1
|
Kazi TA, Mukhopadhyay BC, Mandal S, Biswas SR. Molecular characterization of five novel plasmids from Enterococcus italicus SD1 isolated from fermented milk: An insight into understanding plasmid incompatibility. Gene 2023; 856:147154. [PMID: 36574936 DOI: 10.1016/j.gene.2022.147154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Enterococcal plasmids have attracted considerable interest because of their indispensable role in the pathogenesis and dissemination of multidrug-resistance. In this work, five novel plasmids pSRB2, pSRB3, pSRB4, pSRB5 and pSRB7 have been identified and characterised, coexisting in Eneterococcus italicus SD1 from fermented milk. The plasmids pSRB2, pSRB3 and pSRB5 were found to replicate via theta mode of replication while pSRB4 and pSRB7 were rolling-circle plasmids. Comparative analysis of SD1-plasmids dictated that the plasmids are mosaic with novel architecture. Plasmids pSRB2 and pSRB5 are comprised of a typical iteron-based class-A theta type origin of replication, whereas pSRB3 has a Class-D theta type replication origin like pAMβ1. The plasmids pSRB4 and pSRB7 shared similar ori as in pWV01. The SD1 class-A theta type plasmids shared significant homology between their replication proteins with differences in their DNA-binding domain and comprises of distinct iterons. The differences in their iterons and replication proteins restricts the "handcuff" formation for inhibition of plasmid replication, rendering to their compatibility to coexist. Similarly, for SD1 rolling circle plasmids the differences in the replication protein binding site in the origin and the replication protein supports their coexistence by inhibiting the crosstalk between the origins and replication proteins. The phylogenetic tree of their replication proteins revealed their distant kinship. The results indicate that the identified plasmids are unique to E. italicus SD1, providing further opportunities to study their utility in designing multiple gene expression systems for the simultaneous production of proteins in enterococci with the renewed concept of plasmid incompatibility.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India
| | | | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
| |
Collapse
|
2
|
Thomsen J, Schmitz RA. Generating a Small Shuttle Vector for Effective Genetic Engineering of Methanosarcina mazei Allowed First Insights in Plasmid Replication Mechanism in the Methanoarchaeon. Int J Mol Sci 2022; 23:ijms231911910. [PMID: 36233214 PMCID: PMC9569500 DOI: 10.3390/ijms231911910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their role in methane production, methanoarchaea are of high ecological relevance and genetic systems have been ever more established in the last two decades. The system for protein expression in Methanosarcina using a comprehensive shuttle vector is established; however, details about its replication mechanism in methanoarchaea remain unknown. Here, we report on a significant optimisation of the rather large shuttle vector pWM321 (8.9 kbp) generated by Metcalf through a decrease in its size by about 35% by means of the deletion of several non-coding regions and the ssrA gene. The resulting plasmid (pRS1595) still stably replicates in M. mazei and—most likely due to its reduced size—shows a significantly higher transformation efficiency compared to pWM321. In addition, we investigate the essential gene repA, coding for a rep type protein. RepA was heterologously expressed in Escherichia coli, purified and characterised, demonstrating the significant binding and nicking activity of supercoiled plasmid DNA. Based on our findings we propose that the optimised shuttle vector replicates via a rolling circle mechanism with RepA as the initial replication protein in Methanosarcina. On the basis of bioinformatic comparisons, we propose the presence and location of a double-strand and a single-strand origin, which need to be further verified.
