1
|
Pang Q, Qi X, Chi Y, Jiajue R, Zhang L, Cui L, Wang O, Li M, Xing X, Jiang Y, Gong Y, Xia W. Targeting Metabolomics in Primary Hypertrophic Osteoarthropathy: Uncovering Novel Insights into Disease Pathogenesis. J Clin Endocrinol Metab 2024:dgae737. [PMID: 39607761 DOI: 10.1210/clinem/dgae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 11/29/2024]
Abstract
CONTEXT Primary hypertrophic osteoarthropathy (PHO) is a rare genetic disorder characterized by skeletal and skin abnormalities. Genetic defects in prostaglandin E2 (PGE2) metabolism are known to cause PHO. However, the global impact and clinical significance of eicosanoids and oxylipins beyond PGE2 remain to be elucidated. OBJECTIVE This study aimed to investigate oxylipin networks in PHO, including the 2 subtypes, PHOAR1 and PHOAR2, and examine their associations with clinical characteristics. METHODS We conducted a targeted metabolomic study involving 16 patients with PHO and 16 age- and sex-matched healthy controls. Serum samples were collected at the time of diagnosis. Metabolites were quantified using ultra-high-performance liquid chromatography-tandem mass spectrometry. RESULTS Laboratory analyses confirmed elevated levels of PGE2 in patients with PHO, consistent with the established pathogenesis. About 60 oxidized lipid metabolites were identified, with 19 differentially expressed in PHO. Besides the COX/PGE2 pathway, the lipoxygenase-mediated pathway was also involved in PHO. The metabolites 5-OxoETE, 15-OxoETE, 8S,15S-DiHETE, PGE2, 11β-PGE2, PGB2, LTB4, and LTE4 were significantly altered. Correlation analyses revealed associations between oxylipin metabolites and clinical features, including bone microarchitecture. Notably, the study highlighted differences in the oxylipin metabolite profiles between patients with PHOAR1 and patients with PHOAR2, suggesting distinct metabolic signatures for each subtype. CONCLUSION Our study indicated a significant perturbation in oxylipin metabolism among patients with PHO, with distinct metabolic signatures observed between PHOAR1 and PHOAR2. The disruption extended beyond the metabolism of PGE2. It encompassed a broader alteration across the polyunsaturated fatty acid metabolism spectrum, including various eicosanoids and oxylipins. Our work provided a comprehensive understanding of the pathogenesis of PHO, and underscored the potential for subtype-specific therapeutic interventions.
Collapse
Affiliation(s)
- Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xuan Qi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yue Chi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Li Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Lijia Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yiyi Gong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
2
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
3
|
Parchem K, Letsiou S, Petan T, Oskolkova O, Medina I, Kuda O, O'Donnell VB, Nicolaou A, Fedorova M, Bochkov V, Gladine C. Oxylipin profiling for clinical research: Current status and future perspectives. Prog Lipid Res 2024; 95:101276. [PMID: 38697517 DOI: 10.1016/j.plipres.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers. However, it is essential to improve and facilitate the biological interpretation of complex oxylipin profiles to truly leverage their potential in clinical research. This requires regular updating of our knowledge about the metabolism and the mode of action of oxylipins, and consideration of all factors that may influence circulating oxylipin profiles independently of the studied disease or condition. This review aims to provide the readers with updated and necessary information regarding oxylipin metabolism, their different forms in systemic circulation, the current limitations in deducing oxylipin cellular effects from in vitro bioactivity studies, the biological and technical confounding factors needed to consider for a proper interpretation of oxylipin profiles.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza St., 80-233 Gdańsk, Poland; Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Ag. Spiridonos St. Egaleo, 12243 Athens, Greece.
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain.
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Anna Nicolaou
- School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany.
| | - Valery Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, 8010 Graz, Austria.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
5
|
Fenske RJ, Wienkes HN, Peter DC, Schaid MD, Hurley LD, Pennati A, Galipeau J, Kimple ME. Gα z-independent and -dependent Improvements With EPA Supplementation on the Early Type 1 Diabetes Phenotype of NOD Mice. J Endocr Soc 2024; 8:bvae100. [PMID: 38831864 PMCID: PMC11146416 DOI: 10.1210/jendso/bvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the β-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates β-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and β-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of β-cell mass, and measurements of β-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.
Collapse
Affiliation(s)
- Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Clinical Research Unit, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
| | - Haley N Wienkes
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
6
|
Hateley C, Olona A, Halliday L, Edin ML, Ko JH, Forlano R, Terra X, Lih FB, Beltrán-Debón R, Manousou P, Purkayastha S, Moorthy K, Thursz MR, Zhang G, Goldin RD, Zeldin DC, Petretto E, Behmoaras J. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024; 103:105127. [PMID: 38677183 PMCID: PMC11061246 DOI: 10.1016/j.ebiom.2024.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.
