situ. Studies have demonstrated that transferring, acquiring, and maintaining a plasmid imposes a significant metabolic burden on the host. Simultaneously, emerging evidence suggests that the presence of a conjugative plasmid can also provide both obvious and unexpected benefits to their host and local community. Combined, this highlights a continuous cost-benefit tradeoff at the population level, likely contributing to overall plasmid abundance and long-term persistence. Yet, while the metabolic burdens of plasmid conjugation, and their causes, are widely studied, their attendant potential advantages are less clear. Here, we summarize current perspectives on conjugative plasmids' metabolic burden and then highlight the lesser-appreciated yet critical benefits that plasmid-mediated metabolic burdens may provide. We argue that this largely unexplored tradeoff is critical to both a fundamental theory of microbial populations and engineering applications and therefore warrants further detailed study.
Collapse
Affiliation(s)
- Heather D Curtsinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Yuchang Liu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison J Lopatkin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
de Dios R, Gadar K, McCarthy RR. A high-efficiency scar-free genome-editing toolkit for Acinetobacter baumannii. J Antimicrob Chemother 2022; 77:3390-3398. [PMID: 36216579 PMCID: PMC9704439 DOI: 10.1093/jac/dkac328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current mutagenesis tools for Acinetobacter baumannii leave selection markers or residual sequences behind, or involve tedious counterselection and screening steps. Furthermore, they are usually adapted for model strains, rather than for MDR clinical isolates. OBJECTIVES To develop a scar-free genome-editing tool suitable for chromosomal and plasmid modifications in MDR A. baumannii AB5075. METHODS We prove the efficiency of our adapted genome-editing system by deleting the multidrug efflux pumps craA, cmlA5 and resistance island 2 (RI2), as well as curing plasmid p1AB5075, and combining these mutations. We then characterized the susceptibility of the mutants compared with the WT to different antibiotics (i.e. chloramphenicol, amikacin and tobramycin) by disc diffusion assays and determined the MIC for each strain. RESULTS We successfully adapted the genome-editing protocol to A. baumannii AB5075, achieving a double recombination frequency close to 100% and routinely securing the construction of a mutant within 10 working days. Furthermore, we show that both CraA and p1AB5075 are involved in chloramphenicol resistance, and that RI2 and p1AB5075 play a role in resistance to amikacin and tobramycin. CONCLUSIONS We have developed a versatile and highly efficient genome-editing tool for A. baumannii. We have demonstrated it can be used to modify both the chromosome and native plasmids. By challenging the method, we show the role of CraA and p1AB5075 in antibiotic resistance.
Collapse
Affiliation(s)
- Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Kavita Gadar
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | | |
Collapse
|
3
|
Smith BA, Dougherty K, Clark M, Baltrus DA. Experimental evolution of the megaplasmid pMPPla107 in Pseudomonas stutzeri enables identification of genes contributing to sensitivity to an inhibitory agent. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200474. [PMID: 34839711 PMCID: PMC8628073 DOI: 10.1098/rstb.2020.0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Horizontally transferred elements, such as plasmids, can burden host cells with various metabolic and fitness costs and may lead to other potentially detrimental phenotypic effects. Acquisition of the Pseudomonas syringae megaplasmid pMPPla107 by various Pseudomonads causes sensitivity to a growth-inhibiting substance that is produced in cultures by Pseudomonads during growth under standard laboratory conditions. After approximately 500 generations of laboratory passage of Pseudomonas stutzeri populations containing pMPPla107, strains from two out of six independent passage lines displayed resistance to this inhibitory agent. Resistance was transferable and is, therefore, associated with mutations occurring on pMPPla107. Resequencing experiments demonstrated that resistance is likely due to a large deletion on the megaplasmid in one line, and to a nonsynonymous change in an uncharacterized megaplasmid locus in the other strain. We further used allele exchange experiments to confirm that resistance is due to this single amino acid change in a previously uncharacterized megaplasmid protein, which we name SkaA. These results provide further evidence that costs and phenotypic changes associated with horizontal gene transfer can be compensated through single mutational events and emphasize the power of experimental evolution and resequencing to better understand the genetic basis of evolved phenotypes. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Brian A. Smith
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - Kevin Dougherty
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ 5403369, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 5403369, USA
| |
Collapse
|
4
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Lau MSH, Sheng L, Zhang Y, Minton NP. Development of a Suite of Tools for Genome Editing in Parageobacillus thermoglucosidasius and Their Use to Identify the Potential of a Native Plasmid in the Generation of Stable Engineered Strains. ACS Synth Biol 2021; 10:1739-1749. [PMID: 34197093 DOI: 10.1021/acssynbio.1c00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The relentless rise in the levels of atmospheric greenhouse gases caused by the exploitation of fossil fuel necessitates the development of more environmentally friendly routes to the manufacture of chemicals and fuels. The exploitation of a fermentative process that uses a thermophilic chassis represents an attractive option. Its use, however, is hindered by a dearth of genetic tools. Here we expand on those available for the engineering of the industrial chassis Parageobacillus thermoglucosidasius through the assembly and testing of a range of promoters, ribosome binding sites, reporter genes, and the implementation of CRISPR/Cas9 genome editing based on two different thermostable Cas9 nucleases. The latter were used to demonstrate that the deletion of the two native plasmids carried by P. thermoglucosidasius, pNCI001 and pNCI002, either singly or in combination, had no discernible effects on the overall phenotypic characteristics of the organism. Through the CRISPR/Cas9-mediated insertion of the gene encoding a novel fluorescent reporter, eCGP123, we showed that pNCI001 exhibited a high degree of segregational stability. As the relatively higher copy number of pNCI001 led to higher levels of eCGP123 expression than when the same gene was integrated into the chromosome, we propose that pNCI001 represents the preferred option for the integration of metabolic operons when stable commercial strains are required.
Collapse
Affiliation(s)
- Matthew S. H. Lau
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Lili Sheng
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
6
|
Du P, Zhang P, Wang J, Li R, Fanning S, Bai L. Molecular characterization of two novel NDM-1-producing atypical enteroaggregative Escherichia coli isolates from patients. Plasmid 2021; 115:102568. [PMID: 33636219 DOI: 10.1016/j.plasmid.2021.102568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
To investigate NDM-1-producing atypical Enteroaggregative Escherichia coli (aEAEC) of sequence type 349 from hospitalized patients, the isolates 13ZX28 and 13ZX36 were subjected to antimicrobial susceptibility testing, conjugation and whole genome sequencing. Only one single nucleotide mutation was detected in chromosomes despite different plasmid profiles. Both isolates were positive for blaNDM-1 mediating resistance to carbapenem. A novel plasmid p13ZX28-272 (~272-kb) from 13ZX28 encodes blaNDM-1. Interestingly, its sequence was identical to the two plasmids p13ZX36-200 (~200-kb) and p13ZX36-70 (~70-kb) from 13ZX36. Formation of the former episome possibly involved homologous recombination through a 4948-bp large fragment located on each of the two latter plasmids. Furthermore, plasmid p13ZX28-272 could be resolved into a ~ 98-kb daughter plasmid by IS26 rearrangement following conjugation. The plasticity of the plasmids is recognized, which warrants further investigation to evaluate the underlying public health risk and understand how antibiotic selection pressure drives this process.
