1
|
Tarnita CE. Self-organization in spatial ecology. Curr Biol 2024; 34:R965-R970. [PMID: 39437736 DOI: 10.1016/j.cub.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Biologists have long known that populations of organisms - microbes, plants, animals - can self-organize into emergent patterns. Yet, the fact that such patterns can arise with remarkable symmetry at the scale of entire ecosystems remains astonishing, even as aerial imagery has documented their existence across all continents. As the enormous scale of landscape patterns makes them experimentally intractable, ecologists have relied on theoretical modelling - typically rooted in physics - to investigate the underlying pattern-forming mechanisms. Such models have succeeded in generating mechanistic hypotheses and indicate that self-organized spatial patterns can reflect the health of an ecosystem. However, most of these hypotheses remain untested. This essay reflects on our current understanding of the causes and consequences of ecosystem-scale pattern formation.
Collapse
Affiliation(s)
- Corina E Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
2
|
Gerstner BP, Laport RG, Rudgers JA, Whitney KD. Plant-soil microbe feedbacks depend on distance and ploidy in a mixed cytotype population of Larrea tridentata. AMERICAN JOURNAL OF BOTANY 2024; 111:e16298. [PMID: 38433501 DOI: 10.1002/ajb2.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024]
Abstract
PREMISE Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.
Collapse
Affiliation(s)
- Benjamin P Gerstner
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert G Laport
- Department of Biology, The College of Idaho, Caldwell, ID, 83605, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Iuorio A, Baudena M, Eppinga MB, Giannino F, Rietkerk M, Veerman F. Travelling waves due to negative plant-soil feedbacks in a model including tree life-stages. Math Biosci 2024; 368:109128. [PMID: 38135247 DOI: 10.1016/j.mbs.2023.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
The emergence and maintenance of tree species diversity in tropical forests is commonly attributed to the Janzen-Connell (JC) hypothesis, which states that growth of seedlings is suppressed in the proximity of conspecific adult trees. As a result, a JC distribution due to a density-dependent negative feedback emerges in the form of a (transient) pattern where conspecific seedling density is highest at intermediate distances away from parent trees. Several studies suggest that the required density-dependent feedbacks behind this pattern could result from interactions between trees and soil-borne pathogens. However, negative plant-soil feedback may involve additional mechanisms, including the accumulation of autotoxic compounds generated through tree litter decomposition. An essential task therefore consists in constructing mathematical models incorporating both effects showing the ability to support the emergence of JC distributions. In this work, we develop and analyse a novel reaction-diffusion-ODE model, describing the interactions within tropical tree species across different life stages (seeds, seedlings, and adults) as driven by negative plant-soil feedback. In particular, we show that under strong negative plant-soil feedback travelling wave solutions exist, creating transient distributions of adult trees and seedlings that are in agreement with the Janzen-Connell hypothesis. Moreover, we show that these travelling wave solutions are pulled fronts and a robust feature as they occur over a broad parameter range. Finally, we calculate their linear spreading speed and show its (in)dependence on relevant nondimensional parameters.
Collapse
Affiliation(s)
- Annalisa Iuorio
- University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austria; Parthenope University of Naples, Department of Engineering, Centro Direzionale - Isola C4, Naples, 80143, Italy.
| | - Mara Baudena
- Utrecht University, Copernicus Institute of Sustainable Development, Environmental Sciences Group, Utrecht, 3508 TC, The Netherlands; National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Corso Fiume 4, Torino, 10133, Italy; National Biodiversity Future Center, Piazza Marina, 61, Palermo, 90133, Italy.
| | - Maarten B Eppinga
- University of Zurich, Department of Geography, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | - Francesco Giannino
- University of Naples Federico II, Department of Agricultural Sciences, via Università 100, Portici, 80055, Italy.
| | - Max Rietkerk
- Utrecht University, Copernicus Institute of Sustainable Development, Environmental Sciences Group, Utrecht, 3508 TC, The Netherlands.
| | - Frits Veerman
- Leiden University, Mathematical Institute, Niels Bohrweg 1, Leiden, 2300 RA, The Netherlands.
