1
|
Elijovich F, Kirabo A, Laffer CL. Salt Sensitivity of Blood Pressure in Black People: The Need to Sort Out Ancestry Versus Epigenetic Versus Social Determinants of Its Causation. Hypertension 2024; 81:456-467. [PMID: 37767696 PMCID: PMC10922075 DOI: 10.1161/hypertensionaha.123.17951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Race is a social construct, but self-identified Black people are known to have higher prevalence and worse outcomes of hypertension than White people. This may be partly due to the disproportionate incidence of salt sensitivity of blood pressure in Black people, a cardiovascular risk factor that is independent of blood pressure and has no proven therapy. We review the multiple physiological systems involved in regulation of blood pressure, discuss what, if anything is known about the differences between Black and White people in these systems and how they affect salt sensitivity of blood pressure. The contributions of genetics, epigenetics, environment, and social determinants of health are briefly touched on, with the hope of stimulating further work in the field.
Collapse
Affiliation(s)
- Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Bosma EK, Darwesh S, Habani YI, Cammeraat M, Serrano Martinez P, van Breest Smallenburg ME, Zheng JY, Vogels IMC, van Noorden CJF, Schlingemann RO, Klaassen I. Differential roles of eNOS in late effects of VEGF-A on hyperpermeability in different types of endothelial cells. Sci Rep 2023; 13:21436. [PMID: 38052807 PMCID: PMC10698188 DOI: 10.1038/s41598-023-46893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Yasmin I Habani
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maxime Cammeraat
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Mathilda E van Breest Smallenburg
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Zhuo J, Hui J, Chi H, Guo Y, Lu G. Near-infrared Fluorescent Probes with Long-acting Cyclic Monitoring and Effectively Eliminating Peroxynitrite. Chem Asian J 2023; 18:e202300717. [PMID: 37697898 DOI: 10.1002/asia.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Two through-bond energy transfer fluorescent probes with a dihydroxyl naphthyl-pyrenyl conjugated system were synthesized for long-acting cyclic monitoring and eliminating peroxynitrite (ONOO- ). The probes exhibit large Stokes shifts (230 or 280 nm) and the fluorescence at 620 or 652 nm rapidly change in response to continuously variable concentrations of ONOO- under physiological conditions. The probes show good reversibility and can rapidly monitor the concentration changes of ONOO- in real time. In addition, with the additions of the probes, the decomposition of ONOO- is greatly accelerated. Therefore, the probes can effectively eliminate the excess ONOO- as well as sensing it. The biological studies showed that the probes can effectively and reversibly eliminate both exogenous and endogenous ONOO- in-situ as well as sensing its changes in cells, which can help to maintain the normal physiological concentration of ONOO- in organisms. This is the first system that a probe achieves multifunction including real-time detection, long-acting cyclic monitoring and in-situ elimination, thereby maintaining a normal physiological balance for ONOO- .
Collapse
Affiliation(s)
- Jiezhen Zhuo
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Jin Hui
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Haijun Chi
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Yuxin Guo
- School of Chemical & Environmental Engineering, Liaoning University of Technology, 169 Shiying Road, Jinzhou, Liaoning, 121001, P. R. China
| | - Gonghao Lu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
4
|
Lopes PDD, de Assis N, de Araújo NF, Moreno OLM, Jorge KTDOS, E Castor MGM, Teixeira MM, Soriani FM, Capettini LDSA, Bonaventura D, Cau SBDA. COX/iNOS dependence for angiotensin-II-induced endothelial dysfunction. Peptides 2022; 157:170863. [PMID: 36028074 DOI: 10.1016/j.peptides.2022.170863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
Vascular dysfunction induced by angiotensin-II can result from direct effects on vascular and inflammatory cells and indirect hemodynamic effects. Using isolated and functional cultured aortas, we aimed to identify the effects of angiotensin-II on cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS) and evaluate their impact on vascular reactivity. Aortic rings from mice were incubated overnight in culture medium containing angiotensin-II (100 nmol/L) or vehicle to induce vascular disfunction. Vascular reactivity of cultured arteries was evaluated in a bath chamber. Immunofluorescence staining for COX-1 and COX-2 was performed. Nitric oxide (NO) formation was approached by the levels of nitrite, a NO end product, and using a fluorescent probe (DAF). Oxidative and nitrosative stress were determined by DHE fluorescence and nitrotyrosine staining, respectively. Arteries cultured with angiotensin-II showed impairment of endothelium-dependent relaxation, which was reversed by the AT1 receptor antagonist. Inhibition of COX and iNOS restored vascular relaxation, suggesting a common pathway in which angiotensin-II triggers COX and iNOS, leading to vasoconstrictor receptors activation. Moreover, using selective antagonists, TP and EP were identified as the receptors involved in this response. Endothelium-dependent contractions of angiotensin-II-cultured aortas were blunted by ibuprofen, and increased COX-2 immunostaining was found in the arteries, indicating endothelium release of vasoconstrictor prostanoids. Angiotensin-II induced increased reactive oxygen species and NO production. An iNOS inhibitor prevented NO enhancement and nitrotyrosine accumulation in arteries stimulated with angiotensin-II. These results confirm that angiotensin-II causes vascular inflammation that culminates in endothelial dysfunction in an iNOS and COX codependent manner.