Collapse
|
3
|
Aguilar-Romero I, van Dillewijn P, Nesme J, Sørensen SJ, Nogales R, Delgado-Moreno L, Romero E. A novel and affordable bioaugmentation strategy with microbial extracts to accelerate the biodegradation of emerging contaminants in different media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155234. [PMID: 35427621 DOI: 10.1016/j.scitotenv.2022.155234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
This study describes a new bioaugmentation alternative based on the application of aqueous aerated extracts from a biomixture acclimated with ibuprofen, diclofenac and triclosan. This bioaugmentation strategy was assayed in biopurification systems (BPS) and in contaminated aqueous solutions to accelerate the removal of these emerging contaminants. Sterilized extracts or extracts from the initial uncontaminated biomixture were used as controls. In BPS, the dissipation of 90% of diclofenac and triclosan required, respectively, 60 and 108 days less than in the controls. The metabolite methyl-triclosan was determined at levels 12 times lower than in controls. In the bioaugmented solutions, ibuprofen was almost completely eliminated (99%) in 21 days and its hydroxylated metabolites were also determined to be at lower levels than in the controls. The plasmidome of acclimated biomixtures and its extract appeared to maintain certain types of plasmids but degradation related genes became less evident. Several dominant OTUs found in the extract identified as Flavobacterium and Fluviicola of the phylum Bacteroidetes, Thermomicrobia (phylum Chloroflexi) and Nonomuraea (phylum Actinobacteria), may be responsible for the enhanced dissipation of these contaminants. This bioaugmentation strategy represents an advantageous tool to facilitate in situ bioaugmentation.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rogelio Nogales
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Laura Delgado-Moreno
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Esperanza Romero
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/ Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
4
|
Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of plasmid mobility: origin and fate of conjugative and non-conjugative plasmids. Mol Biol Evol 2022; 39:6593704. [PMID: 35639760 PMCID: PMC9185392 DOI: 10.1093/molbev/msac115] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| |
Collapse
|
5
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
6
|
Solano-Collado V, Ruiz-Cruz S, Lorenzo-Díaz F, Pluta R, Espinosa M, Bravo A. Recognition of Streptococcal Promoters by the Pneumococcal SigA Protein. Front Mol Biosci 2021; 8:666504. [PMID: 34250014 PMCID: PMC8264293 DOI: 10.3389/fmolb.2021.666504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Promoter recognition by RNA polymerase is a key step in the regulation of gene expression. The bacterial RNA polymerase core enzyme is a complex of five subunits that interacts transitory with one of a set of sigma factors forming the RNA polymerase holoenzyme. The sigma factor confers promoter specificity to the RNA polymerase. In the Gram-positive pathogenic bacterium Streptococcus pneumoniae, most promoters are likely recognized by SigA, a poorly studied housekeeping sigma factor. Here we present a sequence conservation analysis and show that SigA has similar protein architecture to Escherichia coli and Bacillus subtilis homologs, namely the poorly conserved N-terminal 100 residues and well-conserved rest of the protein (domains 2, 3, and 4). Further, we have purified the native (untagged) SigA protein encoded by the pneumococcal R6 strain and reconstituted an RNA polymerase holoenzyme composed of the E. coli core enzyme and the sigma factor SigA (RNAP-SigA). By in vitro transcription, we have found that RNAP-SigA was able to recognize particular promoters, not only from the pneumococcal chromosome but also from the S. agalactiae promiscuous antibiotic-resistance plasmid pMV158. Specifically, SigA was able to direct the RNA polymerase to transcribe genes involved in replication and conjugative mobilization of plasmid pMV158. Our results point to the versatility of SigA in promoter recognition and its contribution to the promiscuity of plasmid pMV158.
Collapse
Affiliation(s)
| | - Sofía Ruiz-Cruz
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Radoslaw Pluta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
8
|
Garcillán-Barcia MP, Cuartas-Lanza R, Cuevas A, de la Cruz F. Cis-Acting Relaxases Guarantee Independent Mobilization of MOB Q 4 Plasmids. Front Microbiol 2019; 10:2557. [PMID: 31781067 PMCID: PMC6856555 DOI: 10.3389/fmicb.2019.02557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Plasmids are key vehicles of horizontal gene transfer and contribute greatly to bacterial genome plasticity. In this work, we studied a group of plasmids from enterobacteria that encode phylogenetically related mobilization functions that populate the previously non-described MOBQ4 relaxase family. These plasmids encode two transfer genes: mobA coding for the MOBQ4 relaxase; and mobC, which is non-essential but enhances the plasmid mobilization frequency. The origin of transfer is located between these two divergently transcribed mob genes. We found that MPFI conjugative plasmids were the most efficient helpers for MOBQ4 conjugative dissemination among clinically relevant enterobacteria. While highly similar in their mobilization module, two sub-groups with unrelated replicons (Rep_3 and ColE2) can be distinguished in this plasmid family. These subgroups can stably coexist (are compatible) and transfer independently, despite origin-of-transfer cross-recognition by their relaxases. Specific discrimination among their highly similar oriT sequences is guaranteed by the preferential cis activity of the MOBQ4 relaxases. Such a strategy would be biologically relevant in a scenario of co-residence of non-divergent elements to favor self-dissemination.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Raquel Cuartas-Lanza