Collapse
Affiliation(s)
- Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, and Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, People's Republic of China
| | - Pei Zhang
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, 22, Yangling 712100, Shaanxi, People's Republic of China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Séamus Fanning
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China; UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Baltrus DA, Smith C, Derrick M, Leligdon C, Rosenthal Z, Mollico M, Moore A, Clark M. Genomic Background Governs Opposing Responses to Nalidixic Acid upon Megaplasmid Acquisition in Pseudomonas. mSphere 2021; 6:e00008-21. [PMID: 33597171 PMCID: PMC8544880 DOI: 10.1128/msphere.00008-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer is a significant driver of evolutionary dynamics across microbial populations. Although the benefits of the acquisition of new genetic material are often quite clear, experiments across systems have demonstrated that gene transfer events can cause significant phenotypic changes and entail fitness costs in a way that is dependent on the genomic and environmental context. Here, we test for the generality of one previously identified cost, sensitization of cells to the antibiotic nalidixic acid after acquisition of an ∼1-Mb megaplasmid, across Pseudomonas strains and species. Overall, we find that the presence of this megaplasmid sensitizes many different Pseudomonas strains to nalidixic acid but that this same horizontal gene transfer event increases resistance of Pseudomonas putida KT2440 to nalidixic acid across assays as well as to ciprofloxacin under competitive conditions. These phenotypic results are not easily explained away as secondary consequences of overall fitness effects and appear to occur independently of another cost associated with this megaplasmid, sensitization to higher temperatures. Lastly, we draw parallels between these reported results and the phenomenon of sign epistasis for de novo mutations and explore how context dependence of effects of plasmid acquisition could impact overall evolutionary dynamics and the evolution of antimicrobial resistance.IMPORTANCE Numerous studies have demonstrated that gene transfer events (e.g., plasmid acquisition) can entail a variety of costs that arise as by-products of the incorporation of foreign DNA into established physiological and genetic systems. These costs can be ameliorated through evolutionary time by the occurrence of compensatory mutations, which stabilize the presence of a horizontally transferred region within the genome but which also may skew future adaptive possibilities for these lineages. Here, we demonstrate another possible outcome, that phenotypic changes arising as a consequence of the same horizontal gene transfer (HGT) event are costly to some strains but may actually be beneficial in other genomic backgrounds under the right conditions. These results provide a new viewpoint for considering conditions that promote plasmid maintenance and highlight the influence of genomic and environmental contexts when considering amelioration of fitness costs after HGT events.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Caitlin Smith
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - MacKenzie Derrick
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Courtney Leligdon
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Zoe Rosenthal
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Madison Mollico
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew Moore
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
Mukai T, Yoneji T, Yamada K, Fujita H, Nara S, Su'etsugu M. Overcoming the Challenges of Megabase-Sized Plasmid Construction in Escherichia coli. ACS Synth Biol 2020; 9:1315-1327. [PMID: 32459960 DOI: 10.1021/acssynbio.0c00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although Escherichia coli has been a popular tool for plasmid construction, this bacterium was believed to be "unsuitable" for constructing a large plasmid whose size exceeds 500 kilobases. We assumed that traditional plasmid vectors may lack some regulatory DNA elements required for the stable replication and segregation of such a large plasmid. In addition, the use of a few site-specific recombination systems may facilitate cloning of large DNA segments. Here we show two strategies for constructing 1-megabase (1-Mb) secondary chromosomes by using new bacterial artificial chromosome (BAC) vectors. First, the 3-Mb genome of a genome-reduced E. coli strain was split into two chromosomes (2-Mb and 1-Mb), of which the smaller one has the origin of replication and the partitioning locus of the Vibrio tubiashii secondary chromosome. This chromosome fission method (Flp-POP cloning) works via flippase-mediated excision, which coincides with the reassembly of a split chloramphenicol resistance gene, allowing chloramphenicol selection. Next, we developed a new cloning method (oriT-POP cloning) and a fully equipped BAC vector (pMegaBAC1H) for developing a 1-Mb plasmid. Two 0.5-Mb genomic regions were sequentially transferred from two donor strains to a recipient strain via conjugation and captured by pMegaBAC1H in the recipient strain to produce a 1-Mb plasmid. This 1-Mb plasmid was transmissible to another E. coli strain via conjugation. Furthermore, these 1-Mb secondary chromosomes were amplifiable in vitro by using the reconstituted E. coli chromosome replication cycle reaction (RCR). These strategies and technologies would make popular E. coli cells a productive factory for designer chromosome engineering.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Tatsuya Yoneji
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Kayoko Yamada
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hironobu Fujita
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Seia Nara
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
9
|
Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rhéault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 2020; 11:1370. [PMID: 32170080 PMCID: PMC7070040 DOI: 10.1038/s41467-020-15081-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.
