1
|
Jaiswal LK, Singh RK, Nayak T, Kakkar A, Kandwal G, Singh VS, Gupta A. A comparative analysis of mycobacterial ribonucleases: Towards a therapeutic novel drug target. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105645. [PMID: 39067582 DOI: 10.1016/j.meegid.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.
Collapse
Affiliation(s)
- Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India.
| |
Collapse
|
2
|
Qiang J, Cao ZM, Zhu HJ, Tao YF, He J, Xu P. Knock-down of amh transcription by antisense RNA reduces FSH and increases follicular atresia in female Oreochromis niloticus. Gene 2022; 842:146792. [PMID: 35961433 DOI: 10.1016/j.gene.2022.146792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Anti-Müllerian hormone (Amh) plays an important role in regulating gonad development in teleosts. However, little is known about the effects of Amh on follicle development. In this study, we transfected the vector containing antisense RNA fragments of the amh gene to produce Nile tilapia, Oreochromis niloticus, with knocked-down Amh function in vivo. The results confirmed that the antisense RNA effectively inhibited amh transcription and Amh protein expression in female tilapia ovarian tissue. At 180 days of age, compared with control fish, female tilapia with knocked-down Amh function showed significantly increased growth and significantly decreased ovary weight and gonadosomatic index (P < 0.05). Female fish in the control group had ruddy-colored external genitalia, eggs extruded from the abdomen when gently squeezed, and most oocytes were developmental stage V. In contrast, the external genitalia of female fish with knocked-down Amh function did not have the ruddy color, no eggs extruded from the abdomen when squeezed, most oocytes were at developmental stages II and III, and considerable follicular atresia was apparent. At 180 days of age, the transcript levels of amhrII, cyp19a1a, foxl2 and sox9b in ovarian tissue, and the titers of luteinizing hormone, follicle stimulating hormone, and estradiol in the serum, were significantly lower in fish with knocked-down Amh function than in control fish (P < 0.05). We concluded that decreased serum hormone levels and an abnormal AMH signal delayed development and caused follicular degeneration in Nile tilapia with knocked-down Amh function. These findings show that antisense RNA is a feasible approach for gene silencing in fish, and represents an accurate and effective strategy to study gene function.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zhe-Ming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Hoffmann UA, Heyl F, Rogh SN, Wallner T, Backofen R, Hess WR, Steglich C, Wilde A. Transcriptome-wide in vivo mapping of cleavage sites for the compact cyanobacterial ribonuclease E reveals insights into its function and substrate recognition. Nucleic Acids Res 2021; 49:13075-13091. [PMID: 34871439 PMCID: PMC8682795 DOI: 10.1093/nar/gkab1161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Ribonucleases are crucial enzymes in RNA metabolism and post-transcriptional regulatory processes in bacteria. Cyanobacteria encode the two essential ribonucleases RNase E and RNase J. Cyanobacterial RNase E is shorter than homologues in other groups of bacteria and lacks both the chloroplast-specific N-terminal extension as well as the C-terminal domain typical for RNase E of enterobacteria. In order to investigate the function of RNase E in the model cyanobacterium Synechocystis sp. PCC 6803, we engineered a temperature-sensitive RNase E mutant by introducing two site-specific mutations, I65F and the spontaneously occurred V94A. This enabled us to perform RNA-seq after the transient inactivation of RNase E by a temperature shift (TIER-seq) and to map 1472 RNase-E-dependent cleavage sites. We inferred a dominating cleavage signature consisting of an adenine at the -3 and a uridine at the +2 position within a single-stranded segment of the RNA. The data identified mRNAs likely regulated jointly by RNase E and an sRNA and potential 3' end-derived sRNAs. Our findings substantiate the pivotal role of RNase E in post-transcriptional regulation and suggest the redundant or concerted action of RNase E and RNase J in cyanobacteria.