Collapse
Affiliation(s)
- Patrícia das Dores Lopes
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Naiara de Assis
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Natália Ferreira de Araújo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Olga Lúcia Maquilon Moreno
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Mauro Martins Teixeira
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
5
|
The Biochemical Markers Associated with the Occurrence of Coronary Spasm. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4834202. [PMID: 31637257 PMCID: PMC6766173 DOI: 10.1155/2019/4834202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/28/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
Coronary artery spasm (CAS) is one of the mechanisms of angina pectoris. Unlike the diagnosis of acute myocardial infarction which is based on the elevation of cardiac markers, the diagnosis of CAS is difficult and sometimes requires sophisticated and risky provocative test which is not widely accepted in China. There is no well-established biomarker for the diagnosis or prediction of CAS. However, there are some biomarkers proven to be associated with the occurrence of CAS. For example, inflammatory factors including C-reactive protein and cytokines, lipoprotein (a), and cystatin-C might be precipitating factor for CAS. Rho-kinase as a mediator involved in multiple mechanisms of CAS, serotonin, and endothelin-1 as powerful vasoconstrictors leading to vasospasm were all observed being elevated in patients with CAS. Thioredoxin and nitrotyrosine reflected the oxidative status and could be observed to be elevated after the occurrence of CAS. In some cases doubted to be CAS without the evidence of provocative test, the blood test for the biomarkers mentioned above could be useful for the diagnosis of CAS.
Collapse
|
6
|
Lee J, Lee S, Zhang H, Hill MA, Zhang C, Park Y. Interaction of IL-6 and TNF-α contributes to endothelial dysfunction in type 2 diabetic mouse hearts. PLoS One 2017; 12:e0187189. [PMID: 29095915 PMCID: PMC5667841 DOI: 10.1371/journal.pone.0187189] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), are individually considered as important contributors to endothelial dysfunction in obesity and type 2 diabetes (T2D). However, their interactions in coronary arteriole endothelial dysfunction are uncertain. Therefore, this study aimed to determine the effects of TNF-α and IL-6 interactions on coronary endothelial dysfunction in experimental T2D. METHODS The studies used wild type (WT), diabetic mice (db/db), db/db null for TNF (dbTNF-/dbTNF-), and db/db mice treated with neutralizing antibody to IL-6 (anti-IL-6). Endothelium-dependent (acetylcholine [ACh], or luminal flow-induced shear stress) and endothelium-independent (sodium nitroprusside [SNP]) vasodilation of isolated and pressurized coronary arterioles were determined. Quantitative PCR, Western blot, and immunofluorescence staining were utilized for mechanistic studies. RESULTS Relative to WT, arteriolar dilation to both ACh and flow was attenuated in db/db mice and dbTNF-/dbTNF-. Treatment of dbTNF-/dbTNF- and db/db mice with anti-IL-6 improved arteriolar dilation compared to db/db mice. Immunofluorescence staining illustrated localization of IL-6 within the endothelial cells of coronary arterioles. In db/db mice, mRNA and protein expression of IL-6 and superoxide (O2-) production were higher, but reduced by anti-IL-6 treatment. Also, in db/db mice, mRNA and protein expression of TNF-α suppressed by the anti-IL-6 treatment and the reduced expression of mRNA and protein expression of IL-6 by the genetic deletion of TNF-α both supported a reciprocal regulation between TNF-α and IL-6. Superoxide dismutase 2 (SOD2) expression and phosphorylation of eNOS (p-eNOS/eNOS) were lower in db/db mice coronary arterioles and were restored in db/db+Anti-IL-6 and dbTNF-/dbTNF- mice. CONCLUSION The interactions between TNF-α and IL-6 exacerbate oxidative stress and reduce phosphorylation of eNOS, thereby contributing to coronary endothelial dysfunction in T2D mice.