Collapse
Affiliation(s)
- Adrian Cazares
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Laura L Wright
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Macauley Grimes
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Quebec City, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Botelho J, Lood C, Partridge SR, van Noort V, Lavigne R, Grosso F, Peixe L. Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Emerg Microbes Infect 2019; 8:1186-1194. [PMID: 31381486 PMCID: PMC6713103 DOI: 10.1080/22221751.2019.1648182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance.
Collapse
Affiliation(s)
- João Botelho
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Cédric Lood
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Sally R Partridge
- d Centre for Microbiology and Infectious Diseases, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital , Sydney , Australia
| | - Vera van Noort
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,e Institute of Biology, Leiden University , Leiden , The Netherlands
| | - Rob Lavigne
- c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Filipa Grosso
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Luísa Peixe
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| |
Collapse
|
11
|
Barton IS, Platt TG, Rusch DB, Fuqua C. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (BETHESDA, MD.) 2019; 9:3489-3500. [PMID: 31451548 PMCID: PMC6778807 DOI: 10.1534/g3.119.400554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
Bacteria with multi-replicon genome organizations, including members of the family Rhizobiaceae, often carry a variety of niche-associated functions on large plasmids. While evidence exists for cross-replicon interactions and co-evolution between replicons in many of these systems, remarkable strain-to-strain variation is also observed for extrachromosomal elements, suggesting increased genetic plasticity. Here, we show that curing of the tumor-inducing virulence plasmid (pTi) of an octopine-type Agrobacterium tumefaciens lineage leads to a large deletion in the co-resident At megaplasmid (pAt). The deletion event is mediated by a repetitive IS-element, IS66, and results in a variety of environment-dependent fitness consequences, including loss of independent conjugal transfer of the plasmid. Interestingly, a related and otherwise wild-type A. tumefaciens strain is missing exactly the same large pAt segment as the pAt deletion derivatives, suggesting a similar event over its natural history. Overall, the findings presented here uncover a novel genetic interaction between the two large plasmids of A. tumefaciens and provide evidence for cross-replicon integration and co-evolution of these plasmids.
Collapse
Affiliation(s)
- Ian S Barton
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS 66506, and
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
12
|
The bla NDM-1-Carrying IncA/C 2 Plasmid Underlies Structural Alterations and Cointegrate Formation In Vivo. Antimicrob Agents Chemother 2019; 63:AAC.00380-19. [PMID: 31109975 PMCID: PMC6658791 DOI: 10.1128/aac.00380-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a bla NDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this bla NDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.
Collapse
|
13
|
Smith BA, Leligdon C, Baltrus DA. Just the Two of Us? A Family of Pseudomonas Megaplasmids Offers a Rare Glimpse into the Evolution of Large Mobile Elements. Genome Biol Evol 2019; 11:1192-1206. [PMID: 30918968 PMCID: PMC6482414 DOI: 10.1093/gbe/evz066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Pseudomonads are ubiquitous group of environmental proteobacteria, well known for their roles in biogeochemical cycling, in the breakdown of xenobiotic materials, as plant growth promoters, and as pathogens of a variety of host organisms. We have previously identified a large megaplasmid present within one isolate of the plant pathogen Pseudomonas syringae, and here we report that a second member of this megaplasmid family is found within an environmental Pseudomonad isolate most closely related to Pseudomonas putida. Many of the shared genes are involved in critical cellular processes like replication, transcription, translation, and DNA repair. We argue that presence of these shared pathways sheds new light on discussions about the types of genes that undergo horizontal gene transfer (i.e., the complexity hypothesis) as well as the evolution of pangenomes. Furthermore, although both megaplasmids display a high level of synteny, genes that are shared differ by over 50% on average at the amino acid level. This combination of conservation in gene order despite divergence in gene sequence suggests that this Pseudomonad megaplasmid family is relatively old, that gene order is under strong selection within this family, and that there are likely many more members of this megaplasmid family waiting to be found in nature.