| |
Collapse
|
4
|
Lenton TM, Abrams JF, Bartsch A, Bathiany S, Boulton CA, Buxton JE, Conversi A, Cunliffe AM, Hebden S, Lavergne T, Poulter B, Shepherd A, Smith T, Swingedouw D, Winkelmann R, Boers N. Remotely sensing potential climate change tipping points across scales. Nat Commun 2024; 15:343. [PMID: 38184618 PMCID: PMC10771461 DOI: 10.1038/s41467-023-44609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Potential climate tipping points pose a growing risk for societies, and policy is calling for improved anticipation of them. Satellite remote sensing can play a unique role in identifying and anticipating tipping phenomena across scales. Where satellite records are too short for temporal early warning of tipping points, complementary spatial indicators can leverage the exceptional spatial-temporal coverage of remotely sensed data to detect changing resilience of vulnerable systems. Combining Earth observation with Earth system models can improve process-based understanding of tipping points, their interactions, and potential tipping cascades. Such fine-resolution sensing can support climate tipping point risk management across scales.
Collapse
Affiliation(s)
| | - Jesse F Abrams
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Annett Bartsch
- b.geos GmbH, Industriestrasse 1A, 2100, Korneuburg, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Sebastian Bathiany
- Earth System Modelling, School of Engineering & Design, Technical University of Munich, Munich, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | | | | - Alessandra Conversi
- National Research Council of Italy, ISMAR-Lerici, Forte Santa Teresa, Loc. Pozzuolo, 19032, Lerici (SP), Italy
| | | | - Sophie Hebden
- Future Earth Secretariat, Stockholm, Sweden
- European Space Agency, ECSAT, Harwell, Oxfordshire, UK
| | | | | | - Andrew Shepherd
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK
| | - Taylor Smith
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Didier Swingedouw
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600, Pessac, France
| | | | - Niklas Boers
- Global Systems Institute, University of Exeter, Exeter, UK
- Earth System Modelling, School of Engineering & Design, Technical University of Munich, Munich, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| |
Collapse
|
5
|
Eppinga MB, Michaels TK, Santos MJ, Bever JD. Introducing desirable patches to initiate ecosystem transitions and accelerate ecosystem restoration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2910. [PMID: 37602903 DOI: 10.1002/eap.2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Meeting restoration targets may require active strategies to accelerate natural regeneration rates or overcome the resilience associated with degraded ecosystem states. Introducing desired ecosystem patches in degraded landscapes constitutes a promising active restoration strategy, with various mechanisms potentially causing these patches to become foci from which desired species can re-establish throughout the landscape. This study considers three mechanisms previously identified as potential drivers of introduced patch dynamics: autocatalytic nucleation, directed dispersal, and resource concentration. These mechanisms reflect qualitatively different positive feedbacks. We developed an ecological model framework that compared how the occurrence of each mechanism was reflected in spatio-temporal patch dynamics. We then analyzed the implications of these relationships for optimal restoration design. We found that patch expansion accelerated over time when driven by the autocatalytic nucleation mechanism, while patch expansion driven by the directed dispersal or resource concentration mechanisms decelerated over time. Additionally, when driven by autocatalytic nucleation, patch expansion was independent of patch position in the landscape. However, the proximity of other patches affected patch expansion either positively or negatively when driven by directed dispersal or resource concentration. For autocatalytic nucleation, introducing many small patches was a favorable strategy, provided that each individual patch exceeded a critical patch size. Introducing a single patch or a few large patches was the most effective restoration strategy to initiate the directed dispersal mechanism. Introducing many small patches was the most effective strategy for reaching restored ecosystem states driven by a resource concentration mechanism. Our model results suggest that introducing desirable patches can substantially accelerate ecosystem restoration, or even induce a critical transition from an otherwise stable degraded state toward a desired ecosystem state. However, the potential of this type of restoration strategy for a particular ecosystem may strongly depend on the mechanism driving patch dynamics. In turn, which mechanism drives patch dynamics may affect the optimal spatial design of an active restoration strategy. Each of the three mechanisms considered reflects distinct spatio-temporal patch dynamics, providing novel opportunities for empirically identifying key mechanisms, and restoration designs that introduce desired patches in degraded landscapes according to these patch dynamics.