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Ana Cuevas
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (Universidad de Cantabria - Consejo Superior de Investigaciones Científicas), Santander, Spain
| |
Collapse
|
9
|
Guzmán-Herrador DL, Llosa M. The secret life of conjugative relaxases. Plasmid 2019; 104:102415. [PMID: 31103521 DOI: 10.1016/j.plasmid.2019.102415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Conjugative relaxases are well-characterized proteins responsible for the site- and strand-specific endonucleolytic cleavage and strand transfer reactions taking place at the start and end of the conjugative DNA transfer process. Most of the relaxases characterized biochemically and structurally belong to the HUH family of endonucleases. However, an increasing number of new families of relaxases are revealing a variety of protein folds and catalytic alternatives to accomplish conjugative DNA processing. Relaxases show high specificity for their cognate target DNA sequences, but several recent reports underscore the importance of their activity on secondary targets, leading to widespread mobilization of plasmids containing an oriT-like sequence. Some relaxases perform other functions associated with their nicking and strand transfer ability, such as catalyzing site-specific recombination or initiation of plasmid replication. They perform these roles in the absence of conjugation, and the validation of these functions in several systems strongly suggest that they are not mere artifactual laboratory observations. Other unexpected roles recently assigned to relaxases include controlling plasmid copy number and promoting retrotransposition. Their capacity to mediate promiscuous mobilization and genetic reorganizations can be exploited for a number of imaginative biotechnological applications. Overall, there is increasing evidence that conjugative relaxases are not only key enzymes for horizontal gene transfer, but may have been adapted to perform other roles which contribute to prokaryotic genetic plasticity. Relaxed target specificity may be key to this versatility.
Collapse
Affiliation(s)
- Dolores Lucía Guzmán-Herrador
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Matxalen Llosa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain.
| |
Collapse
|
10
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1253] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Pluta R, Espinosa M. Antisense and yet sensitive: Copy number control of rolling circle-replicating plasmids by small RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1500. [PMID: 30074293 DOI: 10.1002/wrna.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Abstract
Bacterial plasmids constitute a wealth of shared DNA amounting to about 20% of the total prokaryotic pangenome. Plasmids replicate autonomously and control their replication by maintaining a fairly constant number of copies within a given host. Plasmids should acquire a good fitness to their hosts so that they do not constitute a genetic load. Here we review some basic concepts in plasmid biology, pertaining to the control of replication and distribution of plasmid copies among daughter cells. A particular class of plasmids is constituted by those that replicate by the rolling circle mode (rolling circle-replicating [RCR]-plasmids). They are small double-stranded DNA molecules, with a rather high number of copies in the original host. RCR-plasmids control their replication by means of a small short-lived antisense RNA, alone or in combination with a plasmid-encoded transcriptional repressor protein. Two plasmid prototypes have been studied in depth, namely the staphylococcal plasmid pT181 and the streptococcal plasmid pMV158, each corresponding to the two types of replication control circuits, respectively. We further discuss possible applications of the plasmid-encoded antisense RNAs and address some future directions that, in our opinion, should be pursued in the study of these small molecules. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
12
|
Lorenzo-Díaz F, Fernández-López C, Guillén-Guío B, Bravo A, Espinosa M. Relaxase MobM Induces a Molecular Switch at Its Cognate Origin of Transfer. Front Mol Biosci 2018; 5:17. [PMID: 29600250 PMCID: PMC5863519 DOI: 10.3389/fmolb.2018.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
The MOBV1 family of relaxases is broadly distributed in plasmids and other mobile genetic elements isolated from staphylococci, enterococci, and streptococci. The prototype of this family is protein MobM encoded by the streptococcal promiscuous plasmid pMV158. MobM cleaves the phosphodiester bond of a specific dinucleotide within the origin of transfer (oriT) to initiate conjugative transfer. Differently from other relaxases, MobM and probably other members of the family, cleaves its target single-stranded DNA through a histidine residue rather than the commonly used tyrosine. The oriT of the MOBV1 family differs from other well-known conjugative systems since it has sequences with three inverted repeats, which were predicted to generate three mutually-exclusive hairpins on supercoiled DNA. In this work, such hypothesis was evaluated through footprinting experiments on supercoiled plasmid DNA. We have found a change in hairpin extrusion mediated by protein MobM. This conformational change involves a shift from the main hairpin generated on “naked” DNA to a different hairpin in which the nick site is positioned in a single-stranded configuration. Our results indicate that the oriTpMV158 acts as a molecular switch in which, depending on the inverted repeat recognized by MobM, pMV158 mobilization could be turned “on” or “off.”