Collapse
Affiliation(s)
- Charlotte Hateley
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Antoni Olona
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Laura Halliday
- Department of Surgery and Cancer, Imperial College London, UK
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Jeong-Hun Ko
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Ximena Terra
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Fred B Lih
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Raúl Beltrán-Debón
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, MoBioFood Research Group, Tarragona, Spain
| | - Penelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Sanjay Purkayastha
- Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK; University of Brunel, Kingston Lane, Uxbridge, London, UB8 3PH, UK
| | - Krishna Moorthy
- Department of Surgery and Cancer, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Guodong Zhang
- Department of Nutrition, College of Agriculture and Environmental Sciences, 3135 Meyer Hall, One Shields Avenue, UC Davis, Davis, CA, 95616, USA
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Imperial College Healthcare NHS Trust, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Enrico Petretto
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore; Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, China
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK; Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
7
|
Mancuzo DC, Machado NM, Teppedino J, Santander L, Calder PC, Waitzberg DL, Torrinhas RS. Effect of Roux-en-Y Gastric Bypass on circulating oxylipin profile in women with obesity and type 2 diabetes. Prostaglandins Leukot Essent Fatty Acids 2024; 200:102605. [PMID: 38141589 DOI: 10.1016/j.plefa.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND & AIMS Chronic inflammation associated with obesity directly contributes to metabolic comorbidities, including type 2 diabetes (T2D). Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for obesity-associated T2D. We investigated the effect of RYGB on the circulating profile of oxylipins derived from arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids as a potential mechanism underlying the metabolic benefits of the surgery. METHODS Plasma samples were collected from 28 women with obesity and T2D before and 3 months after RYGB. Circulating levels of oxylipins and their precursors, along with biochemical markers of glucose homeostasis, were evaluated using untargeted mass spectrometry and routine biochemical techniques, respectively. RESULTS No significant changes were observed in the levels of oxylipins derived from EPA and DHA. However, there was an increase in ARA and its derived oxylipins, TXB2 (an inert derivative of TXA2) and PGD2 (Wilcoxon, p ≤ 0.05). Positive correlations were observed between hemoglobin A1c levels and TXB2 as well as ARA levels (Spearman, p ≤ 0.05). CONCLUSIONS Our data suggest that the anti-inflammatory oxylipins derived from EPA and DHA may not be involved in the metabolic benefits associated with RYGB. However, the findings indicate that the pro-inflammatory oxylipin TXA2 and its precursor ARA may negatively impact glucose homeostasis both before and after RYGB.
Collapse
Affiliation(s)
- Daiane Cavalari Mancuzo
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil.
| | - Natasha Mendonça Machado
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| | - Juliana Teppedino
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil; Nutrologia Clínica, Hospital Sírio Libanês de Brasília, Brasília, Distrito Federal, Brazil
| | - Lucas Santander
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Dan Linetzky Waitzberg
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| | - Raquel Susana Torrinhas
- Laboratory of Nutrition and Metabolic Surgery of the Digestive System (LIM 35), Department of Gastroenterology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
8
|
Jiménez-Franco A, Castañé H, Martínez-Navidad C, Placed-Gallego C, Hernández-Aguilera A, Fernández-Arroyo S, Samarra I, Canela-Capdevila M, Arenas M, Zorzano A, Hernández-Alvarez MI, Castillo DD, Paris M, Menendez JA, Camps J, Joven J. Metabolic adaptations in severe obesity: Insights from circulating oxylipins before and after weight loss. Clin Nutr 2024; 43:246-258. [PMID: 38101315 DOI: 10.1016/j.clnu.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.
Collapse
Affiliation(s)
- Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Cristina Placed-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Department of Pathology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | - Iris Samarra
- Center for Omics Sciences, EURECAT-Technology Center of Catalonia, Reus, Spain
| | - Marta Canela-Capdevila
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antonio Zorzano
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - María Isabel Hernández-Alvarez
- Department de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Paris
- Servei de Cirurgia, Hospital Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili. Avinguda, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute, Girona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
9
|
Shi C, Zi Y, Huang S, Chen J, Wang X, Zhong J. Development and application of lipidomics for food research. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:1-42. [PMID: 37236729 DOI: 10.1016/bs.afnr.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipidomics is an emerging and promising omics derived from metabolomics to comprehensively analyze all of lipid molecules in biological matrices. The purpose of this chapter is to introduce the development and application of lipidomics for food research. First, three aspects of sample preparation are introduced: food sampling, lipid extraction, and transportation and storage. Second, five types of instruments for data acquisition are summarized: direct infusion-mass spectrometry (MS), chromatographic separation-MS, ion mobility-MS, MS imaging, and nuclear magnetic resonance spectroscopy. Third, data acquisition and analysis software are described for the lipidomics software development. Fourth, the application of lipidomics for food research is discussed such as food origin and adulteration analysis, food processing research, food preservation research, and food nutrition and health research. All the contents suggest that lipidomics is a powerful tool for food research based on its ability of lipid component profile analysis.
