1
|
Chao CF, Pesch YY, Yu H, Wang C, Aristizabal MJ, Huan T, Tanentzapf G, Rideout E. An important role for triglyceride in regulating spermatogenesis. eLife 2024; 12:RP87523. [PMID: 38805376 PMCID: PMC11132686 DOI: 10.7554/elife.87523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.
Collapse
Affiliation(s)
- Charlotte F Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Yanina-Yasmin Pesch
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Huaxu Yu
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Chenjingyi Wang
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | | | - Tao Huan
- Department of Chemistry, The University of British ColumbiaVancouverCanada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| | - Elizabeth Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British ColumbiaVancouverCanada
| |
Collapse
|
2
|
Varma S, Molangiri A, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Fetal Exposure to Endocrine Disrupting-Bisphenol A (BPA) Alters Testicular Fatty Acid Metabolism in the Adult Offspring: Relevance to Sperm Maturation and Quality. Int J Mol Sci 2023; 24:ijms24043769. [PMID: 36835180 PMCID: PMC9958878 DOI: 10.3390/ijms24043769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Daily exposure to bisphenols can affect reproductive functions due to their pseudo-estrogenic and/or anti-androgenic effects. Testicular lipids contain high levels of polyunsaturated fatty acids necessary for sperm maturity, motility, and spermatogenesis. Whether prenatal exposure to bisphenols alters testicular fatty acid metabolism in adult offspring is unknown. Pregnant Wistar rats were gavaged from gestational day 4 to 21 with BPA and BPS (0.0, 0.4, 4.0, 40.0 μg/kg bw/day). Despite increased body and testis weight, the total testicular cholesterol, triglyceride, and plasma fatty acids were unaffected in the offspring. Lipogenesis was upregulated by increased SCD-1, SCD-2, and expression of lipid storage (ADRP) and trafficking protein (FABP4). The arachidonic acid, 20:4 n-6 (ARA) and docosapentaenoic acid, 22:5 n-6 (DPA) levels were decreased in the BPA-exposed testis, while BPS exposure had no effects. The expression of PPARα, PPARγ proteins, and CATSPER2 mRNA were decreased, which are important for energy dissipation and the motility of the sperm in the testis. The endogenous conversion of linoleic acid,18:2 n-6 (LA), to ARA was impaired by a reduced ARA/LA ratio and decreased FADS1 expression in BPA-exposed testis. Collectively, fetal BPA exposure affected endogenous long-chain fatty acid metabolism and steroidogenesis in the adult testis, which might dysregulate sperm maturation and quality.
Collapse
Affiliation(s)
- Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Archana Molangiri
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Suryam Reddy Kona
- Lipid Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Ahamed Ibrahim
- Lipid Chemistry Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India
- Correspondence: ; Tel./Fax: +91-40-27197336
| |
Collapse
|
3
|
Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun Chem 2022; 5:162. [PMID: 36698019 PMCID: PMC9814143 DOI: 10.1038/s42004-022-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry-based untargeted lipidomics has revealed the lipidome atlas of living organisms at the molecular species level. Despite the double bond (C = C) position being a crucial factor in biological system, the C = C defined structures have not yet been characterized comprehensively. Here, we present an approach for C = C position-resolved untargeted lipidomics using a combination of oxygen attachment dissociation and computational mass spectrometry to increase the annotation rate. We validated the accuracy of our platform as per the authentic standards of 85 lipids and the biogenic standards of 52 molecules containing polyunsaturated fatty acids (PUFAs) from the cultured cells fed with various fatty acid-enriched media. By analyzing human and mice-derived samples, we characterized 648 unique lipids with the C = C position-resolved level encompassing 24 lipid subclasses defined by LIPIDMAPS. Our platform also illuminated the unique profiles of tissue-specific lipids containing n-3 and/or n-6 very long-chain PUFAs (carbon [Formula: see text] 28 and double bonds [Formula: see text] 4) in the eye, testis, and brain of the mouse.