Collapse
Affiliation(s)
- Jonghae Lee
- Department of Health and Human Performance, University of Houston, Houston, Texas, United States of America
| | - Sewon Lee
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Medical Pharmacology, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Division of Sport Science and Sport Science Institute, Incheon National University, Incheon, South Korea
| | - Hanrui Zhang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Medical Pharmacology, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, United States of America
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Medical Pharmacology, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Cuihua Zhang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Medical Pharmacology, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Departments of Internal Medicine, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Physiology and Nutritional Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Yoonjung Park
- Department of Health and Human Performance, University of Houston, Houston, Texas, United States of America
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
7
|
Rychter M, Gaucher C, Boudier A, Leroy P, Lulek J. S -Nitrosothiols—NO donors regulating cardiovascular cell proliferation: Insight into intracellular pathway alterations. Int J Biochem Cell Biol 2016; 78:156-161. [DOI: 10.1016/j.biocel.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/20/2023]
|
8
|
Xu C, Wang R, Zhang YF, Cheng P, Choi MMF, Poon K. Stress response of Chlorella pyrenoidosa to nitro-aromatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3784-3793. [PMID: 25266057 DOI: 10.1007/s11356-014-3582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
Handling of two nitro-aromatic compounds, 4-nitroaniline (4NA) and 4-nitrophenol (4NP), simultaneously by Chlorella pyrenoidosa was investigated. Algae would secrete or degrade nitro-aromatic compounds depending on different environmental conditions, in which the mode of handling was determined by the relative formation and degradation rate of the compound. Repeated intermittent trigger with externally added 4NA would induce the continuous secretion of 4NA by algae. Simultaneous exposure of both 4NA and 4NP to algae at normal condition would induce the algae to secrete both compounds. An increase in 4NA exposure concentration would elevate both 4NA and 4NP secretion, and that would be inhibited by the stress conditions of starving or lack of oxygen. Increased 4NA degradation per production rate induced by starving or lack of oxygen might explain the subsequent decrease in 4NA secretion in the presence of 4NP in algae. For 4NP in the presence of 4NA, secretion at normal condition was completely stopped and turned to degradation mode in stress conditions. The decreased formation and increased degradation of 4NP during starving for replenishing energy would explain the net degradation of 4NP in starving condition. The condition of lack of oxygen would inhibit the 4NP formation from 4NA via oxidative deamination, while the degradation of 4NP might not be significantly affected because alternative pathway of degradation via nitro-reduction was available. It may lead to the degradation rate exceeding the formation and explain the net degradation of 4NP in the condition of lack of oxygen.
Collapse
Affiliation(s)
- Chang Xu
- Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
9
|
Kangussu LM, Olivon VC, Arifa RDDN, Araújo N, Reis D, Assis MTDA, Soriani FM, de Souza DDG, Bendhack LM, Bonaventura D. Enhancement on reactive oxygen species and COX-1 mRNA levels modulate the vascular relaxation induced by sodium nitroprusside in denuded mice aorta. Fundam Clin Pharmacol 2015; 29:150-63. [PMID: 25619310 DOI: 10.1111/fcp.12103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the modulation of nitric oxide/reactive oxygen species in sodium nitroprusside relaxation in mice aorta. Sodium nitroprusside induced relaxation in endothelium-intact (e+) and endothelium-denuded (e-) aortas with greater potency in e+ than in e-. The nitric oxide synthase inhibitor did not alter the sodium nitroprusside relaxation in both e+ and e- aortas. However, the superoxide anion scavenger abolished the difference in sodium nitroprusside potency between e+ and e-. Sodium nitroprusside reduced dihydroethidium-derived fluorescent products in both groups; however, the difference between intact and denuded mice aorta remains. The glutathione levels and basal antioxidant activity of superoxide dismutase were reduced in e- aorta when compared with e+, and these values were not altered by sodium nitroprusside. Confirming these results, the levels of lipid peroxidation in e+ were significantly lower when compared to e-, and these values were not altered by sodium nitroprusside. The sodium nitroprusside potency in the presence of a nonselective COX inhibitor or the EP/DP prostaglandin receptor antagonist in endothelium denuded was similar to that in intact mice aorta. Based on these results, we performed the COX-1 and COX-2 mRNA level studies, and in denuded mice aorta, there was an upregulation in COX-1 mRNA levels. Taken together, our findings show that in the absence of endothelium, there is an enhancement of superoxide levels, leading to GSH consumption and higher levels of lipid peroxidation, showing an intense redox status. Furthermore, in denuded mice aorta, there was an upregulation of COX-1 mRNA expression, leading to vasoconstrictor prostanoids synthesis. The interaction of vasoconstrictor prostanoids with its receptors EP/DP negatively modulates the vascular relaxation induced by SNP in denuded mice aorta.