Collapse
Affiliation(s)
- Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Csader S, Ismaiah MJ, Kuningas T, Heinäniemi M, Suhonen J, Männistö V, Pentikäinen H, Savonen K, Tauriainen MM, Galano JM, Lee JCY, Rintamäki R, Karisola P, El-Nezami H, Schwab U. Twelve Weeks of High-Intensity Interval Training Alters Adipose Tissue Gene Expression but Not Oxylipin Levels in People with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24108509. [PMID: 37239856 DOI: 10.3390/ijms24108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Lifestyle modifications, including increased physical activity and exercise, are recommended for non-alcoholic fatty liver disease (NAFLD). Inflamed adipose tissue (AT) contributes to the progression and development of NAFLD and oxylipins such as hydroxyeicosatetraenoic acids (HETE), hydroxydocosahexanenoic acids (HDHA), prostaglandins (PEG2), and isoprostanoids (IsoP), which all may play a role in AT homeostasis and inflammation. To investigate the role of exercise without weight loss on AT and plasma oxylipin concentrations in NAFLD subjects, we conducted a 12-week randomized controlled exercise intervention. Plasma samples from 39 subjects and abdominal subcutaneous AT biopsy samples from 19 subjects were collected both at the beginning and the end of the exercise intervention. In the AT of women, a significant reduction of gene expression of hemoglobin subunits (HBB, HBA1, HBA2) was observed within the intervention group during the 12-week intervention. Their expression levels were negatively associated with VO2max and maxW. In addition, pathways involved in adipocyte morphology alterations significantly increased, whereas pathways in fat metabolism, branched-chain amino acids degradation, and oxidative phosphorylation were suppressed in the intervention group (p < 0.05). Compared to the control group, in the intervention group, the ribosome pathway was activated, but lysosome, oxidative phosphorylation, and pathways of AT modification were suppressed (p < 0.05). Most of the oxylipins (HETE, HDHA, PEG2, and IsoP) in plasma did not change during the intervention compared to the control group. 15-F2t-IsoP significantly increased in the intervention group compared to the control group (p = 0.014). However, this oxylipin could not be detected in all samples. Exercise intervention without weight loss may influence the AT morphology and fat metabolism at the gene expression level in female NAFLD subjects.
Collapse
Affiliation(s)
- Susanne Csader
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
| | - Marsena Jasiel Ismaiah
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Tiina Kuningas
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Janne Suhonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Ville Männistö
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Heikki Pentikäinen
- Kuopio Research Institute of Exercise Medicine, FI-70210 Kuopio, Finland
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, FI-70210 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Milla-Maria Tauriainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Reeta Rintamäki
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Piia Karisola
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, FI-00100 Helsinki, Finland
| | - Hani El-Nezami
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ursula Schwab
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70200 Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, FI-70210 Kuopio, Finland
| |
Collapse
|
11
|
Photoperiod Conditions Modulate Serum Oxylipins Levels in Healthy and Obese Rats: Impact of Proanthocyanidins and Gut Microbiota. Nutrients 2023; 15:nu15030707. [PMID: 36771413 PMCID: PMC9920779 DOI: 10.3390/nu15030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Seasonal rhythms are emerging as a key factor influencing gut microbiota and bioactive compounds functionality as well as several physiological processes such as inflammation. In this regard, their impact on the modulation of oxylipins (OXLs), which are important lipid mediators of inflammatory processes, has not been investigated yet. Hence, we aimed to investigate the effects of photoperiods on OXLs metabolites in healthy and obesogenic conditions. Moreover, we evaluated if the impact of proanthocyanidins and gut microbiota on OXLs metabolism is influenced by photoperiod in obesity. To this purpose, Fischer 344 rats were housed under different photoperiod conditions (L6: 6 h light, L12: 12 h light or L18:18 h light) and fed either a standard chow diet (STD) or a cafeteria diet (CAF) for 9 weeks. During the last 4 weeks, obese rats were daily administered with an antibiotic cocktail (ABX), an oral dose of a grape seed proanthocyanidin extract (GSPE), or with their combination. CAF feeding and ABX treatment affected OXLs in a photoperiod dependent-manner. GSPE significantly altered prostaglandin E2 (PGE2) levels, only under L6 and mitigated ABX-mediated effects only under L18. In conclusion, photoperiods affect OXLs levels influenced by gut microbiota. This is the first time that the effects of photoperiod on OXLs metabolites have been demonstrated.