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Beatriz Guillén-Guío
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
13
|
Lorenzo-Diaz F, Fernández-Lopez C, Douarre PE, Baez-Ortega A, Flores C, Glaser P, Espinosa M. Streptococcal group B integrative and mobilizable element IMESag-rpsI encodes a functional relaxase involved in its transfer. Open Biol 2017; 6:rsob.160084. [PMID: 27707895 PMCID: PMC5090054 DOI: 10.1098/rsob.160084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) are opportunistic bacteria that can cause lethal sepsis in children and immuno-compromised patients. Their genome is a reservoir of mobile genetic elements that can be horizontally transferred. Among them, integrative and conjugative elements (ICEs) and the smaller integrative and mobilizable elements (IMEs) primarily reside in the bacterial chromosome, yet have the ability to be transferred between cells by conjugation. ICEs and IMEs are therefore a source of genetic variability that participates in the spread of antibiotic resistance. Although IMEs seem to be the most prevalent class of elements transferable by conjugation, they are poorly known. Here, we have studied a GBS-IME, termed IMESag-rpsI, which is widely distributed in GBS despite not carrying any apparent virulence trait. Analyses of 240 whole genomes showed that IMESag-rpsI is present in approximately 47% of the genomes, has a roughly constant size (approx. 9 kb) and is always integrated at a single location, the 3′-end of the gene encoding the ribosomal protein S9 (rpsI). Based on their genetic variation, several IMESag-rpsI types were defined (A–J) and classified in clonal complexes (CCs). CC1 was the most populated by IMESag-rpsI (more than 95%), mostly of type-A (71%). One CC1 strain (S. agalactiae HRC) was deep-sequenced to understand the rationale underlying type-A IMESag-rpsI enrichment in GBS. Thirteen open reading frames were identified, one of them encoding a protein (MobSag) belonging to the broadly distributed family of relaxases MOBV1. Protein MobSag was purified and, by a newly developed method, shown to cleave DNA at a specific dinucleotide. The S. agalactiae HRC-IMESag-rpsI is able to excise from the chromosome, as shown by the presence of circular intermediates, and it harbours a fully functional mobilization module. Further, the mobSag gene encoded by this mobile element is able to promote plasmid transfer among pneumococcal strains, suggesting that MobSag facilitates the spread of IMESag-rpsI and that this spread would explain the presence of the same IMESag-rpsI type in GBS strains belonging to different CCs.
Collapse
Affiliation(s)
- Fabian Lorenzo-Diaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38071 Santa Cruz de Tenerife, Spain Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Pierre-Emmanuel Douarre
- Institut Pasteur, Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Paris CNRS UMR3525, France
| | - Adrian Baez-Ortega
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Carlos Flores
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Philippe Glaser
- Institut Pasteur, Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Paris CNRS UMR3525, France
| | | |
Collapse
|
14
|
Wawrzyniak P, Płucienniczak G, Bartosik D. The Different Faces of Rolling-Circle Replication and Its Multifunctional Initiator Proteins. Front Microbiol 2017; 8:2353. [PMID: 29250047 PMCID: PMC5714925 DOI: 10.3389/fmicb.2017.02353] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Horizontal gene transfer (HGT) contributes greatly to the plasticity and evolution of prokaryotic and eukaryotic genomes. The main carriers of foreign DNA in HGT are mobile genetic elements (MGEs) that have extremely diverse genetic structures and properties. Various strategies are used for the maintenance and spread of MGEs, including (i) vegetative replication, (ii) transposition (and other types of recombination), and (iii) conjugal transfer. In many MGEs, all of these processes are dependent on rolling-circle replication (RCR). RCR is one of the most well characterized models of DNA replication. Although many studies have focused on describing its mechanism, the role of replication initiator proteins has only recently been subject to in-depth analysis, which indicates their involvement in multiple biological process associated with RCR. In this review, we present a general overview of RCR and its impact in HGT. We focus on the molecular characteristics of RCR initiator proteins belonging to the HUH and Rep_trans protein families. Despite analogous mechanisms of action these are distinct groups of proteins with different catalytic domain structures. This is the first review describing the multifunctional character of various types of RCR initiator proteins, including the latest discoveries in the field. Recent reports provide evidence that (i) proteins initiating vegetative replication (Rep) or mobilization for conjugal transfer (Mob) may also have integrase (Int) activity, (ii) some Mob proteins are capable of initiating vegetative replication (Rep activity), and (iii) some Rep proteins can act like Mob proteins to mobilize plasmid DNA for conjugal transfer. These findings have significant consequences for our understanding of the role of RCR, not only in DNA metabolism but also in the biology of many MGEs.