Collapse
Affiliation(s)
| | - Theo K Michaels
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| | - Maria J Santos
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - James D Bever
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
6
|
Iuorio A, Eppinga MB, Baudena M, Veerman F, Rietkerk M, Giannino F. Modelling how negative plant-soil feedbacks across life stages affect the spatial patterning of trees. Sci Rep 2023; 13:19128. [PMID: 37926717 PMCID: PMC10625994 DOI: 10.1038/s41598-023-44867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
In this work, we theoretically explore how litter decomposition processes and soil-borne pathogens contribute to negative plant-soil feedbacks, in particular in transient and stable spatial organisation of tropical forest trees and seedlings known as Janzen-Connell distributions. By considering soil-borne pathogens and autotoxicity both separately and in combination in a phenomenological model, we can study how both factors may affect transient dynamics and emerging Janzen-Connell distributions. We also identify parameter regimes associated with different long-term behaviours. Moreover, we compare how the strength of negative plant-soil feedbacks was mediated by tree germination and growth strategies, using a combination of analytical approaches and numerical simulations. Our interdisciplinary investigation, motivated by an ecological question, allows us to construct important links between local feedbacks, spatial self-organisation, and community assembly. Our model analyses contribute to understanding the drivers of biodiversity in tropical ecosystems, by disentangling the abilities of two potential mechanisms to generate Janzen-Connell distributions. Furthermore, our theoretical results may help guiding future field data analyses by identifying spatial signatures in adult tree and seedling distribution data that may reflect the presence of particular plant-soil feedback mechanisms.
Collapse
Affiliation(s)
- Annalisa Iuorio
- Department of Engineering, Centro Direzionale-Isola C4, Parthenope University of Naples, 80143, Naples, Italy.
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria.
| | - Maarten B Eppinga
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mara Baudena
- Environmental Sciences Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Corso Fiume 4, 10133, Torino, Italy
| | - Frits Veerman
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2300 RA, Leiden, The Netherlands
| | - Max Rietkerk
- Environmental Sciences Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| |
Collapse
|
7
|
Bonanomi G, Bobrovskikh A, Cartenì F, Mazzoleni S, Giannino F. Adult conspecific density affects Janzen-Connell patterns by modulating the recruitment exclusion zones. FRONTIERS IN PLANT SCIENCE 2023; 14:1079975. [PMID: 37441185 PMCID: PMC10333542 DOI: 10.3389/fpls.2023.1079975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/21/2023] [Indexed: 07/15/2023]
Abstract
Plant-soil negative feedback (NF) is a well-established phenomenon that, by preventing the dominance of a single species, allows species coexistence and promotes the maintenance of biodiversity. At community scale, localized NF may cause the formation of exclusion zones under adult conspecifics leading to Janzen-Connell (JC) distribution. In this study, we explore the connection between adult density, either conspecifics or heterospecifics, on the probability of occurrence of JC distributions. Using an individual-based modelling approach, we simulated the formation of exclusion zones due to the build-up of NF in proximity of conspecific adult plants and assessed the frequency of JC distribution in relation to conspecifics and heterospecifics density ranging from isolated trees to closed forest stands. We found that JC recruitment distribution is very common in the case of an isolated tree when NF was strong and capable to form an exclusion zone under the parent tree. At very low NF intensity, a prevalence of the decreasing pattern was observed because, under such conditions, the inhibitory effect due to the presence of the mother tree was unable to overcome the clustering effect of the seed dispersal kernel. However, if NF is strong the JC frequency suddenly decreases in stands with a continuous conspecific cover likely as a result of progressive expansion of the exclusion zone surrounding all trees in closed forest stands. Finally, our simulations showed that JC distribution should not be frequent in the case of rare species immersed in a matrix of heterospecific adults. Overall, the model shows that a plant suffering from strong NF in monospecific stands can rarely exhibit a recruitment pattern fitting the JC model. Such counterintuitive results would provide the means to reconcile the well-established NF framework with part the forest ecologists' community that is still skeptical towards the JC model. Synthesis Our model highlights the complex interconnection between NF intensity, stand density, and recruitment patterns explaining where and why the JC distribution occurs. Moreover, predicting the occurrence of JC in relation to stand density we clarify the relevance of this ecological phenomenon for future integration in plant community frameworks.