Collapse
|
12
|
Takahashi C, Oishi M, Iwata Y, Maekawa K, Matsumura T. Impact of the TRPV2 Inhibitor on Advanced Heart Failure in Patients with Muscular Dystrophy: Exploratory Study of Biomarkers Related to the Efficacy of Tranilast. Int J Mol Sci 2023; 24:ijms24032167. [PMID: 36768491 PMCID: PMC9917168 DOI: 10.3390/ijms24032167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiomyopathy is the leading cause of death in patients with muscular dystrophy (MD). Tranilast, a widely used anti-allergic drug, has displayed inhibitory activity against the transient receptor potential cation channel subfamily V member 2 and improved cardiac function in MD patients. To identify urinary biomarkers that assess improved cardiac function after tranilast administration, we performed a urinary metabolomic study focused on oxidative fatty acids. Accompanying the clinical trial of tranilast, urine specimens were collected over 24 weeks from MD patients with advanced heart failure. Urinary levels of tetranor-PGDM (tetranor-prostaglandin D metabolite), a metabolite of prostaglandin D2, significantly decreased 12 weeks after tranilast administration and were correlated with BNP. These results suggest that prostaglandin-mediated inflammation, which increases with the pathological progression of heart failure in MD patients, was attenuated. Urinary prostaglandin E3 (PGE3) levels significantly increased 4 weeks after tranilast administration. There were positive correlations between the urinary levels of PGE3 and 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. High PGE3 levels may have a protective effect against cardiomyopathy in MD patients with high oxidative stress. Although further validation studies are necessary, urinary tetranor-PGDM and PGE3 levels may help the current understanding of the extent of advanced heart failure in patients with MD after tranilast administration.
Collapse
Affiliation(s)
- Chisato Takahashi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
| | - Mariko Oishi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
| | - Yuko Iwata
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita 564-8565, Osaka, Japan
| | - Keiko Maekawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
- Correspondence: (K.M.); (T.M.)
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8551, Osaka, Japan
- Correspondence: (K.M.); (T.M.)
| |
Collapse
|
13
|
Zhou XY, Li X, Zhang J, Li Y, Wu XM, Yang YZ, Zhang XF, Ma LZ, Liu YD, Wang Z, Chen SL. Plasma metabolomic characterization of premature ovarian insufficiency. J Ovarian Res 2023; 16:2. [PMID: 36600288 PMCID: PMC9814329 DOI: 10.1186/s13048-022-01085-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) patients are predisposed to metabolic disturbances, including in lipid metabolism and glucose metabolism, and metabolic disorders appear to be a prerequisite of the typical long-term complications of POI, such as cardiovascular diseases or osteoporosis. However, the metabolic changes underlying the development of POI and its subsequent complications are incompletely understood, and there are few studies characterizing the disturbed metabolome in POI patients. The aim of this study was to characterize the plasma metabolome in POI by using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics and to evaluate whether these disturbances identified in the plasma metabolome relate to ovarian reserve and have diagnostic value in POI. METHODS This observational study recruited 30 POI patients and 30 age- and body mass index (BMI)-matched controls in the Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, from January 2018 to October 2020. Fasting venous blood was collected at 9:00 am on days 2-4 of the menstrual cycle and centrifuged for analysis. An untargeted quantitative metabolomic analysis was performed using UHPLC-MS/MS. RESULTS Our study identified 48 upregulated and 21 downregulated positive metabolites, and 13 upregulated and 48 downregulated negative metabolites in the plasma of POI patients. The differentially regulated metabolites were involved in pathways such as caffeine metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Six metabolites with an AUC value > 0.8, including arachidonoyl amide, 3-hydroxy-3-methylbutanoic acid, dihexyl nonanedioate, 18-HETE, cystine, and PG (16:0/18:1), were correlated with ovarian reserve and thus have the potential to be diagnostic biomarkers of POI. CONCLUSION This UHPLC-MS/MS untargeted metabolomics study revealed differentially expressed metabolites in the plasma of patients with POI. The differential metabolites may not only be involved in the aetiology of POI but also contribute to its major complications. These findings offer a panoramic view of the plasma metabolite changes caused by POI, which may provide useful diagnostic and therapeutic clues for POI disease.