Collapse
Affiliation(s)
| | | | - David A Baltrus
- School of Plant Sciences, University of Arizona.,School of Animal and Comparative Biomedical Sciences, University of Arizona
| |
Collapse
|
14
|
Ali MM, Provoost A, Maertens L, Leys N, Monsieurs P, Charlier D, Van Houdt R. Genomic and Transcriptomic Changes that Mediate Increased Platinum Resistance in Cupriavidus metallidurans. Genes (Basel) 2019; 10:E63. [PMID: 30669395 PMCID: PMC6357080 DOI: 10.3390/genes10010063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
The extensive anthropogenic use of platinum, a rare element found in low natural abundance in the Earth's continental crust and one of the critical raw materials in the EU innovation partnership framework, has resulted in increased concentrations in surface environments. To minimize its spread and increase its recovery from the environment, biological recovery via different microbial systems is explored. In contrast, studies focusing on the effects of prolonged exposure to Pt are limited. In this study, we used the metal-resistant Cupriavidus metallidurans NA4 strain to explore the adaptation of environmental bacteria to platinum exposure. We used a combined Nanopore⁻Illumina sequencing approach to fully resolve all six replicons of the C. metallidurans NA4 genome, and compared them with the C. metallidurans CH34 genome, revealing an important role in metal resistance for its chromid rather than its megaplasmids. In addition, we identified the genomic and transcriptomic changes in a laboratory-evolved strain, displaying resistance to 160 µM Pt4+. The latter carried 20 mutations, including a large 69.9 kb deletion in its plasmid pNA4_D (89.6 kb in size), and 226 differentially-expressed genes compared to its parental strain. Many membrane-related processes were affected, including up-regulation of cytochrome c and a lytic transglycosylase, down-regulation of flagellar and pili-related genes, and loss of the pNA4_D conjugative machinery, pointing towards a significant role in the adaptation to platinum.
Collapse
Affiliation(s)
- Md Muntasir Ali
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium.
| | - Ann Provoost
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - Laurens Maertens
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
- Research Unit in Biology of Microorganisms (URBM), Faculty of Sciences, UNamur, 5000 Namur, Belgium.
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - Pieter Monsieurs
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium.
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| |
Collapse
|
15
|
Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, Luchinat C, Turano P, Vignolini T, Viti C, Mengoni A. Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti. ACS Synth Biol 2018; 7:2365-2378. [PMID: 30223644 DOI: 10.1021/acssynbio.8b00158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - George C. diCenzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Veronica Ghini
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anke Becker
- LOEWE − Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Francesca Decorosi
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | | | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Evolutionary Plasticity of AmrZ Regulation in Pseudomonas. mSphere 2018; 3:3/2/e00132-18. [PMID: 29669886 PMCID: PMC5907648 DOI: 10.1128/msphere.00132-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species.IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of "master" regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins.
Collapse
|
17
|
Baker KS, Dallman TJ, Field N, Childs T, Mitchell H, Day M, Weill FX, Lefèvre S, Tourdjman M, Hughes G, Jenkins C, Thomson N. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nat Commun 2018; 9:1462. [PMID: 29654279 PMCID: PMC5899146 DOI: 10.1038/s41467-018-03949-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/21/2018] [Indexed: 11/22/2022] Open
Abstract
Horizontal gene transfer has played a role in developing the global public health crisis of antimicrobial resistance (AMR). However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly elucidated. Here, we study parallel epidemic emergences of multiple Shigella species, a priority AMR organism, in men who have sex with men to gain insight into AMR emergence and spread. Using genomic epidemiology, we show that repeated horizontal transfer of a single AMR plasmid among Shigella enhanced existing and facilitated new epidemics. These epidemic patterns contrasted with slighter, slower increases in disease caused by organisms with vertically inherited (chromosomally encoded) AMR. This demonstrates that horizontal transfer of AMR directly affects epidemiological outcomes of globally important AMR pathogens and highlights the need for integration of genomic analyses into all areas of AMR research, surveillance and management.