Collapse
Affiliation(s)
- Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force of Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Aleksandr Bobrovskikh
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force of Computational and Quantitative Biology, University of Naples Federico II, Naples, Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force of Microbiome Studies, University of Naples Federico II, Naples, Italy
- Task Force of Computational and Quantitative Biology, University of Naples Federico II, Naples, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force of Computational and Quantitative Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Carvalho S, Mota H, Martins M. Landscapes of Biochemical Warfare: Spatial Self-Organization Woven from Allelopathic Interactions. Life (Basel) 2023; 13:512. [PMID: 36836869 PMCID: PMC9967760 DOI: 10.3390/life13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Evidence shows that diversity and spatial distributions of biological communities are largely driven by the race of living organisms in their adaptation to chemicals synthesized by their neighbors. In this report, the emergence of mathematical models on pure spatial self-organization induced by biochemical suppression (allelopathy) and competition between species were investigated through numerical analysis. For both random and patched initial spatial distributions of species, we demonstrate that warfare survivors are self-organized on the landscape in Turing-like patterns driven by diffusive instabilities of allelochemicals. These patterns are simple; either all species coexist at low diffusion rates or are massively extinct, except for a few at high diffusivities, but they are complex and biodiversity-sustained at intermediate diffusion rates. "Defensive alliances" and ecotones seem to be basic mechanisms that sustain great biodiversity in our hybrid cellular automata model. Moreover, species coexistence and extinction exhibit multi-stationarity.
Collapse
Affiliation(s)
- Sylvestre Carvalho
- Institute for Advanced Studies, University of São Paulo, São Paulo 05508-050, Brazil
- Department of Physics, CFisUC, Center of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Henrique Mota
- Department of Physics, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Marcelo Martins
- Department of Physics, Federal University of Viçosa, Viçosa 36570-900, Brazil
- National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, Brazil
- Ibitipoca Institute of Physics (IbitiPhys), Conceição do Ibitipoca 36140-000, Brazil
| |
Collapse
|
9
|
Wang S, Abalori TA, Wang W, Deng X, Liu W, Wang J, Cao W. Response of soil microbial compositional and functional heterogeneity to grazing exclusion in alpine shrub and meadows in the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:1038805. [PMID: 36532507 PMCID: PMC9748428 DOI: 10.3389/fmicb.2022.1038805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 11/04/2023] Open
Abstract
Soil microorganisms found in shrub-meadow ecosystems are highly heterogeneous and extremely sensitive to grazing, but changes in microbial compositional and functional heterogeneity during grazing exclusion (GE) have been largely overlooked compared to community diversity. We collected soil samples from heavily grazed plots (6.0 sheep/ha) and GE plots (matrix and patch areas in both), and used a combination of next-generation sequencing, vegetation features, and the associated soil property data to investigate the effect of GE on the composition and function of microbial communities (bacteria fungi, and archaea) in 0-10 cm soils. Regarding community composition, the proportions of species in bacteria, fungi, and archaea were 97.3, 2.3, and 0.4%, respectively. GE significantly affected the species diversity of fungi and archaea but not that of bacteria. GE decreased the heterogeneity of bacteria (2.9% in matrix and 6.2% in patch) and archaea (31.1% in matrix and 19.7% in patch) but increased that of fungi by 1.4% in patch. Regarding community function, enzyme diversity and heterogeneity were increased by 10.4 and 9.4%, respectively, in patch after 6 years of fencing, exemplifying a high level of microbial functional redundancy. The Kyoto Encyclopedia of Genes and Genome pathways-cell growth and death, translation, digestive system, and nucleotide metabolism-were functional biomarkers (linear discriminant analysis effect size method) in matrix-non-grazed plots, whereas lipid metabolism, xenobiotics biodegradation and metabolism, and metabolism of terpenoids and polyketides, cell motility, cancer: overview, endocrine system, and membrane transport were biomarkers in patch-non-grazed plots. Additionally, GE improved the capacity for fatty acid metabolism but decreased the abundance of methane-producing archaea by 42.9%. Redundancy analysis revealed that the factors that affected microbial composition the most were soil aggregates, soil moisture, and the number of plant species, whereas those that affected microbial function the most were soil available phosphorus, soil temperature, and shrub canopy diameter. Our results quantified soil microbial heterogeneity, emphasizing the different responses of the composition and function of bacteria, fungi, and archaea to GE in alpine shrubs and meadows.