Collapse
Affiliation(s)
- Ute A Hoffmann
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Florian Heyl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Said N Rogh
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Wallner
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Zhao H, Peng Y, Cai X, Zhou Y, Zhou Y, Huang H, Xu L, Nie Y. Genome insights of Enterococcus raffinosus CX012922, isolated from the feces of a Crohn's disease patient. Gut Pathog 2021; 13:71. [PMID: 34876224 PMCID: PMC8650288 DOI: 10.1186/s13099-021-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Enterococcus raffinosus is one of the Enterococcus species that often cause nosocomial infections. To date, only one E. raffinosus genome has been completely assembled, and the genomic features have not been characterized. Here, we report the complete genome sequence of the strain CX012922, isolated from the feces of a Crohn’s disease patient, and perform a comparative genome analysis to the relevant Enterococcus spp. strains in silico. Results De novo assembly of the sequencing reads of the strain CX012922 generated a circular genome of 2.83 Mb and a circular megaplasmid of 0.98 Mb. Phylogenomic analysis revealed that the strain CX012922 belonged to the E. raffinosus species. By comparative genome analysis, we found that some strains previously identified as E. raffinosus or E. gilvus should be reclassified as novel species. Genome islands (GIs), virulence factors, and antibiotic genes were found in both the genome and the megaplasmid, although pathogenic genes were mainly encoded in the genome. A large proportion of the genes encoded in the megaplasmid were involved in substrate utilization, such as raffinose metabolism. Giant megaplasmids (~1 Mb) equipped with toxin-antitoxin (TA) systems generally formed symbiosis relationships with the genome of E. raffinosus strains. Conclusions Enterococcus spp. have a higher species-level diversity than is currently appreciated. The pathogenicity of E. raffinosus is mainly determined by the genome-encoded virulence factors, while the megaplasmid broadens the gene function pool. The symbiosis between the genome and the megaplasmids endows E. raffinosus with large genomic sizes as well as versatile gene functions, especially for their colonization, adaptation, virulence, and pathogenesis in the human gut. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00468-8.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yao Peng
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, Guangdong, People's Republic of China.,Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518071, Guangdong, People's Republic of China
| | - Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518071, Guangdong, People's Republic of China
| | - Yongjian Zhou
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.,Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Youlian Zhou
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.,Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Hongli Huang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.,Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, 518071, Guangdong, People's Republic of China.
| | - Yuqiang Nie
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China. .,Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Foley SL, Kaldhone PR, Ricke SC, Han J. Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiol Mol Biol Rev 2021; 85:e00031-20. [PMID: 33910982 PMCID: PMC8139525 DOI: 10.1128/mmbr.00031-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.
Collapse
Affiliation(s)
- Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Steven C Ricke
- Meat Science & Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
6
|
Guimarães VA, Le Scornet A, Khemici V, Hausmann S, Armitano J, Prados J, Jousselin A, Manzano C, Linder P, Redder P. RNase J1 and J2 Are Host-Encoded Factors for Plasmid Replication. Front Microbiol 2021; 12:586886. [PMID: 34017314 PMCID: PMC8129170 DOI: 10.3389/fmicb.2021.586886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmids need to ensure their transmission to both daughter-cells when their host divides, but should at the same time avoid overtaxing their hosts by directing excessive host-resources toward production of plasmid factors. Naturally occurring plasmids have therefore evolved regulatory mechanisms to restrict their copy-number in response to the volume of the cytoplasm. In many plasmid families, copy-number control is mediated by a small plasmid-specified RNA, which is continuously produced and rapidly degraded, to ensure that its concentration is proportional to the current plasmid copy-number. We show here that pSA564 from the RepA_N-family is regulated by a small antisense RNA (RNA1), which, when over-expressed in trans, blocks plasmid replication and cures the bacterial host. The 5' untranslated region (5'UTR) of the plasmid replication initiation gene (repA) potentially forms two mutually exclusive secondary structures, ON and OFF, where the latter both sequesters the repA ribosome binding site and acts as a rho-independent transcriptional terminator. Duplex formation between RNA1 and the 5'UTR shifts the equilibrium to favor the putative OFF-structure, enabling a single small RNA to down-regulate repA expression at both transcriptional and translational levels. We further examine which sequence elements on the antisense RNA and on its 5'UTR target are needed for this regulation. Finally, we identify the host-encoded exoribonucleases RNase J1 and J2 as the enzymes responsible for rapidly degrading the replication-inhibiting section of RNA1. This region accumulates and blocks RepA expression in the absence of either RNase J1 or J2, which are therefore essential host factors for pSA564 replication in Staphylococcus aureus.