Collapse
Affiliation(s)
- Lucas M Kangussu
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte-MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Increased levels of the oxidative stress marker, nitrotyrosine in patients with provocation test-induced coronary vasospasm. J Cardiol 2014; 64:86-90. [DOI: 10.1016/j.jjcc.2013.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/30/2013] [Indexed: 11/24/2022]
|
11
|
Daiber A, Daub S, Bachschmid M, Schildknecht S, Oelze M, Steven S, Schmidt P, Megner A, Wada M, Tanabe T, Münzel T, Bottari S, Ullrich V. Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications. Int J Mol Sci 2013; 14:7542-70. [PMID: 23567270 PMCID: PMC3645702 DOI: 10.3390/ijms14047542] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite.
Collapse
Affiliation(s)
- Andreas Daiber
- 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; E-Mails: (S.D.); (M.O.); (S.S.); (T.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-6131-176-280, Fax: +49-6131-176-293
| | - Steffen Daub
- 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; E-Mails: (S.D.); (M.O.); (S.S.); (T.M.)
| | - Markus Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, MA 02118, USA; E-Mail:
| | - Stefan Schildknecht
- Department of Biology, University of Konstanz, Konstanz 78457, Germany; E-Mails: (S.S.); (P.S.); (V.U.)
| | - Matthias Oelze
- 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; E-Mails: (S.D.); (M.O.); (S.S.); (T.M.)
| | - Sebastian Steven
- 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; E-Mails: (S.D.); (M.O.); (S.S.); (T.M.)
| | - Patrick Schmidt
- Department of Biology, University of Konstanz, Konstanz 78457, Germany; E-Mails: (S.S.); (P.S.); (V.U.)
| | - Alexandra Megner
- Department of Biology, University of Konstanz, Konstanz 78457, Germany; E-Mails: (S.S.); (P.S.); (V.U.)
| | - Masayuki Wada
- Department of Pharmacology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; E-Mail:
| | - Tadashi Tanabe
- Department of Pharmacology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan; E-Mail:
| | - Thomas Münzel
- 2nd Medical Clinic, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany; E-Mails: (S.D.); (M.O.); (S.S.); (T.M.)
| | - Serge Bottari
- Laboratory of Fundamental and Applied, Bioenergetics, INSERM U1055, Grenoble Universités and Pôle de Biologie, CHU, Grenoble 38400, France; E-Mail:
| | - Volker Ullrich
- Department of Biology, University of Konstanz, Konstanz 78457, Germany; E-Mails: (S.S.); (P.S.); (V.U.)
| |
Collapse
|
12
|
Bachschmid MM, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen RA, Pimental D, Loo BVD. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med 2013; 45:17-36. [PMID: 22380696 PMCID: PMC3717565 DOI: 10.3109/07853890.2011.645498] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the 'free radical theory of aging' but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis.