Collapse
Affiliation(s)
- Shilin Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, China
| | | | - Wenhu Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Xiuxia Deng
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wanting Liu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Jinlan Wang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenxia Cao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, China
| |
Collapse
|
10
|
Jiang M, He L, Fan B, Wang T, Yang N, Liu Y, Xu Y, Dong K, Hao G, Chen L, Ren A, Zhao N, Wang J, Gao Y. Intraspecific more than interspecific diversity plays an important role on Inner Mongolia grassland ecosystem functions: A microcosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154134. [PMID: 35219658 DOI: 10.1016/j.scitotenv.2022.154134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Biodiversity changes in terrestrial communities continue in the context of global changes. However, the interactive effects of the changes in diversity at inter- and intraspecific levels as well as cascading effects from plant to soil microorganisms on ecosystem functioning under climate changes remains largely unexplored. Using grassland species in the semi-arid Inner Mongolia Steppe, we conducted a microcosm experiment to assess how drought treatment (non-drought and drought conditions), species diversity (2, 4, and 7 species) and genotypic diversity of the dominant species Leymus chinensis (1, 3, and 6 genotypes) affected ecosystem functions directly or indirectly via regulating plant community functional structure [community-weighted mean (CWM) and functional dispersion (FDis)] and soil microbial diversity (Shannon-Wiener index). Drought treatment, species and genotypic diversity significantly and interactively affected soil N, P cycle and soil multifunctionality as well as soil microbial diversity. Drought treatment significantly affected biomass, soil C cycle, CWM and soil microbial diversity. Species diversity significantly affected soil N cycle, CWM and FDis, and genotypic diversity significantly affected all soil functions and soil microbial diversity. CWM regulated the responses of all ecosystem functions except soil N cycle to the changes in soil moisture and species diversity, which supports the mass ratio hypothesis. The cascading effect from genotypic diversity to soil microbial diversity was significant on belowground biomass but not on any of the other ecosystem functions observed in this study. These findings highlight the importance of genotypic diversity of the dominant species L. chinensis in affecting belowground ecosystem functioning as well as soil microbial diversity, which should not be ignored for grassland protection and management. This study provides further insights into biodiversity and ecosystem functioning mechanisms in semi-arid grasslands in the context of global climate changes.
Collapse
Affiliation(s)
- Man Jiang
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Luoyang He
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Baijie Fan
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Tao Wang
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Nan Yang
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Yulin Liu
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Yujuan Xu
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Ke Dong
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Guang Hao
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Anzhi Ren
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| | - Nianxi Zhao
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China.
| | - Jinlong Wang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, No. 22 Jinjing Road, Tianjin 300384, PR China
| | - Yubao Gao
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, No. 94 Weijin Road, Tianjin 300071, PR China
| |
Collapse
|
11
|
Spatial patterns in ecological systems: from microbial colonies to landscapes. Emerg Top Life Sci 2022; 6:245-258. [PMID: 35678374 DOI: 10.1042/etls20210282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
Self-organized spatial patterns are ubiquitous in ecological systems and allow populations to adopt non-trivial spatial distributions starting from disordered configurations. These patterns form due to diverse nonlinear interactions among organisms and between organisms and their environment, and lead to the emergence of new (eco)system-level properties unique to self-organized systems. Such pattern consequences include higher resilience and resistance to environmental changes, abrupt ecosystem collapse, hysteresis loops, and reversal of competitive exclusion. Here, we review ecological systems exhibiting self-organized patterns. We establish two broad pattern categories depending on whether the self-organizing process is primarily driven by nonlinear density-dependent demographic rates or by nonlinear density-dependent movement. Using this organization, we examine a wide range of observational scales, from microbial colonies to whole ecosystems, and discuss the mechanisms hypothesized to underlie observed patterns and their system-level consequences. For each example, we review both the empirical evidence and the existing theoretical frameworks developed to identify the causes and consequences of patterning. Finally, we trace qualitative similarities across systems and propose possible ways of developing a more quantitative understanding of how self-organization operates across systems and observational scales in ecology.