Collapse
Affiliation(s)
- Paweł Wawrzyniak
- Department of Bioengineering, Institute of Biotechnology and Antibiotics, Warsaw, Poland.,Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Płucienniczak
- Department of Bioengineering, Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Lorenzo-Díaz F, Fernández-López C, Lurz R, Bravo A, Espinosa M. Crosstalk between vertical and horizontal gene transfer: plasmid replication control by a conjugative relaxase. Nucleic Acids Res 2017; 45:7774-7785. [PMID: 28525572 PMCID: PMC5737340 DOI: 10.1093/nar/gkx450] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 01/09/2023] Open
Abstract
Horizontal gene transfer is a key process in the evolution of bacteria and also represents a source of genetic variation in eukaryotes. Among elements participating in gene transfer, thousands of small (<10 kb) mobile bacterial plasmids that replicate by the rolling circle mechanism represent a driving force in the spread of antibiotic resistances. In general, these plasmids are built as genetic modules that encode a replicase, an antibiotic-resistance determinant, and a relaxase that participates in their conjugative mobilization. Further, they control their relatively high copy number (∼30 copies per genome equivalent) by antisense RNAs alone or combined with a repressor protein. We report here that the MobM conjugative relaxase encoded by the promiscuous plasmid pMV158 participates in regulation of the plasmid copy number by transcriptional repression of the antisense RNA, thus increasing the number of plasmid molecules ready to be horizontally transferred (mobilization) and/or vertically inherited (replication). This type of crosstalk between genetic modules involved in vertical and horizontal gene flow has not been reported before.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Conjugation, Genetic
- DNA Copy Number Variations
- DNA Replication
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Drug Resistance, Bacterial/genetics
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Gene Flow
- Gene Transfer, Horizontal
- Microscopy, Electron
- Models, Biological
- Plasmids/genetics
- Promoter Regions, Genetic
- Replicon
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez s/n, 38071 Santa Cruz de Tenerife, Spain
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Cris Fernández-López
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Rudi Lurz
- Max-Plank Institut für molekulare Genetik, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
16
|
Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance. Proc Natl Acad Sci U S A 2017; 114:E6526-E6535. [PMID: 28739894 DOI: 10.1073/pnas.1702971114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.
Collapse
|
17
|
Ramsay JP, Firth N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr Opin Microbiol 2017; 38:1-9. [PMID: 28391142 DOI: 10.1016/j.mib.2017.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Conjugation is a dominant mechanism of horizontal gene transfer and substantially contributes to the plasticity and evolvability of prokaryotic genomes. The impact of conjugation on genetic flux extends well beyond self-transmissible conjugative elements, because non-conjugative 'mobilizable elements' utilize other elements' conjugative apparatus for transfer. Bacterial genome comparisons highlight plasmids as vehicles for dissemination of pathogenesis and antimicrobial-resistance determinants, but for most non-conjugative plasmids, a mobilization mechanism is not apparent. Recently we discovered many Staphylococcus aureus plasmids lacking mobilization genes carry oriT sequences that mimic those on conjugative plasmids, suggesting that significantly more elements may be mobilizable than previously recognized. Here we summarize our findings, review the diverse mobilization strategies employed by mobile genetic elements and discuss implications for future gene-transfer research.