Collapse
Affiliation(s)
- Xing-Yu Zhou
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xin Li
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Jun Zhang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Ying Li
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xiao-Min Wu
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Yi-Zhen Yang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xiao-Fei Zhang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Lin-Zi Ma
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Yu-Dong Liu
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Zhe Wang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Shi-Ling Chen
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| |
Collapse
|
14
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Role of Oxylipins in the Inflammatory-Related Diseases NAFLD, Obesity, and Type 2 Diabetes. Metabolites 2022; 12:metabo12121238. [PMID: 36557276 PMCID: PMC9788263 DOI: 10.3390/metabo12121238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Oxygenated polyunsaturated fatty acids (oxylipins) are bioactive molecules established as important mediators during inflammation. Different classes of oxylipins have been found to have opposite effects, e.g., pro-inflammatory prostaglandins and anti-inflammatory resolvins. Production of the different classes of oxylipins occurs during distinct stages of development and resolution of inflammation. Chronic inflammation is involved in the progression of many pathophysiological conditions and diseases such as non-alcoholic fatty liver disease, insulin resistance, diabetes, and obesity. Determining oxylipin profiles before, during, and after inflammatory-related diseases could provide clues to the onset, development, and prevention of detrimental conditions. This review focusses on recent developments in our understanding of the role of oxylipins in inflammatory disease, and outlines novel technological advancements and approaches to study their action.
Collapse
|
16
|
Fenske RJ, Weeks AM, Daniels M, Nall R, Pabich S, Brill AL, Peter DC, Punt M, Cox ED, Davis DB, Kimple ME. Plasma Prostaglandin E 2 Metabolite Levels Predict Type 2 Diabetes Status and One-Year Therapeutic Response Independent of Clinical Markers of Inflammation. Metabolites 2022; 12:metabo12121234. [PMID: 36557272 PMCID: PMC9783643 DOI: 10.3390/metabo12121234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Over half of patients with type 2 diabetes (T2D) are unable to achieve blood glucose targets despite therapeutic compliance, significantly increasing their risk of long-term complications. Discovering ways to identify and properly treat these individuals is a critical problem in the field. The arachidonic acid metabolite, prostaglandin E2 (PGE2), has shown great promise as a biomarker of β-cell dysfunction in T2D. PGE2 synthesis, secretion, and downstream signaling are all upregulated in pancreatic islets isolated from T2D mice and human organ donors. In these islets, preventing β-cell PGE2 signaling via a prostaglandin EP3 receptor antagonist significantly improves their glucose-stimulated and hormone-potentiated insulin secretion response. In this clinical cohort study, 167 participants, 35 non-diabetic, and 132 with T2D, were recruited from the University of Wisconsin Hospital and Clinics. At enrollment, a standard set of demographic, biometric, and clinical measurements were performed to quantify obesity status and glucose control. C reactive protein was measured to exclude acute inflammation/illness, and white cell count (WBC), erythrocyte sedimentation rate (ESR), and fasting triglycerides were used as markers of systemic inflammation. Finally, a plasma sample for research was used to determine circulating PGE2 metabolite (PGEM) levels. At baseline, PGEM levels were not correlated with WBC and triglycerides, only weakly correlated with ESR, and were the strongest predictor of T2D disease status. One year after enrollment, blood glucose management was assessed by chart review, with a clinically-relevant change in hemoglobin A1c (HbA1c) defined as ≥0.5%. PGEM levels were strongly predictive of therapeutic response, independent of age, obesity, glucose control, and systemic inflammation at enrollment. Our results provide strong support for future research in this area.
Collapse
Affiliation(s)
- Rachel J. Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Clinical Nutrition, UW Health University Hospital, Madison, WI 53705, USA
| | - Alicia M. Weeks
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Daniels
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Randall Nall
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha Pabich
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison L. Brill
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darby C. Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Margaret Punt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth D. Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Dawn Belt Davis
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (D.B.D.); (M.E.K.); Tel.: +1-1-608-263-2443 (D.B.D.); +1-1-608-265-5627 (M.E.K.)
| | - Michelle E. Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Correspondence: (D.B.D.); (M.E.K.); Tel.: +1-1-608-263-2443 (D.B.D.); +1-1-608-265-5627 (M.E.K.)