Collapse
Affiliation(s)
- Kate S Baker
- Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.
| | - Timothy J Dallman
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, NW9 5HT, UK
| | - Nigel Field
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, UCL, London, WC1E 6BT, UK
| | - Tristan Childs
- Centre for Infectious Disease Surveillance and Control, National Infection Service, Public Health England, London, NW9 5HT, UK
| | - Holly Mitchell
- Centre for Molecular Epidemiology and Translational Research, Institute for Global Health, UCL, London, WC1E 6BT, UK
| | - Martin Day
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, NW9 5HT, UK
| | | | - Sophie Lefèvre
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Mathieu Tourdjman
- Santé Publique France, the French Public Health Agency, Saint-Maurice, 94415, France
| | - Gwenda Hughes
- Department of HIV and STIs, National Infection Service, Public Health England, London, NW9 5HT, UK
| | - Claire Jenkins
- Gastrointestinal Bacterial Reference Unit, National Infection Service, Public Health England, London, NW9 5HT, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
18
|
Shoulah SA, Oschmann AM, Selim A, Semmler T, Schwarz C, Kamal E, Hamouda F, Galila E, Bitter W, Lewin A. Environmental Mycobacterium avium subsp. hominissuis have a higher probability to act as a recipient in conjugation than clinical strains. Plasmid 2018; 95:28-35. [PMID: 29343426 DOI: 10.1016/j.plasmid.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is a widespread opportunistic pathogen that can be isolated from environment (dust, soil and water) and patients with lung or lymphnode infection. In our previous research we revealed the pronounced genetic diversity in MAH by identifying eight different types of a newly described genomic island. In order to identify mechanisms of such horizontal gene transfer we now analyzed the ability of 47 MAH isolates to inherit the conjugative plasmid pRAW from M. marinum. A higher percentage of environmental isolates (22.7%) compared to clinical isolates (8%) had the capacity to function as recipient in conjugal plasmid transfer. Genetic analysis showed additionally that environmental isolates contained more genes homologous to genes present on conjugative mycobacterial plasmids than clinical isolates. Comparative analysis of the genomes of the isolates pointed to a possible association between the ability to act as recipient in conjugation and the structure of a genomic region containing the radC gene and a type I restriction/modification system. Finally we found that uptake of pRAW decreased the resistance against various antibiotics.
Collapse
Affiliation(s)
- Salma A Shoulah
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany; Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Anna M Oschmann
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Torsten Semmler
- Division NG 1, Junior Research Group Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Division of Cystic fibrosis/Christiane Herzog Zentrum, Charité-Universitätsmedizin Berlin, Germany
| | - Elisabeth Kamal
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Faysal Hamouda
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Elsayed Galila
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Egypt
| | - Wilbert Bitter
- Molecular and Medical Microbiology, VU University & VU University Medical Center, Amsterdam, The Netherlands
| | - Astrid Lewin
- Division 16, Mycotic and parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
19
|
Pearce MT, Fisher DS. Rapid adaptation in large populations with very rare sex: Scalings and spontaneous oscillations. Theor Popul Biol 2017; 129:18-40. [PMID: 29246459 DOI: 10.1016/j.tpb.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022]
Abstract
Genetic exchange in microbes and other facultative sexuals can be rare enough that evolution is almost entirely asexual and populations almost clonal. But the benefits of genetic exchange depend crucially on the diversity of genotypes in a population. How very rare recombination together with the accumulation of new mutations shapes the diversity of large populations and gives rise to faster adaptation is still poorly understood. This paper analyzes a particularly simple model: organisms with two asexual chromosomes that can reassort during rare matings that occur at a rate r. The speed of adaptation for large population sizes, N, is found to depend on the ratio ∼log(Nr)∕log(N). For larger populations, the r needed to yield the same speed decreases as a power of N. Remarkably, the population undergoes spontaneous oscillations alternating between phases when the fittest individuals are created by mutation and when they are created by reassortment, which - in contrast to conventional regimes - decreases the diversity. Between the two phases, the mean fitness jumps rapidly. The oscillatory dynamics and the strong fluctuations this induces have implications for the diversity and coalescent statistics. The results are potentially applicable to large microbial populations, especially viruses that have a small number of chromosomes. Some of the key features may be more broadly applicable for large populations with other types of rare genetic exchange.