Collapse
Affiliation(s)
- Joshua P Ramsay
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Coluzzi C, Guédon G, Devignes MD, Ambroset C, Loux V, Lacroix T, Payot S, Leblond-Bourget N. A Glimpse into the World of Integrative and Mobilizable Elements in Streptococci Reveals an Unexpected Diversity and Novel Families of Mobilization Proteins. Front Microbiol 2017; 8:443. [PMID: 28373865 PMCID: PMC5357655 DOI: 10.3389/fmicb.2017.00443] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Recent analyses of bacterial genomes have shown that integrated elements that transfer by conjugation play an essential role in horizontal gene transfer. Among these elements, the integrative and mobilizable elements (IMEs) are known to encode their own excision and integration machinery, and to carry all the sequences or genes necessary to hijack the mating pore of a conjugative element for their own transfer. However, knowledge of their prevalence and diversity is still severely lacking. In this work, an extensive analysis of 124 genomes from 27 species of Streptococcus reveals 144 IMEs. These IMEs encode either tyrosine or serine integrases. The identification of IME boundaries shows that 141 are specifically integrated in 17 target sites. The IME-encoded relaxases belong to nine superfamilies, among which four are previously unknown in any mobilizable or conjugative element. A total of 118 IMEs are found to encode a non-canonical relaxase related to rolling circle replication initiators (belonging to the four novel families or to MobT). Surprisingly, among these, 83 encode a TcpA protein (i.e., a non-canonical coupling protein (CP) that is more closely related to FtsK than VirD4) that was not previously known to be encoded by mobilizable elements. Phylogenetic analyses reveal not only many integration/excision module replacements but also losses, acquisitions or replacements of TcpA genes between IMEs. This glimpse into the still poorly known world of IMEs reveals that mobilizable elements have a very high prevalence. Their diversity is even greater than expected, with most encoding a CP and/or a non-canonical relaxase.
Collapse
Affiliation(s)
- Charles Coluzzi
- UMR1128 DynAMic, Institut National de la Recherche Agronomique, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Gérard Guédon
- UMR1128 DynAMic, Institut National de la Recherche Agronomique, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marie-Dominique Devignes
- UMR7503 Laboratoire Lorrain de Recherche en Informatique et ses Applications, Centre National de la Recherche Scientifique, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Chloé Ambroset
- UMR1128 DynAMic, Institut National de la Recherche Agronomique, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Valentin Loux
- UR1404 Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Lacroix
- UR1404 Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sophie Payot
- UMR1128 DynAMic, Institut National de la Recherche Agronomique, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Nathalie Leblond-Bourget
- UMR1128 DynAMic, Institut National de la Recherche Agronomique, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
19
|
Ramsay JP, Kwong SM, Murphy RJT, Yui Eto K, Price KJ, Nguyen QT, O'Brien FG, Grubb WB, Coombs GW, Firth N. An updated view of plasmid conjugation and mobilization in Staphylococcus. Mob Genet Elements 2016; 6:e1208317. [PMID: 27583185 PMCID: PMC4993578 DOI: 10.1080/2159256x.2016.1208317] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
Abstract
The horizontal gene transfer facilitated by mobile genetic elements impacts almost all areas of bacterial evolution, including the accretion and dissemination of antimicrobial-resistance genes in the human and animal pathogen Staphylococcus aureus. Genome surveys of staphylococcal plasmids have revealed an unexpected paucity of conjugation and mobilization loci, perhaps suggesting that conjugation plays only a minor role in the evolution of this genus. In this letter we present the DNA sequences of historically documented staphylococcal conjugative plasmids and highlight that at least 3 distinct and widely distributed families of conjugative plasmids currently contribute to the dissemination of antimicrobial resistance in Staphylococcus. We also review the recently documented "relaxase-in trans" mechanism of conjugative mobilization facilitated by conjugative plasmids pWBG749 and pSK41, and discuss how this may facilitate the horizontal transmission of around 90% of plasmids that were previously considered non-mobilizable. Finally, we enumerate unique sequenced S. aureus plasmids with a potential mechanism of mobilization and predict that at least 80% of all non-conjugative S. aureus plasmids are mobilizable by at least one mechanism. We suggest that a greater research focus on the molecular biology of conjugation is essential if we are to recognize gene-transfer mechanisms from our increasingly in silico analyses.
Collapse
Affiliation(s)
- Joshua P. Ramsay
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- ACCESS Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Stephen M. Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Riley J. T. Murphy
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- ACCESS Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Karina Yui Eto
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- ACCESS Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, WA, Australia
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA, Australia
| | - Karina J. Price
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Quang T. Nguyen
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Frances G. O'Brien
- ACCESS Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Warren B. Grubb
- ACCESS Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Geoffrey W. Coombs
- ACCESS Typing and Research, School of Veterinary Sciences and Life Sciences, Murdoch University and School of Biomedical Sciences, Curtin University, Perth, WA, Australia
- PathWest Laboratory Medicine–WA, Fiona Stanley Hospital, Perth, WA, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Martini MC, Wibberg D, Lozano M, Torres Tejerizo G, Albicoro FJ, Jaenicke S, van Elsas JD, Petroni A, Garcillán-Barcia MP, de la Cruz F, Schlüter A, Pühler A, Pistorio M, Lagares A, Del Papa MF. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system. Sci Rep 2016; 6:28284. [PMID: 27321040 PMCID: PMC4913263 DOI: 10.1038/srep28284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/31/2016] [Indexed: 12/02/2022] Open
Abstract
The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.