Collapse
Affiliation(s)
- Vanessa Andrade Guimarães
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Le Scornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Armitano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ambre Jousselin
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| | - Caroline Manzano
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Redder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Paul Sabatier University, Toulouse, France
| |
Collapse
|
7
|
Saramago M, Bárria C, Costa VG, Souza CS, Viegas SC, Domingues S, Lousa D, Soares CM, Arraiano CM, Matos RG. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2. FEBS J 2021; 288:5130-5147. [PMID: 33705595 PMCID: PMC8237063 DOI: 10.1111/febs.15815] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
SARS‐CoV‐2 virus has triggered a global pandemic with devastating consequences. The understanding of fundamental aspects of this virus is of extreme importance. In this work, we studied the viral ribonuclease nsp14, one of the most interferon antagonists from SARS‐CoV‐2. Nsp14 is a multifunctional protein with two distinct activities, an N‐terminal 3’‐to‐5’ exoribonuclease (ExoN) and a C‐terminal N7‐methyltransferase (N7‐MTase), both critical for coronaviruses life cycle, indicating nsp14 as a prominent target for the development of antiviral drugs. In coronaviruses, nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein. We have performed a biochemical characterization of nsp14‐nsp10 complex from SARS‐CoV‐2. We confirm the 3’‐5’ exoribonuclease and MTase activities of nsp14 and the critical role of nsp10 in upregulating the nsp14 ExoN activity. Furthermore, we demonstrate that SARS‐CoV‐2 nsp14 N7‐MTase activity is functionally independent of the ExoN activity and nsp10. A model from SARS‐CoV‐2 nsp14‐nsp10 complex allowed mapping key nsp10 residues involved in this interaction. Our results show that a stable interaction between nsp10 and nsp14 is required for the nsp14‐mediated ExoN activity of SARS‐CoV‐2. We studied the role of conserved DEDD catalytic residues of SARS‐CoV‐2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function, contrasting to the functionality of these residues in other coronaviruses, which can have important implications regarding the specific pathogenesis of SARS‐CoV‐2. This work unraveled a basis for discovering inhibitors targeting specific amino acids in order to disrupt the assembly of this complex and interfere with coronaviruses replication.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vanessa G Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Caio S Souza
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
8
|
Layton E, Fairhurst AM, Griffiths-Jones S, Grencis RK, Roberts IS. Regulatory RNAs: A Universal Language for Inter-Domain Communication. Int J Mol Sci 2020; 21:E8919. [PMID: 33255483 PMCID: PMC7727864 DOI: 10.3390/ijms21238919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, microRNAs (miRNAs) have roles in development, homeostasis, disease and the immune response. Recent work has shown that plant and mammalian miRNAs also mediate cross-kingdom and cross-domain communications. However, these studies remain controversial and are lacking critical mechanistic explanations. Bacteria do not produce miRNAs themselves, and therefore it is unclear how these eukaryotic RNA molecules could function in the bacterial recipient. In this review, we compare and contrast the biogenesis and functions of regulatory RNAs in eukaryotes and bacteria. As a result, we discovered several conserved features and homologous components in these distinct pathways. These findings enabled us to propose novel mechanisms to explain how eukaryotic miRNAs could function in bacteria. Further understanding in this area is necessary to validate the findings of existing studies and could facilitate the use of miRNAs as novel tools for the directed remodelling of the human microbiota.
Collapse
Affiliation(s)
- Emma Layton
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore;
| | - Sam Griffiths-Jones
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| | - Ian S. Roberts
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (E.L.); (S.G.-J.)
| |
Collapse
|
9
|
|
10
|
Saramago M, Robledo M, Matos RG, Jiménez-Zurdo JI, Arraiano CM. Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis. Front Genet 2018; 9:350. [PMID: 30210532 PMCID: PMC6121014 DOI: 10.3389/fgene.2018.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the ribonuclease (RNase) III family of enzymes are metal-dependent double-strand specific endoribonucleases. They are ubiquitously found and eukaryotic RNase III-like enzymes include Dicer and Drosha, involved in RNA processing and RNA interference. In this work, we have addressed the primary characterization of RNase III from the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. The S. meliloti rnc gene does encode an RNase III-like protein (SmRNase III), with recognizable catalytic and double-stranded RNA (dsRNA)-binding domains that clusters in a branch with its α–proteobacterial counterparts. Purified SmRNase III dimerizes, is active at neutral to alkaline pH and behaves as a strict metal cofactor-dependent double-strand endoribonuclease, with catalytic features distinguishable from those of the prototypical member of the family, the Escherichia coli ortholog (EcRNase III). SmRNase III prefers Mn2+ rather than Mg2+ as metal cofactor, cleaves the generic structured R1.1 substrate at a site atypical for RNase III cleavage, and requires higher cofactor concentrations and longer dsRNA substrates than EcRNase III for optimal activity. Furthermore, the ultraconserved E125 amino acid was shown to play a major role in the metal-dependent catalysis of SmRNase III. SmRNase III degrades endogenous RNA substrates of diverse biogenesis with different efficiency, and is involved in the maturation of the 23S rRNA. SmRNase III loss-of-function neither compromises viability nor alters morphology of S. meliloti cells, but influences growth, nodulation kinetics, the onset of nitrogen fixation and the overall symbiotic efficiency of this bacterium on the roots of its legume host, alfalfa, which ultimately affects plant growth. Our results support an impact of SmRNase III on nodulation and symbiotic nitrogen fixation in plants.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnología Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta Robledo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Rute G Matos
- Instituto de Tecnología Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José I Jiménez-Zurdo
- Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Cecília M Arraiano
- Instituto de Tecnología Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
11
|
Jiménez-Zurdo JI, Robledo M. RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view. RNA Biol 2017; 14:1672-1677. [PMID: 28805544 DOI: 10.1080/15476286.2017.1356565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide global functional and mechanistic insights into complex sRNA regulatory networks. The legume endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in which riboregulation is expected to play important adaptive functions. Here, we discuss current knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of single- and double-stranded RNA molecules.