Collapse
|
4
|
Gupta VK, Srivastava SK, Ghosh SK, Srivastava N, Singh G, Verma MR, Katiyar R, Muthu R, Bhutia L, Kumar A, Singh R. Effect of endogenous hormones, antisperm antibody and oxidative stress on semen quality of crossbred bulls. Anim Biotechnol 2022; 33:1441-1448. [PMID: 33866921 DOI: 10.1080/10495398.2021.1905656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study was designed to evaluate the effect of factors like hormones, antisperm antibody (ASA), and oxidative stress and its relation with semen quality in crossbred bulls. Ejaculates from two bulls were categorized into good (n = 12) and poor (n = 12) based on initial progressive motility, that is, ≥70% and ≤50%, respectively. The level of hormones like Testosterone (p < 0.05) and PGE2 (p < 0.01) was significantly higher in good-quality ejaculates compared to poor-quality ejaculates; however, estradiol (p < 0.05), progesterone, oxidative stress, and ASAs were significantly higher (p < 0.01) in poor-quality ejaculates compared to good-quality ejaculates. Therefore, it could be concluded that oxidative stress and hormonal imbalance might have resulted in high number of dead and defective spermatozoa which was ultimately responsible for poor quality semen ejaculates.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - S K Srivastava
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - S K Ghosh
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - N Srivastava
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - G Singh
- Division of Animal Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, India
| | - M R Verma
- Division of Livestock Economics and Statistics, Indian Veterinary Research Institute, Izatnagar, India
| | - Rahul Katiyar
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - Ramamoorthy Muthu
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - L Bhutia
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - Abhishek Kumar
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - Rohit Singh
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
5
|
Cloning and Molecular Characterization of HSL and Its Expression Pattern in HPG Axis and Testis during Different Stages in Bactrian Camel. Curr Issues Mol Biol 2022; 44:3779-3791. [PMID: 36005155 PMCID: PMC9406428 DOI: 10.3390/cimb44080259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key enzyme in animal fat metabolism and is involved in the rate-limiting step of catalyzing the decomposition of fat and cholesterol. It also plays an important regulatory role in maintaining seminiferous epithelial structure, androgen synthesis and primordial germ cell differentiation. We previously reported that HSL is involved the synthesis of steroids in Bactrian camels, although it is unclear what role it plays in testicular development. The present study was conducted to characterize the biological function and expression pattern of the HSL gene in the hypothalamic pituitary gonadal (HPG) axis and the development of testis in Bactrian camels. We analyzed cloning of the cDNA sequence of the HSL gene of Bactrian camels by RT-PCR, as well as the structural features of HSL proteins, using bioinformatics software, such as ProtParam, TMHMM, Signal P 4.1, SOPMA and MEGA 7.0. We used qRT-PCR, Western blotting and immunofluorescence staining to clarify the expression pattern of HSL in the HPG axis and testis of two-week-old (2W), two-year-old (2Y), four-year-old (4Y) and six-year-old (6Y) Bactrian camels. According to sequence analysis, the coding sequence (CDS) region of the HSL gene is 648 bp in length and encodes 204 amino acids. According to bioinformatics analysis, the nucleotide and amino acid sequence of Bactrian camel HSL are most similar to those of Camelus pacos and Camelusdromedarius, with the lowest sequence similarity with Mus musculus. In adult Bactrian camel HPG axis tissues, both HSL mRNA and protein expression were significantly higher in the testis than in other tissues (hypothalamus, pituitary and pineal tissues) (p < 0.05). The expression of mRNA in the testis increased with age and was the highest in six-year-old testis (p < 0.01). The protein expression levels of HSL in 2Y and 6Y testis were clearly higher than in 2W and 4Y testis tissues (p < 0.01). Immunofluorescence results indicate that the HSL protein was mainly localized in the germ cells, Sertoli cells and Leydig cells from Bactrian camel testis, and strong positive signals were detected in epididymal epithelial cells, basal cells, spermatocytes and smooth muscle cells, with partially expression in hypothalamic glial cells, pituitary suspensory cells and pineal cells. According to the results of gene ontology (GO) analysis enrichment, HSL indirectly regulates the anabolism of steroid hormones through interactions with various targets. Therefore, we conclude that the HSL gene may be associated with the development and reproduction of Bactrian camels in different stages of maturity, and these results will contribute to further understanding of the regulatory mechanisms of HSL in Bactrian camel reproduction.