| |
Collapse
|
17
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
18
|
Gureev AP, Andrianova NV, Pevzner IB, Zorova LD, Chernyshova EV, Sadovnikova IS, Chistyakov DV, Popkov VA, Semenovich DS, Babenko VA, Silachev DN, Zorov DB, Plotnikov EY, Popov VN. Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS J 2022; 289:5697-5713. [DOI: 10.1111/febs.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| | - Nadezda V. Andrianova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Irina B. Pevzner
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Ljubava D. Zorova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | | | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Vasily A. Popkov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry S. Semenovich
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Valentina A. Babenko
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Denis N. Silachev
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry B. Zorov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| |
Collapse
|
19
|
Jiang Y, Tang X, Wang Y, Chen W, Xue Y, Cao H, Zhang B, Pan J, Zhou Q, Wang D, Fan F. Serum Oxylipin Profiles Identify Potential Biomarkers in Patients with Acute Aortic Dissection. Metabolites 2022; 12:metabo12070587. [PMID: 35888709 PMCID: PMC9324768 DOI: 10.3390/metabo12070587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/08/2022] Open
Abstract
Aortic dissection (AD) is a life-threatening cardiovascular disease with a dismal prognosis. Inflammation plays an important role in AD. Oxylipins are bioactive lipids involved in the modulation of inflammation and may be involved in the pathogenesis and progression of AD. This study aims to identify possible metabolites related to AD. A total of 10 type A Aortic dissection (TAAD) patients, 10 type B Aortic dissection (TBAD) patients and 10 healthy controls were included in this study. Over 100 oxylipin species were identified and quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. Our investigation demonstrated substantial alterations in 91 oxylipins between AD and healthy individuals. Patients with TAAD had 89 entries accessible compared to healthy controls. According to orthogonal partial least squares discriminant analysis (OPLS-DA), fitness (R2X = 0.362 and R2Y = 0.807, p = 0.03) and predictability (Q2 = 0.517, p = 0.005) are the validation parameters between the two groups. Using multivariate logistic regression, 13-HOTrE and 16(17)-EpDPE were the risk factors in the aortic patients group compared to healthy people (OR = 2.467, 95%CI:1.256–7.245, p = 0.035; OR = 0.015, 95%CI:0.0002–0.3240, p = 0.016, respectively). In KEGG enrichment of differential metabolites, the arachidonic acid metabolism pathway has the most metabolites involved. We established a diagnostic model in distinguishing between AD and healthy people. The AUC was 0.905. Oxylipins were significantly altered in AD patients, suggesting oxylipin profile is expected to exploit a novel, non-invasive, objective diagnosis for AD.
Collapse
Affiliation(s)
- Yi Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Xinlong Tang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Yali Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Wei Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Yunxing Xue
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Hailong Cao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Bomin Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Jun Pan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Qing Zhou
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Dongjin Wang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
- Correspondence: (D.W.); (F.F.)
| | - Fudong Fan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
- Correspondence: (D.W.); (F.F.)
| |
Collapse
|
20
|
Vaysse PM, Demers I, van den Hout MFCM, van de Worp W, Anthony IGM, Baijens LWJ, Tan BI, Lacko M, Vaassen LAA, van Mierlo A, Langen RCJ, Speel EJM, Heeren RMA, Porta Siegel T, Kremer B. Evaluation of the Sensitivity of Metabolic Profiling by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical Oral Cavity Cancer Resections. Anal Chem 2022; 94:6939-6947. [PMID: 35503862 PMCID: PMC9118195 DOI: 10.1021/acs.analchem.1c03583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Radical resection
for patients with oral cavity cancer remains
challenging. Rapid evaporative ionization mass spectrometry (REIMS)
of electrosurgical vapors has been reported for real-time classification
of normal and tumor tissues for numerous surgical applications. However,
the infiltrative pattern of invasion of oral squamous cell carcinomas
(OSCC) challenges the ability of REIMS to detect low amounts of tumor
cells. We evaluate REIMS sensitivity to determine the minimal amount
of detected tumors cells during oral cavity cancer surgery. A total
of 11 OSCC patients were included in this study. The tissue classification
based on 185 REIMS ex vivo metabolic profiles from
five patients was compared to histopathology classification using
multivariate analysis and leave-one-patient-out cross-validation.
Vapors were analyzed in vivo by REIMS during four
glossectomies. Complementary desorption electrospray ionization–mass
spectrometry imaging (DESI-MSI) was employed to map tissue heterogeneity
on six oral cavity sections to support REIMS findings. REIMS sensitivity
was assessed with a new cell-based assay consisting of mixtures of
cell lines (tumor, myoblasts, keratinocytes). Our results depict REIMS
classified tumor and soft tissues with 96.8% accuracy. In
vivo REIMS generated intense mass spectrometric signals.