Collapse
Affiliation(s)
- María C Martini
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Mauricio Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Francisco J Albicoro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Sebastian Jaenicke
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | | | - Alejandro Petroni
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas (CSIC), 39011 Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas (CSIC), 39011 Santander, Spain
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - María F Del Papa
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
21
|
Carraro N, Libante V, Morel C, Charron-Bourgoin F, Leblond P, Guédon G. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. MICROBIOLOGY-SGM 2016; 162:622-632. [PMID: 26825653 DOI: 10.1099/mic.0.000219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements encoding their own excision from a replicon of their bacterial host, transfer by conjugation to a recipient bacterium and reintegration for maintenance. The conjugation, recombination and regulation modules of ICEs of the ICESt3 family are grouped together in a region called the ICE 'core region'. In addition to this core region, elements belonging to this family carry a highly variable region including cargo genes that could be involved in bacterial adaptation or in the maintenance of the element. Although ICEs are a major class of mobile elements through bacterial genomes, the functionality of an element encoding only its excision, transfer, integration and regulation has never been demonstrated experimentally. We engineered MiniICESt3, an artificial ICE derived from ICESt3, devoid of its cargo genes and thus only harbouring the core region. The functionality of this minimal element was assessed. MiniICESt3 was found to be able to excise at a rate of 3.1 %, transfer with a frequency of 1.0 × 10- 5 transconjugants per donor cell and stably maintain by site-specific integration into the 3' end of the fda gene, the same as ICESt3. Furthermore, MiniICESt3 was found in ∼10 copies per chromosome, this multicopy state likely contributing to its stability for >100 generations even in the absence of selection. Therefore, although ICEs were primarily assumed to only replicate along with the chromosome, our results uncovered extrachromosomal rolling-circle replicating plasmid-like forms of MiniICESt3.
Collapse
Affiliation(s)
- Nicolas Carraro
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Virginie Libante
- INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Catherine Morel
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Florence Charron-Bourgoin
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Pierre Leblond
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| | - Gérard Guédon
- Université de Lorraine, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France.,INRA, DynAMic, UMR1128, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
22
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
23
|
Sequence analysis of five endogenous plasmids isolated from Lactobacillus pentosus F03. Plasmid 2016; 84-85:1-10. [PMID: 26854068 DOI: 10.1016/j.plasmid.2016.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/23/2022]
Abstract
Lactobacillus pentosus F03, a strain isolated from pig intestines in Taiwan, contains multiple endogenous plasmids. We isolated, completely sequenced, and characterized five of the plasmids present in L. pentosus F03 designated as pF03-1 (3282bp), pF03-2 (3293bp), pF03-3 (1787bp), pF03-4 (2138bp), and pF03-5 (1949bp). The replication types of these plasmids were predicted by comparing the features of the replicon nucleotides and the similarity of replication proteins with those of the plasmids of known replication types. The results of basic local alignment search tool analyses indicate that these plasmids, except for pF03-4, belong to different replicating plasmid families. According to replicon and initiator protein analyses, pF03-1, pF03-2, and pF03-3, were determined to belong respectively to the pMV158, pC194/pUB110, and pT181 families of rolling-circle replication plasmids. However, pF03-5 contains the typical features observed in the family of theta-replicating plasmids and belongs to the pUCL287 family of theta-replicating plasmids.