Collapse
|
6
|
Expression of genes and localization of enzymes involved in polyunsaturated fatty acid synthesis in rabbit testis and epididymis. Sci Rep 2022; 12:2637. [PMID: 35173269 PMCID: PMC8850619 DOI: 10.1038/s41598-022-06700-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Abstract
The metabolism of polyunsaturated fatty acids (PUFAs) plays an important role in male reproduction. Linoleic and alpha-linolenic acids need to be provided in the diet and they are converted into long chain polyunsaturated fatty acids by steps of elongation and desaturation, exerted by elongases 2 (ELOVL2) and 5 (ELOVL5) and Δ5- (FADS1) and Δ6-desaturase (FADS2). This study aims to assess the gene expression and localization of enzymes involved in the synthesis of n-3 and n-6 long-chain PUFAs in control rabbits and those fed diets containing 10% extruded flaxseed. Enzyme and PUFA localization were assessed in the testes and epididymis by immunofluorescence. Testes showed high gene expression of FADS2, ELOVL2 and ELOVL5 and low expression of FADS1. Intermediate metabolites, enzymes and final products were differently found in Leydig, Sertoli and germinal cells. FADS2 was localized in interstitial cells and elongated spermatids; ELOVL5 in meiotic cells; FADS1 was evident in interstitial tissue, Sertoli cells and elongated spermatids; ELOVL2 in interstitial cells. Epididymal vesicles were positive for FADS1, ELOVL2 and ELOVL5 as well as docosahexaenoic, eicosapentaenoic, and arachidonic acids. This knowledge of fatty acids (FA) metabolism in spermatogenesis and the influence of diet on FA profile could help identify causes of male infertility, suggesting new personalized therapy.
Collapse
|
7
|
Casado ME, Huerta L, Marcos-Díaz A, Ortiz AI, Kraemer FB, Lasunción MA, Busto R, Martín-Hidalgo A. Hormone-sensitive lipase deficiency affects the expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in cellular cholesterol uptake and efflux and disturbs fertility in mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159043. [PMID: 34461308 DOI: 10.1016/j.bbalip.2021.159043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/- and HSL-/- mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL-/- testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/- mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL-/- compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Lydia Huerta
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Marcos-Díaz
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Isabel Ortiz
- Unidad de Cirugía Experimental y Animalario, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
| | - Fredric B Kraemer
- Division of Endocrinology, Stanford University, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Miguel Angel Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain.
| |
Collapse
|
8
|
Wen X, Hu Y, Zhang X, Wei X, Wang T, Yin S. Integrated application of multi-omics provides insights into cold stress responses in pufferfish Takifugu fasciatus. BMC Genomics 2019; 20:563. [PMID: 31286856 PMCID: PMC6615287 DOI: 10.1186/s12864-019-5915-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND T. fasciatus (Takifugu fasciatus) faces the same problem as most warm water fish: the water temperature falls far below the optimal growth temperature in winter, causing a massive death of T. fasciatus and large economic losses. Understanding of the cold-tolerance mechanisms of this species is still limited. Integrated application of multi-omics research can provide a wealth of information to help us improve our understanding of low-temperature tolerance in fish. RESULTS To gain a comprehensive and unbiased molecular understanding of cold-tolerance in T. fasciatus, we characterized mRNA-seq and metabolomics of T. fasciatus livers using Illumina HiSeq 2500 and UHPLC-Q-TOF MS. We identified 2544 up-regulated and 2622 down-regulated genes in the liver of T. fasciatus. A total of 40 differential metabolites were identified, including 9 down-regulated and 31 up-regulated metabolites. In combination with previous studies on proteomics, we have established an mRNA-protein-metabolite interaction network. There are 17 DEMs (differentially-expressed metabolites) and 14 DEGs-DEPs (differentially co-expressed genes and proteins) in the interaction network that are mainly involved in fatty acids metabolism, membrane transport, signal transduction, and DNA damage and defense. We then validated a number of genes in the interaction network by qRT-PCR. Additionally, a number of SNPs (single nucleotide polymorphisms) were revealed through the transcriptome data. These results provide key information for further understanding of the molecular mechanisms of T. fasciatus under cold stress. CONCLUSION The data generated by integrated application of multi-omics can facilitate our understanding of the molecular mechanisms of fish response to low temperature stress. We have not only identified potential genes and SNPs involved in cold tolerance, but also show that some nutrient metabolites may be added to the diet to help the overwintering of T. fasciatus.