REIMS detected 10% of tumor cells mixed with 90% myoblasts with 83%
sensitivity and 82% specificity. DESI-MSI underlined distinct metabolic
profiles of nerve features and a metabolic shift phosphatidylethanolamine
PE(O-16:1/18:2))/cholesterol sulfate common to both mucosal maturation
and OSCC differentiation. In conclusion, the assessment of tissue
heterogeneity with DESI-MSI and REIMS sensitivity with cell mixtures
characterized sensitive metabolic profiles toward in vivo tissue recognition during oral cavity cancer surgeries.
Collapse
Affiliation(s)
- Pierre-Maxence Vaysse
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Imke Demers
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,Department of Pathology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Mari F C M van den Hout
- Department of Pathology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Wouter van de Worp
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Ian G M Anthony
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Laura W J Baijens
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Bing I Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Martin Lacko
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Lauretta A A Vaassen
- Department of Cranio-Maxillofacial Surgery, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Auke van Mierlo
- Department of Cranio-Maxillofacial Surgery, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Ernst-Jan M Speel
- Department of Pathology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
21
|
Liang C, Zhang X, Qi C, Hu H, Zhang Q, Zhu X, Fu Y. UHPLC-MS-MS analysis of oxylipins metabolomics components of follicular fluid in infertile individuals with diminished ovarian reserve. Reprod Biol Endocrinol 2021; 19:143. [PMID: 34521427 PMCID: PMC8438979 DOI: 10.1186/s12958-021-00825-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diminished ovarian reserve (DOR) refers to a decrease in the number and quality of oocytes in the ovary, which results in a lack of sex hormones and a decline of fertility in women. DOR can potentially progress to premature ovarian failure (POF), which has a negative impact on women's quality of life and is a major cause of female infertility. Oxidative stress is a major contributor to fertility decrease in DOR patients, affecting the follicular microenvironment, oocyte maturation, fertilization, and embryo development. Understanding intracellular signal transduction can be achieved by defining specific oxidized lipid components in follicular fluid (FF) of DOR infertile patients. METHODS The oxylipins metabolic signatures in the FF of DOR patients and females with normal ovarian reserve (NOR) enrolled for the in vitro fertilization (IVF) cycle were analyzed using UHPLC-MS-MS technology. Principal component analysis (PCA) and orthogonal projections to latent structure discriminant analysis (OPLS-DA) were used to analyze the derived metabolomic profiles. Pathway enrichment analysis was carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaboAnalyst databases. Furthermore, the Spearman rank correlation coefficient was used to determine the correlation between age, FSH, AMH, AFC, oocytes retrieved, MII oocytes, fertilization, high-quality embryos, and the concentration of differential oxidized lipid metabolites in FF. RESULTS Fifteen oxylipins metabolites were found to be lower in the FF of DOR patients than those in the NOR group, including ±20-HDoHE, ±5-iso PGF2α-VI, 12S-HHTrE, 15-deoxy-Δ12,14-PGJ2, 1a,1b-dihomo PGE2, 1a,1b-dihomo PGF2α, 20-COOH-AA, 20-HETE, 8S,15S-DiHETE, PGA2, PGD2, PGE1, PGF1α, PGF2α, and PGJ2. The pathway enrichment analysis revealed that the 15 differentially oxidized lipid metabolites were closely related to the arachidonic acid metabolic pathway. Correlation analysis revealed that the concentration of 8 different oxidized lipid metabolites in FF was negatively correlated to FSH and positively correlated with AFC. AMH, the number of oocytes retrieved, MII oocytes and fertilization, were all positively correlated with 9 different oxidized lipid metabolites, but only one metabolite was positively correlated with the number of high-quality embryos. CONCLUSIONS Metabolomic analysis of FF revealed that oxylipins metabolism disorders were closely related to ovarian reserve function. Among these oxylipins metabolites, arachidonic acid metabolism undergoes significant changes that may be related to oocyte development, resulting in decreased fertility in DOR patients. TRIAL REGISTRATION ChiCTR, ChiCTR2000038182 , Registered 12 September 2020-Retrospectively registered.