Collapse
|
12
|
Inderjit, Callaway RM, Meron E. Vegetation patterning and biodiversity of plant communities. Phys Life Rev 2022; 42:29-32. [DOI: 10.1016/j.plrev.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
|
13
|
A First Study of Urginea maritima Rings: A Case Study from Southern Jordan. LAND 2022. [DOI: 10.3390/land11020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vegetation rings are a common pattern in water-limited environments and mostly occur in clonal plants. This study presents, for the first time, rings of the geophyte species Urginea maritima. The rings, typically 40–90 cm in diameter, are abundant in the sandy environment of Little Petra and Wadi Rum, in the southern Jordanian drylands. Soil properties were studied in the rings’ center, periphery, and matrix. Soil-water volumetric content was significantly higher in the rings’ periphery than in the center and matrix. The soil organic carbon was highest in the periphery, intermediate in the center, and lowest in the matrix. At the same time, the soil texture, hydraulic conductivity, and gravimetric moisture content at the hygroscopic level were similar in the three microenvironments. According to the results, a possible ring formation mechanism is the soil-water uptake mechanism, which results in competition between the plants at the periphery and those in the center and is generally attributed to plants with large lateral root zones. Numerical simulations of a mathematical model implemented in this study support the soil-water uptake mechanism. A second possible mechanism is negative plant-soil feedback due to the accumulation of dead biomass and its consequent decomposition, with the resultant release of autotoxic compounds. It is possible that several mechanisms occur simultaneously and synergistically affect the formation of U. maritima rings.
Collapse
|
14
|
Eppinga MB, Van der Putten WH, Bever JD. Plant-soil feedback as a driver of spatial structure in ecosystems. Phys Life Rev 2022; 40:6-14. [DOI: 10.1016/j.plrev.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
15
|
Morozov A. Towards creating a mechanistic predictive theory of self-organized vegetation patterns: Comment on "Belowground feedbacks as drivers of spatial self-organization and community assembly" by Inderjit, Callaway and Meron. Phys Life Rev 2021; 40:54-56. [PMID: 34838506 DOI: 10.1016/j.plrev.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew Morozov
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia; School of Computing and Mathematical Sciences, University of Leicester, UK.
| |
Collapse
|
16
|
Rietkerk M. Spatial pattern formation, community assembly and resilience: Comment on "Belowground feedbacks as drivers of spatial self-organization and community assembly" by Inderjit, Ragan M. Callaway, Ehud Meron. Phys Life Rev 2021; 40:51-53. [PMID: 34823977 DOI: 10.1016/j.plrev.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Max Rietkerk
- Copernicus Institute of Sustainable Development, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht, the Netherlands.
| |
Collapse
|
17
|
High-integrity human intervention in ecosystems: Tracking self-organization modes. PLoS Comput Biol 2021; 17:e1009427. [PMID: 34587157 PMCID: PMC8504872 DOI: 10.1371/journal.pcbi.1009427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/11/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Humans play major roles in shaping and transforming the ecology of Earth. Unlike natural drivers of ecosystem change, which are erratic and unpredictable, human intervention in ecosystems generally involves planning and management, but often results in detrimental outcomes. Using model studies and aerial-image analysis, we argue that the design of a successful human intervention form calls for the identification of the self-organization modes that drive ecosystem change, and for studying their dynamics. We demonstrate this approach with two examples: grazing management in drought-prone ecosystems, and rehabilitation of degraded vegetation by water harvesting. We show that grazing can increase the resilience to droughts, rather than imposing an additional stress, if managed in a spatially non-uniform manner, and that fragmental restoration along contour bunds is more resilient than the common practice of continuous restoration in vegetation stripes. We conclude by discussing the need for additional studies of self-organization modes and their dynamics. Human intervention in ecosystems is motivated by various functional needs, such as provisioning ecosystem services, but often has unexpected detrimental outcomes. A major question in ecology is how to manage human intervention so as to achieve its goal without impairing ecosystem function. The main idea pursued here is the need to identify the inherent response ways of ecosystems to disturbances, and use them as road maps for conducting interventions. This approach is demonstrated mathematically using two contexts, grazing management and vegetation restoration, and compared to remote sensing data for the latter. Among the surprising insights obtained is the beneficial effect of grazing, in terms of resilience to droughts, that can be achieved by managing it non-uniformly in space.
Collapse
|
18
|
Bera BK, Tzuk O, Bennett JJR, Meron E. Linking spatial self-organization to community assembly and biodiversity. eLife 2021; 10:e73819. [PMID: 34570698 PMCID: PMC8497052 DOI: 10.7554/elife.73819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022] Open
Abstract
Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes - community reassembly and spatial self-organization - have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.
Collapse
Affiliation(s)
- Bidesh K Bera
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the NegevSede Boqer CampusIsrael
| | - Omer Tzuk
- Physics Department, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Jamie JR Bennett
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the NegevSede Boqer CampusIsrael
| | - Ehud Meron
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the NegevSede Boqer CampusIsrael
- Physics Department, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|