Collapse
Affiliation(s)
- Xin Wen
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Yadong Hu
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Xinyu Zhang
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Xiaozhen Wei
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Tao Wang
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| | - Shaowu Yin
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023 China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005 Jiangsu China
| |
Collapse
|
9
|
Wang F, Ren X, Chen Z, Li X, Zhu H, Li S, Ou X, Zhang C, Zhang F, Zhu B. The N‐terminal His‐tag affects the triglyceride lipase activity of hormone‐sensitive lipase in testis. J Cell Biochem 2019; 120:13706-13716. [PMID: 30937958 DOI: 10.1002/jcb.28643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Feng Wang
- College of Life Sciences Capital Normal University Beijing China
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Xiao‐Fang Ren
- College of Life Sciences Capital Normal University Beijing China
| | - Zheng Chen
- College of Life Sciences Capital Normal University Beijing China
| | - Xiao‐Long Li
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Hai‐Jing Zhu
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Sen Li
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Xiang‐Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Cheng Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Fei‐Xiong Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Bao‐Chang Zhu
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
10
|
Pastor Ó, Guzmán-Lafuente P, Serna J, Muñoz-Hernández M, López Neyra A, García-Rozas P, García-Seisdedos D, Alcázar A, Lasunción MA, Busto R, Lamas Ferreiro A. A comprehensive evaluation of omega-3 fatty acid supplementation in cystic fibrosis patients using lipidomics. J Nutr Biochem 2018; 63:197-205. [PMID: 30414540 DOI: 10.1016/j.jnutbio.2018.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/06/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
The evaluation of the benefits of omega-3 fatty acid supplementation in humans requires the identification and characterization of suitable biomarkers of its incorporation in the body. The reference method for the evaluation of omega-3, gas chromatography, is difficult to apply in clinical practice because of its low throughput and does not provide information about the incorporation of specific fatty acids in lipid species and the potential effects of supplementation on lipid classes. We used a quantitative lipidomic approach to follow the incorporation of omega-3 fatty acids into plasma lipids in cystic fibrosis patients (n=50) from a randomized controlled clinical trial after the supplementation of seaweed oil enriched with docosahexaenoic acid (DHA). Lipidomic analysis accurately showed the distribution of fatty acids in different lipid classes after omega-3 supplementation, and the performance in determining the compliance to supplementation was similar to that of gas chromatography coupled to mass spectrometry. Twelve months after fatty acid supplementation, DHA was predominantly incorporated into highly unsaturated cholesteryl esters (110.9±16.2 vs. 278.6±32.6 μM, mean±S.E.M.) and phosphatidylcholine (142.4±11.9 vs. 272.9±21.4 μM) and, to a lesser extent, into phosphatidylethanolamine (9.4±0.8 vs. 15.5±1.5 μM) and triglycerides (0.4±0.04 vs. 1.1±0.12 μM). In addition, a technique was developed for the fast measurement of the DHA/arachidonic acid ratio to simplify the follow-up of nutritional intervention with DHA-enriched foods. We conclude that lipidomics is a suitable approach for monitoring the incorporation of omega-3 fatty acids in nutritional studies.
Collapse
Affiliation(s)
- Óscar Pastor
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain; CIBER de Fisiología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain.
| | - Paula Guzmán-Lafuente
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain
| | - Jorge Serna
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain
| | - Marta Muñoz-Hernández
- Servicio de Pediatría, Unidad de Fibrósis Quística, Hospital Universitario Ramón y Cajal, Spain
| | - Alejandro López Neyra
- Servicio de Pediatría, Unidad de Fibrósis Quística, Hospital Universitario Ramón y Cajal, Spain
| | | | - David García-Seisdedos
- Servicio de Bioquímica Clínica, Unidad de Cuantificación y Caracterización Molecular, Hospital Universitario Ramón y Cajal, Spain
| | - Alberto Alcázar
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Adelaida Lamas Ferreiro
- Servicio de Pediatría, Unidad de Fibrósis Quística, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| |
Collapse
|
11
|
Wang F, Chen Z, Ren X, Tian Y, Wang F, Liu C, Jin P, Li Z, Zhang F, Zhu B. Hormone-sensitive lipase deficiency alters gene expression and cholesterol content of mouse testis. Reproduction 2016; 153:175-185. [PMID: 27920259 PMCID: PMC5148802 DOI: 10.1530/rep-16-0484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022]
Abstract
Hormone-sensitive lipase-knockout (HSL−/−) mice exhibit azoospermia for unclear reasons. To explore the basis of sterility, we performed the following three experiments. First, HSL protein distribution in the testis was determined. Next, transcriptome analyses were performed on the testes of three experimental groups. Finally, the fatty acid and cholesterol levels in the testes with three different genotypes studied were determined. We found that the HSL protein was present from spermatocyte cells to mature sperm acrosomes in wild-type (HSL+/+) testes. Spermiogenesis ceased at the elongation phase of HSL−/− testes. Transcriptome analysis indicated that genes involved in lipid metabolism, cell membrane, reproduction and inflammation-related processes were disordered in HSL−/− testes. The cholesterol content was significantly higher in HSL−/− than that in HSL+/+ testis. Therefore, gene expression and cholesterol ester content differed in HSL−/− testes compared to other testes, which may explain the sterility of male HSL−/− mice.