Collapse
Affiliation(s)
- Markus M Bachschmid
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Burewicz A, Dawoud H, Jiang LL, Malinski T. Nitric Oxide/Peroxynitrite Redox Imbalance in Endothelial Cells Measured with Amperometric Nanosensors. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajac.2013.410a1004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Sedoris KC, Gozal E, Ovechkin AV, Theile AR, Roberts AM. Interplay of endothelial and inducible nitric oxide synthases modulates the vascular response to ischaemia-reperfusion in the rabbit lung. Acta Physiol (Oxf) 2012; 204:331-43. [PMID: 21827639 DOI: 10.1111/j.1748-1716.2011.02348.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIM Lung ischaemia-reperfusion induces nitric oxide synthesis and reactive nitrogen species, decreasing nitric oxide bioavailability. We hypothesized that in the ventilated lung, this process begins during ischaemia and intensifies with reperfusion, contributing to ischaemia-reperfusion-induced pulmonary vasoconstriction. The aim was to determine whether ischaemia-reperfusion alters inducible and endothelial nitric oxide synthase expression/activity, reactive nitrogen species generation, and nitric oxide bioavailability, potentially affecting pulmonary perfusion. METHODS Ischaemia-reperfusion was induced for various times in anesthetized rabbits with ventilated lungs by reversibly occluding the right pulmonary artery and initiating reperfusion. Nitric oxide synthase activity/expression and phosphorylation, reactive nitrogen species generation and total nitrate/nitrite were determined in lung tissue. RESULTS Inducible nitric oxide synthase expression and activity, and reactive nitrogen species formation coincided with increased pulmonary vascular resistance during reperfusion and increased with ischaemia duration, further increasing after 2-h reperfusion. Total nitrate/nitrite also increased with ischaemia but decreased after 2-h reperfusion. Pre-treatment with an inducible nitric oxide synthase inhibitor (1400W; Cayman Chemical Company, Ann Arbor, MI, USA) attenuated inducible nitric oxide synthase activity, reactive nitrogen species generation and pulmonary vascular resistance, but did not affect total nitrate/nitrite. Endothelial nitric oxide synthase expression was unchanged by ischaemia-reperfusion; however, its phosphorylation on serine 1177 and dephosphorylation on threonine 495 was uncoupled, suggesting decreased endothelial nitric oxide synthase activity. 1400W prevented uncoupling of endothelial nitric oxide synthase phosphorylation, maintaining its activity during reperfusion. CONCLUSION Ischaemia-reperfusion up-regulates inducible nitric oxide synthesis and/activity, which coincides with reduced endothelial nitric oxide synthase activity as suggested by its uncoupling and may contribute to ischaemia-reperfusion-induced pulmonary vasoconstriction.
Collapse
Affiliation(s)
- K C Sedoris
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | | | | | | | | |
Collapse
|
15
|
Kusmic C, L'abbate A, Sambuceti G, Drummond G, Barsanti C, Matteucci M, Cao J, Piccolomini F, Cheng J, Abraham NG. Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling. J Cell Biochem 2010; 109:1033-44. [PMID: 20108250 DOI: 10.1002/jcb.22486] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies related impaired myocardial microcirculation in diabetes to oxidative stress and endothelial dysfunction. Thus, this study was aimed to determine the effect of up-regulating pAMPK-pAKT signaling on coronary microvascular reactivity in the isolated heart of diabetic mice. We measured coronary resistance in wild-type and streptozotocin (STZ)-treated mice, during perfusion pressure changes. Glucose, insulin, and adiponectin levels in plasma and superoxide formation, NOx levels and heme oxygenase (HO) activity in myocardial tissue were determined. In addition, the expression of HO-1, 3-nitrotyrosine, pLKB1, pAMPK, pAKT, and peNOS proteins in control and diabetic hearts were measured. Coronary response to changes in perfusion pressure diverged from control in a time-dependent manner following STZ administration. The responses observed at 28 weeks of diabetes (the maximum time examined) were mimicked by L-NAME administration to control animals and were associated with a decrease in serum adiponectin and myocardial pLKB1, pAMPK, pAKT, and pGSK-3 expression. Cobalt protoporphyrin treatment to induce HO-1 expression reversed the microvascular reactivity seen in diabetes towards that of controls. Up-regulation of HO-1 was associated with an increase in adiponectin, pLKB1, pAKT, pAMPK, pGSK-3, and peNOS levels and a decrease in myocardial superoxide and 3-nitrotyrosine levels. In the present study we describe the time course of microvascular functional changes during the development of diabetes and the existence of a unique relationship between the levels of serum adiponectin, pLKB1, pAKT, and pAMPK activation in diabetic hearts. The restoration of microvascular function suggests a new therapeutic approach to even advanced cardiac microvascular derangement in diabetes.