Collapse
Affiliation(s)
- Chengcheng Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Gynecology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaole Zhang
- Department of Gynecology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Hui Hu
- Department of Gynecology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Qinhua Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Xiuxian Zhu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Yonglun Fu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| |
Collapse
|
22
|
Truchan NA, Fenske RJ, Sandhu HK, Weeks AM, Patibandla C, Wancewicz B, Pabich S, Reuter A, Harrington JM, Brill AL, Peter DC, Nall R, Daniels M, Punt M, Kaiser CE, Cox ED, Ge Y, Davis DB, Kimple ME. Human Islet Expression Levels of Prostaglandin E 2 Synthetic Enzymes, But Not Prostaglandin EP3 Receptor, Are Positively Correlated with Markers of β-Cell Function and Mass in Nondiabetic Obesity. ACS Pharmacol Transl Sci 2021; 4:1338-1348. [PMID: 34423270 DOI: 10.1021/acsptsci.1c00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/06/2023]
Abstract
Elevated islet production of prostaglandin E2 (PGE2), an arachidonic acid metabolite, and expression of prostaglandin E2 receptor subtype EP3 (EP3) are well-known contributors to the β-cell dysfunction of type 2 diabetes (T2D). Yet, many of the same pathophysiological conditions exist in obesity, and little is known about how the PGE2 production and signaling pathway influences nondiabetic β-cell function. In this work, plasma arachidonic acid and PGE2 metabolite levels were quantified in a cohort of nondiabetic and T2D human subjects to identify their relationship with glycemic control, obesity, and systemic inflammation. In order to link these findings to processes happening at the islet level, cadaveric human islets were subject to gene expression and functional assays. Interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA levels, but not those of EP3, positively correlated with donor body mass index (BMI). IL-6 expression also strongly correlated with the expression of COX-2 and other PGE2 synthetic pathway genes. Insulin secretion assays using an EP3-specific antagonist confirmed functionally relevant upregulation of PGE2 production. Yet, islets from obese donors were not dysfunctional, secreting just as much insulin in basal and stimulatory conditions as those from nonobese donors as a percent of content. Islet insulin content, on the other hand, was increased with both donor BMI and islet COX-2 expression, while EP3 expression was unaffected. We conclude that upregulated islet PGE2 production may be part of the β-cell adaption response to obesity and insulin resistance that only becomes dysfunctional when both ligand and receptor are highly expressed in T2D.
Collapse
Affiliation(s)
- Nathan A Truchan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Rachel J Fenske
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States.,Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Harpreet K Sandhu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Alicia M Weeks
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Chinmai Patibandla
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Samantha Pabich
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Austin Reuter
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Jeffrey M Harrington
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Allison L Brill
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Darby C Peter
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Randall Nall
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Michael Daniels
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Margaret Punt
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Cecilia E Kaiser
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Elizabeth D Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States.,Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States.,Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
23
|
Osuna-Prieto FJ, Martinez-Tellez B, Ortiz-Alvarez L, Di X, Jurado-Fasoli L, Xu H, Ceperuelo-Mallafré V, Núñez-Roa C, Kohler I, Segura-Carretero A, García-Lario JV, Gil A, Aguilera CM, Llamas-Elvira JM, Rensen PCN, Vendrell J, Ruiz JR, Fernández-Veledo S. Elevated plasma succinate levels are linked to higher cardiovascular disease risk factors in young adults. Cardiovasc Diabetol 2021; 20:151. [PMID: 34315463 PMCID: PMC8314524 DOI: 10.1186/s12933-021-01333-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Succinate is produced by both host and microbiota, with a key role in the interplay of immunity and metabolism and an emerging role as a biomarker for inflammatory and metabolic disorders in middle-aged adults. The relationship between plasma succinate levels and cardiovascular disease (CVD) risk in young adults is unknown. METHODS Cross-sectional study in 100 (65% women) individuals aged 18-25 years from the ACTIvating Brown Adipose Tissue through Exercise (ACTIBATE) study cohort. CVD risk factors, body composition, dietary intake, basal metabolic rate, and cardiorespiratory fitness were assessed by routine methods. Plasma succinate was measured with an enzyme-based assay. Brown adipose tissue (BAT) was evaluated by positron emission tomography, and circulating oxylipins were assessed by targeted metabolomics. Fecal microbiota composition was analyzed in a sub-sample. RESULTS Individuals with higher succinate levels had higher levels of visceral adipose tissue (VAT) mass (+ 42.5%), triglycerides (+ 63.9%), C-reactive protein (+ 124.2%), diastolic blood pressure (+ 5.5%), and pro-inflammatory omega-6 oxylipins than individuals with lower succinate levels. Succinate levels were also higher in metabolically unhealthy individuals than in healthy overweight/obese peers. Succinate levels were not associated with BAT volume or activity or with fecal microbiota composition and diversity. CONCLUSIONS Plasma succinate levels are linked to a specific pro-inflammatory omega-6 signature pattern and higher VAT levels, and seem to reflect the cardiovascular status of young adults.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Victoria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | | | - Angel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (Ibs, GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (Ibs, GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Service, Virgen de las Nieves University Hospital, Biohealth Research Institute in Granada (Ibs. GRANADA), Granada, Spain
| | - Patrick C N Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|