Collapse
Affiliation(s)
- Feng Wang
- College of Life SciencesCapital Normal University, Beijing, China
| | - Zheng Chen
- College of Life SciencesCapital Normal University, Beijing, China
| | - Xiaofang Ren
- College of Life SciencesCapital Normal University, Beijing, China
| | - Ye Tian
- College of Life SciencesCapital Normal University, Beijing, China
| | - Fucheng Wang
- College of Life SciencesCapital Normal University, Beijing, China
| | - Chao Liu
- College of Life SciencesCapital Normal University, Beijing, China
| | - Pengcheng Jin
- College of Life SciencesCapital Normal University, Beijing, China
| | - Zongyue Li
- College of Life SciencesCapital Normal University, Beijing, China
| | - Feixiong Zhang
- College of Life SciencesCapital Normal University, Beijing, China
| | - Baochang Zhu
- College of Life SciencesCapital Normal University, Beijing, China
| |
Collapse
|
12
|
Chen SR, Tang JX, Cheng JM, Li J, Jin C, Li XY, Deng SL, Zhang Y, Wang XX, Liu YX. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 2016; 6:37012-27. [PMID: 26473289 PMCID: PMC4741912 DOI: 10.18632/oncotarget.6115] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 02/07/2023] Open
Abstract
Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4(flox/flox); Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into Kit(W/W-v) recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth.
Collapse
Affiliation(s)
- Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China.,University of the Chinese Academy of Sciences, Beijing, RP China
| | - Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, RP China
| |
Collapse
|
13
|
Casado ME, Pastor O, García-Seisdedos D, Huerta L, Kraemer FB, Lasunción MA, Martín-Hidalgo A, Busto R. Hormone-sensitive lipase deficiency disturbs lipid composition of plasma membrane microdomains from mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1142-1150. [DOI: 10.1016/j.bbalip.2016.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022]
|
14
|
Lu JC, Jing J, Yao Q, Fan K, Wang GH, Feng RX, Liang YJ, Chen L, Ge YF, Yao B. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men. PLoS One 2016; 11:e0146304. [PMID: 26726884 PMCID: PMC4699695 DOI: 10.1371/journal.pone.0146304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Objective This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters. Methods 631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT), estradiol (E2) and SHBG levels were detected. Results Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P < 0.001), while only seminal plasma TG was positively related to them (P < 0.05). For lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042). There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV), sperm concentration (SC), total sperm count (TSC), sperm motility, progressive motility (PR) and total normal-progressively motile sperm counts (TNPMS). Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012), both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002), and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051). Conclusion The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility.
Collapse
Affiliation(s)
- Jin-Chun Lu
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.,Department of Laboratory Science, Nanjing Hospital, Jiangsu Corps, The Armed Police Force, PLA, Nanjing, Jiangsu, China
| | - Jun Jing
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qi Yao
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Kai Fan
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Guo-Hong Wang
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xiang Feng
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yuan-Jiao Liang
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Li Chen
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Feng Ge
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Bing Yao
- The Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Serna J, García-Seisdedos D, Alcázar A, Lasunción MÁ, Busto R, Pastor Ó. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry. Chem Phys Lipids 2015; 189:7-18. [PMID: 26004846 DOI: 10.1016/j.chemphyslip.2015.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/24/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022]
Abstract
Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins.
Collapse
Affiliation(s)
- Jorge Serna
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - David García-Seisdedos
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alberto Alcázar
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Miguel Ángel Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER de Fisiología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER de Fisiología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Óscar Pastor
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|