1
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
2
|
Prajapati R, Emerson IA. Construction and analysis of brain networks from different neuroimaging techniques. Int J Neurosci 2020; 132:745-766. [DOI: 10.1080/00207454.2020.1837802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rutvi Prajapati
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Cervera J, Meseguer S, Mafe S. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model. ACS OMEGA 2018; 3:13567-13575. [PMID: 30411043 PMCID: PMC6217649 DOI: 10.1021/acsomega.8b01514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Salvador Mafe
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
4
|
The Role of Systems Biologic Approach in Cell Signaling and Drug Development Responses-A Mini Review. Med Sci (Basel) 2018; 6:medsci6020043. [PMID: 29848999 PMCID: PMC6024575 DOI: 10.3390/medsci6020043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
The immune system is an integral aspect of the human defense system and is primarily responsible for and involved in the communication between the immune cells. It also plays an important role in the protection of the organism from foreign invaders. Recent studies in the literature have described its role in the process of hematopoiesis, lymphocyte recruitment, T cell subset differentiation and inflammation. However, the specific molecular mechanisms underlying these observations remain elusive, impeding the elaborate manipulation of cytokine sequential delivery in tissue repair. Previously, the discovery of new drugs and systems biology went hand in hand; although Systems biology as a term has only originated in the last century. Various new chemicals were tested on the human body, and studied through observation. Animal models replaced humans for initial trials, but the interactions, response, dose and effect between animals and humans could not be directly correlated. Therefore, there is a need to form disease models outside of human subjects to check the effectiveness and response of the newer natural or synthetic chemicals. These emulate human disease conditions wherein the behavior of the chemicals would be similar in the disease model and humans.
Collapse
|
5
|
Gosak M, Markovič R, Dolenšek J, Rupnik MS, Marhl M, Stožer A, Perc M. Loosening the shackles of scientific disciplines with network science. Phys Life Rev 2018; 24:162-167. [DOI: 10.1016/j.plrev.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 02/09/2023]
|