Collapse
Affiliation(s)
- José I Jiménez-Zurdo
- a Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín , Consejo Superior de Investigaciones Científicas (CSIC) , Granada , Spain
| | - Marta Robledo
- a Grupo de Ecología Genética de la Rizosfera, Estación Experimental del Zaidín , Consejo Superior de Investigaciones Científicas (CSIC) , Granada , Spain
| |
Collapse
|
12
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
13
|
Mihăşan M, Brandsch R. A predicted T4 secretion system and conserved DNA-repeats identified in a subset of related Arthrobacter plasmids. Microbiol Res 2016; 191:32-7. [PMID: 27524651 DOI: 10.1016/j.micres.2016.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BLAST analysis of pAO1 ORFs of Arthrobacter nicotinovorans revealed 12 ORFs, including the ORF of a transcriptional regulator, predicted to encode the components of a T4-secretion system involved in bacterial conjugation. These ORFs were conserved and showed synteny among 14 Arthrobacter plasmids. A DNA repeat of about 370 nucleotides was found to be present 5' to the pAO1 ORFs of DUF4192-, DprA- and ParB-like proteins. Similar repeats were present in identical positions on 12 additional Arthrobacter plasmids. The DNA repeats on a particular plasmid are highly identical duplications. The DNA repeats contain alternating GC and AT reach sequences, potential protein DNA-binding sites and purine reach stretches. The sequences end with 5'ATG.AAC3' which results in the amino terminal sequence methionine (M) and asparagine (N) for all predicted DprA, DUF4192 and ParB proteins. The presences of conserved ORFs of a T4-secretion system and of similar DNA repeats suggest that these Arthrobacter plasmids are related and evolved from a common ancestor. The functional significance of the DNA repeats in a coordinated common mechanism of regulation of expression of the dprA-(involved in natural competence), parB- (involved in plasmid partitioning) and duf4192- (unknown function in plasmid life cycle) genes remains to be established.
Collapse
Affiliation(s)
- Marius Mihăşan
- Alexandru-Ioan-Cuza University, Faculty of Biology, Biochemistry Laboratory, Bulevardul Carol I, Nr. 20 A, 700506, Iasi, Romania.
| | - Roderich Brandsch
- Albert-Ludwigs University, Institute of Biochemistry and Molecular Biology, Stefan-Meier-Sir. 17, D-79104, Germany.
| |
Collapse
|
14
|
Mendes JS, Santiago ADS, Toledo MAS, Rosselli-Murai LK, Favaro MTP, Santos CA, Horta MAC, Crucello A, Beloti LL, Romero F, Tasic L, de Souza AA, de Souza AP. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity. PLoS One 2015; 10:e0145765. [PMID: 26694028 PMCID: PMC4687846 DOI: 10.1371/journal.pone.0145765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023] Open
Abstract
Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.
Collapse
Affiliation(s)
- Juliano S. Mendes
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - André da S. Santiago
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Luciana K. Rosselli-Murai
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Marianna T. P. Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Clelton A. Santos
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Maria Augusta C. Horta
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Lilian L. Beloti
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
| | - Fabian Romero
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-970
| | - Ljubica Tasic
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-970
| | | | - Anete P. de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil, CEP 13083-875
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brazil, CEP 13083-862
| |
Collapse
|
15
|
A series of medium and high copy number arabinose-inducible Escherichia coli expression vectors compatible with pBR322 and pACYC184. Plasmid 2015; 81:21-6. [PMID: 26021570 DOI: 10.1016/j.plasmid.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
The original pBAD24 plasmid and the derived lower copy number (the pBAD322 series) expression vectors have been widely used in Escherichia coli, Salmonella enterica, and related bacteria. However, a flexible pBAD expression system has been available only in pMB1 (ColE1) vectors. We report a series of pBAD vectors that replicate using the origin of plasmid RSF1030 that are compatible with pMB1 (ColE1) and p15A (pACYC) vectors. Both high (≥pBAD24) and medium (~pBAD322) copy number plasmids encoding resistance to ampicillin, chloramphenicol, kanamycin, tetracycline, spectinomycin/streptomycin, gentamycin, or trimethoprim are available.
Collapse
|