Collapse
|
24
|
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int J Mol Sci 2015; 16:13172-202. [PMID: 26068451 PMCID: PMC4490491 DOI: 10.3390/ijms160613172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Tong Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijun Dong
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Jang MS, Fujita A, Ikawa S, Hanawa K, Yamamura H, Tamura T, Hayakawa M, Tezuka T, Ohnishi Y. Isolation of a novel plasmid from Couchioplanes caeruleus and construction of two plasmid vectors for gene expression in Actinoplanes missouriensis. Plasmid 2014; 77:32-8. [PMID: 25500016 DOI: 10.1016/j.plasmid.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/22/2014] [Accepted: 12/01/2014] [Indexed: 11/15/2022]
Abstract
To date, no plasmid vector has been developed for the rare actinomycete Actinoplanes missouriensis. Moreover, no small circular plasmid has been reported to exist in the genus Actinoplanes. Here, a novel plasmid, designated pCAZ1, was isolated from Couchioplanes caeruleus subsp. azureus via screening for small circular plasmids in Actinoplanes (57 strains) and Couchioplanes (2 strains). Nucleotide sequencing revealed that pCAZ1 is a 5845-bp circular molecule with a G + C content of 67.5%. The pCAZ1 copy number was estimated at 30 per chromosome. pCAZ1 contains seven putative open reading frames, one of which encodes a protein containing three motifs conserved among plasmid-encoded replication proteins that are involved in the rolling-circle mechanism of replication. Detection of single-stranded DNA intermediates in C. caeruleus confirmed that pCAZ1 replicates by this mechanism. The ColE1 origin from pBluescript SK(+) and the oriT sequence with the apramycin resistance gene aac(3)IV from pIJ773 were inserted together into pCAZ1, to construct the Escherichia coli-A. missouriensis shuttle vectors, pCAM1 and pCAM2, in which the foreign DNA fragment was inserted into pCAZ1 in opposite directions. pCAM1 and pCAM2 were successfully transferred to A. missouriensis through the E. coli-mediated conjugative transfer system. The copy numbers of pCAM1 and pCAM2 in A. missouriensis were estimated to be one and four per chromosome, respectively. Thus, these vectors can be used as effective genetic tools for homologous and heterologous gene expression studies in A. missouriensis.
Collapse
Affiliation(s)
- Moon-Sun Jang
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Azusa Fujita
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satomi Ikawa
- Division of Applied Biological Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Keitaro Hanawa
- Division of Applied Biological Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Hideki Yamamura
- Division of Applied Biological Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masayuki Hayakawa
- Division of Applied Biological Sciences, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
26
|
Garcillán-Barcia MP, Ruiz del Castillo B, Alvarado A, de la Cruz F, Martínez-Martínez L. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones. Plasmid 2014; 77:17-27. [PMID: 25463772 DOI: 10.1016/j.plasmid.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
Abstract
Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, España.
| | - Belén Ruiz del Castillo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla y Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, España
| | - Andrés Alvarado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, España
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, España
| | - Luis Martínez-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla y Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, España; Departamento de Biología Molecular, Universidad de Cantabria, Santander, España
| |
Collapse
|
27
|
Abstract
ABSTRACT
Whole-genome sequencing is revolutionizing the analysis of bacterial genomes. It leads to a massive increase in the amount of available data to be analyzed. Bacterial genomes are usually composed of one main chromosome and a number of accessory chromosomes, called plasmids. A recently developed methodology called PLACNET (for
pla
smid
c
onstellation
net
works) allows the reconstruction of the plasmids of a given genome. Thus, it opens an avenue for plasmidome analysis on a global scale. This work reviews our knowledge of the genetic determinants for plasmid propagation (conjugation and related functions), their diversity, and their prevalence in the variety of plasmids found by whole-genome sequencing. It focuses on the results obtained from a collection of 255
Escherichia coli
plasmids reconstructed by PLACNET. The plasmids found in
E. coli
represent a nonaleatory subset of the plasmids found in proteobacteria. Potential reasons for the prevalence of some specific plasmid groups will be discussed and, more importantly, additional questions will be posed.
Collapse
|
28
|
Cavanagh D, Fitzgerald GF, McAuliffe O. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol 2014; 47:45-61. [PMID: 25583337 DOI: 10.1016/j.fm.2014.11.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022]
Abstract
Lactococcus lactis is an organism of substantial economic importance, used extensively in the production of fermented foods and widely held to have evolved from plant strains. The domestication of this organism to the milk environment is associated with genome reduction and gene decay, and the acquisition of specific genes involved in protein and lactose utilisation by horizontal gene transfer. In recent years, numerous studies have focused on uncovering the physiology and molecular biology of lactococcal strains from the wider environment for exploitation in the dairy industry. This in turn has facilitated comparative genome analysis of lactococci from different environments and provided insight into the natural phenotypic and genetic diversity of L. lactis. This diversity may be exploited in dairy fermentations to develop products with improved quality and sensory attributes. In this review, we discuss the classification of L. lactis and the problems that arise with phenotype/genotype designation. We also discuss the adaptation of non-dairy lactococci to milk, the traits associated with this adaptation and the potential application of non-dairy lactococci to dairy fermentations.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Microbiology, University College Cork, Co. Cork, Ireland.
| | | | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|