Collapse
Affiliation(s)
| | - Daniel S Fisher
- Department of Applied Physics, Stanford University, United States.
| |
Collapse
|
20
|
diCenzo GC, Finan TM. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol Mol Biol Rev 2017; 81:e00019-17. [PMID: 28794225 PMCID: PMC5584315 DOI: 10.1128/mmbr.00019-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella, Vibrio, and Burkholderia. The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Bardaji L, Añorga M, Ruiz-Masó JA, Del Solar G, Murillo J. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules. Front Microbiol 2017; 8:190. [PMID: 28243228 PMCID: PMC5304414 DOI: 10.3389/fmicb.2017.00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 01/05/2023] Open
Abstract
Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities.
Collapse
Affiliation(s)
- Leire Bardaji
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain
| | - Maite Añorga
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain
| | - José A Ruiz-Masó
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Gloria Del Solar
- Molecular Biology of Gram-Positive Bacteria, Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas) Madrid, Spain
| | - Jesús Murillo
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Pública de Navarra Pamplona, Spain
| |
Collapse
|
22
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
23
|
The effect of competition and horizontal trait inheritance on invasion, fixation, and polymorphism. J Theor Biol 2016; 411:48-58. [DOI: 10.1016/j.jtbi.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/19/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022]
|
24
|
diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M. Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 2016; 7:12219. [PMID: 27447951 PMCID: PMC4961836 DOI: 10.1038/ncomms12219] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes. The genome of some bacteria consists of two or more chromosomes or replicons. Here, diCenzo et al. integrate genome-scale metabolic modelling and growth data from a collection of mutants of the plant symbiont Sinorhizobium meliloti to estimate the fitness contribution of each replicon in three environments.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Sciences, University of Florence, 50144 Sesto Fiorentino, Italy
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Turlough M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1
| | - Marco Galardini
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Hanage WP. Not So Simple After All: Bacteria, Their Population Genetics, and Recombination. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018069. [PMID: 27091940 DOI: 10.1101/cshperspect.a018069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pervasive nature of bacterial recombination has become clear. Despite this, the population genetics of bacteria persist in being viewed as simple. Here, I argue against that characterization. After summarizing the history of the topic, I survey the evidence for remarkable and unexplained variation in recombination rate among and within bacterial species. I finally argue that despite recent assertions that recombination means bacterial genes are "public goods," in bacteria the level of selection is the gene, and genes can be understood to have niches with dimensions including the other contents of the genome in which they find themselves.
Collapse
Affiliation(s)
- William P Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
26
|
Ramisetty BCM, Santhosh RS. Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli. FEMS Microbiol Lett 2015; 363:fnv238. [PMID: 26667220 DOI: 10.1093/femsle/fnv238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 01/08/2023] Open
Abstract
Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance.
Collapse
|
27
|
Andam CP, Carver SM, Berthrong ST. Horizontal Gene Flow in Managed Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cheryl P. Andam
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115;
| | - Sarah M. Carver
- Central Research, The Kraft Heinz Company, Glenview, Illinois 60025;
| | - Sean T. Berthrong
- Department of Biological Sciences, Butler University, Indianapolis, Indiana 46208;
| |
Collapse
|
28
|
Dougherty K, Smith BA, Moore AF, Maitland S, Fanger C, Murillo R, Baltrus DA. Multiple phenotypic changes associated with large-scale horizontal gene transfer. PLoS One 2014; 9:e102170. [PMID: 25048697 PMCID: PMC4105467 DOI: 10.1371/journal.pone.0102170] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/16/2014] [Indexed: 12/22/2022] Open
Abstract
Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.
Collapse
Affiliation(s)
- Kevin Dougherty
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Brian A. Smith
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Autumn F. Moore
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Shannon Maitland
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Chris Fanger
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Rachel Murillo
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|