Collapse
|
16
|
Schildknecht S, Ullrich V. Peroxynitrite as regulator of vascular prostanoid synthesis. Arch Biochem Biophys 2009; 484:183-9. [DOI: 10.1016/j.abb.2008.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/20/2008] [Indexed: 01/17/2023]
|
17
|
Abstract
Along with the growing heterogeneity of the American population, ethnic/racial disparity is becoming a clear health issue in the United States. The awareness of ethnic/racial disparities has been growing because of considerable data gathered from recent clinical and epidemiological studies. These studies have highlighted the importance of addressing these differences in the diagnosis and treatment of various diseases potentially according to race. It is becoming particularly clear that there is a 2- to 3-fold racial difference in certain cardiovascular diseases (eg, preeclampsia) associated with dysfunctional nitric oxide-mediated vasodilation. In this review, the authors summarize the current literature on racial disparities in nitric oxide-mediated vasodilation in relation to cardiovascular health with an emphasis on vascular nitric oxide bioavailability as a balance between production via endothelial nitric oxide synthase and degradation through reactive oxygen species. The major hypotheses postulated on the biological basis of these differences are also highlighted.
Collapse
|
18
|
Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K. Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. PLANT & CELL PHYSIOLOGY 2006; 47:689-97. [PMID: 16556649 DOI: 10.1093/pcp/pcj038] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxynitrite (ONOO(-)) is a compound formed by reaction of superoxide (O(2) (-)) with nitric oxide (NO) and is expected to possess characteristics of both O(2) (-) reactivity and NO mobility in order to function as a signal molecule. Although there are several reports that describe the role of ONOO(-) in defense responses in plants, it has been very difficult to detect ONOO(-) in bioimaging due to its short half-life or paucity of methods for ONOO(-)-specific detection among reactive oxygen species or free radicals. Aminophenyl fluorescein (APF), a recently developed novel fluorophore for direct detection of ONOO(-) in bioimaging, was used for intracellular ONOO(-) detection. ONOO(-) generation in tobacco BY-2 cells treated with INF1, the major elicitin secreted by the late blight pathogen Phytophthora infestans, occurred within 1 h and reached a maximum level at 6-12 h after INF1 treatment. Urate, a ONOO(-) scavenger, abolished INF1-induced ONOO(-) generation. It is well known that ONOO(-) reacts with tyrosine residues in proteins to form nitrotyrosine in a nitration reaction as an ONOO(-)-specific reaction. Western blot analysis using anti-nitrotyrosine antibodies recognized nitrotyrosine-containing proteins in 20 and 50 kDa bands in BY-2 protein extract containing SIN-1 [3-(4-morpholinyl) sydnonimine hydrochloride; an ONOO(-) donor]. These bands were also recognized in INF1-treated BY-2 cells and were found to be slightly suppressed by urate. Our study is the first to report ONOO(-) detection and tyrosine nitration in defense responses in plants.
Collapse
Affiliation(s)
- Syuhei Saito
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
19
|
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule synthesized from L-arginine and oxygen. The process is catalyzed by NO synthase (NOS), an enzyme expressed in both constitutive (endothelial, neuronal) and inducible forms. Uncoupling of constitutive NOS leads to overproduction of superoxide (O2-) and peroxynitrite (ONOO-), 2 potent oxidants. Nanosensing techniques have been developed to monitor the physiology of NO in the beating heart in vivo. These methods involve the application of nanosensors to monitor real-time dynamics of NO production in the heart as well as the dynamics of oxidative species (oxidative stress) produced in the failing heart. Results of a recent study using nanotechnology demonstrated that African Americans have an inherent imbalance of NO, O2-, and ONOO- production in the endothelium. The overproduction of O2- and ONOO- triggers the release of aggressive radicals and damages cardiac muscle (necrosis), which may explain why African Americans are at greater risk for developing cardiovascular diseases, such as hypertension and heart failure, and are more likely to have complications than European Americans. Potential therapeutic strategies to prevent or ameliorate damage to the heart during cardiac events are prevention of O2- and ONOO- production, supplementation of NO (NO donors), and scavenging of O2- (antioxidants).
Collapse
Affiliation(s)
- Tadeusz Malinski
- Department of Biochemistry, Ohio University, Athens, Ohio 45710, USA.
| |
Collapse
|