1
|
Friedrich J, Fischer MH, Raab M. Invariant representations in abstract concept grounding - the physical world in grounded cognition. Psychon Bull Rev 2024; 31:2558-2580. [PMID: 38806790 PMCID: PMC11680661 DOI: 10.3758/s13423-024-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Grounded cognition states that mental representations of concepts consist of experiential aspects. For example, the concept "cup" consists of the sensorimotor experiences from interactions with cups. Typical modalities in which concepts are grounded are: The sensorimotor system (including interoception), emotion, action, language, and social aspects. Here, we argue that this list should be expanded to include physical invariants (unchanging features of physical motion; e.g., gravity, momentum, friction). Research on physical reasoning consistently demonstrates that physical invariants are represented as fundamentally as other grounding substrates, and therefore should qualify. We assess several theories of concept representation (simulation, conceptual metaphor, conceptual spaces, predictive processing) and their positions on physical invariants. We find that the classic grounded cognition theories, simulation and conceptual metaphor theory, have not considered physical invariants, while conceptual spaces and predictive processing have. We conclude that physical invariants should be included into grounded cognition theories, and that the core mechanisms of simulation and conceptual metaphor theory are well suited to do this. Furthermore, conceptual spaces and predictive processing are very promising and should also be integrated with grounded cognition in the future.
Collapse
Affiliation(s)
- Jannis Friedrich
- German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Martin H Fischer
- Psychology Department, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14 D - 14476, Potsdam-Golm, Germany
| | - Markus Raab
- German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
2
|
Mandelli V, Landi I, Ceccarelli SB, Molteni M, Nobile M, D'Ausilio A, Fadiga L, Crippa A, Lombardo MV. Enhanced motor noise in an autism subtype with poor motor skills. Mol Autism 2024; 15:36. [PMID: 39228000 PMCID: PMC11370061 DOI: 10.1186/s13229-024-00618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Motor difficulties are common in many, but not all, autistic individuals. These difficulties can co-occur with other problems, such as delays in language, intellectual, and adaptive functioning. Biological mechanisms underpinning such difficulties are less well understood. Poor motor skills tend to be more common in individuals carrying highly penetrant rare genetic mutations. Such mechanisms may have downstream consequences of altering neurophysiological excitation-inhibition balance and lead to enhanced behavioral motor noise. METHODS This study combined publicly available and in-house datasets of autistic (n = 156), typically-developing (TD, n = 149), and developmental coordination disorder (DCD, n = 23) children (age 3-16 years). Autism motor subtypes were identified based on patterns of motor abilities measured from the Movement Assessment Battery for Children 2nd edition. Stability-based relative clustering validation was used to identify autism motor subtypes and evaluate generalization accuracy in held-out data. Autism motor subtypes were tested for differences in motor noise, operationalized as the degree of dissimilarity between repeated motor kinematic trajectories recorded during a simple reach-to-drop task. RESULTS Relatively 'high' (n = 87) versus 'low' (n = 69) autism motor subtypes could be detected and which generalize with 89% accuracy in held-out data. The relatively 'low' subtype was lower in general intellectual ability and older at age of independent walking, but did not differ in age at first words or autistic traits or symptomatology. Motor noise was considerably higher in the 'low' subtype compared to 'high' (Cohen's d = 0.77) or TD children (Cohen's d = 0.85), but similar between autism 'high' and TD children (Cohen's d = 0.08). Enhanced motor noise in the 'low' subtype was also most pronounced during the feedforward phase of reaching actions. LIMITATIONS The sample size of this work is limited. Future work in larger samples along with independent replication is important. Motor noise was measured only on one specific motor task. Thus, a more comprehensive assessment of motor noise on many other motor tasks is needed. CONCLUSIONS Autism can be split into at least two discrete motor subtypes that are characterized by differing levels of motor noise. This suggests that autism motor subtypes may be underpinned by different biological mechanisms.
Collapse
Affiliation(s)
- Veronica Mandelli
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Isotta Landi
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Massimo Molteni
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maria Nobile
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
3
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
4
|
Vescovo E, D'Ausilio A. The too many facets of motor output variability. Comment on "From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability" by Casartelli, L., Maronati, C., & Cavallo, A. Phys Life Rev 2024; 50:1-3. [PMID: 38733718 DOI: 10.1016/j.plrev.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Laroche J, Tomassini A, Fadiga L, D'Ausilio A. Submovement interpersonal coupling is associated to audio-motor coordination performance. Sci Rep 2024; 14:4662. [PMID: 38409187 PMCID: PMC10897171 DOI: 10.1038/s41598-024-51629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Acting in concert with others, a key aspect of our social life, requires behavioral coordination between persons on multiple timescales. When zooming in on the kinematic properties of movements, it appears that small speed fluctuations, called submovements, are embedded within otherwise smooth end-point trajectories. Submovements, by occurring at a faster timescale than that of movements, offer a novel window upon the functional relationship between distinct motor timescales. In this regard, it has previously been shown that when partners visually synchronize their movements, they also coordinate the timing of their submovement by following an alternated pattern. However, it remains unclear whether the mechanisms behind submovement coordination are domain-general or specific to the visual modality, and whether they have relevance for interpersonal coordination also at the scale of whole movements. In a series of solo and dyadic tasks, we show that submovements are also present and coordinated across partners when sensorimotor interactions are mediated by auditory feedback only. Importantly, the accuracy of task-instructed interpersonal coordination at the movement level correlates with the strength of submovement coordination. These results demonstrate that submovement coordination is a potentially fundamental mechanism that participates in interpersonal motor coordination regardless of the sensory domain mediating the interaction.
Collapse
Affiliation(s)
- Julien Laroche
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
- Sezione di Fisiologia, Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
- Sezione di Fisiologia, Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Torricelli F, Tomassini A, Pezzulo G, Pozzo T, Fadiga L, D'Ausilio A. Actions are all we need for cognition, but do we know enough about them?: Reply to comments on "Motor invariants in action execution and perception". Phys Life Rev 2023; 47:30-32. [PMID: 37690326 DOI: 10.1016/j.plrev.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Francesco Torricelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Thierry Pozzo
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
8
|
Dessalene E, Aloimonos Y. Motor-invariants for action understanding in video. Phys Life Rev 2023; 47:20-21. [PMID: 37677926 DOI: 10.1016/j.plrev.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Eadom Dessalene
- University of Maryland, College Park, College Park, MD 20742, USA.
| | | |
Collapse
|
9
|
D'Ausilio A, Tomassini A. Studying the hierarchy of actions from motor primitives: Comment on "An active inference model of hierarchical action understanding, learning and imitation". Phys Life Rev 2023; 47:63-65. [PMID: 37708816 DOI: 10.1016/j.plrev.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Affiliation(s)
- A D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy.
| | - A Tomassini
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Nazzaro G, Emanuele M, Laroche J, Esposto C, Fadiga L, D'Ausilio A, Tomassini A. The microstructure of intra- and interpersonal coordination. Proc Biol Sci 2023; 290:20231576. [PMID: 37964525 PMCID: PMC10646454 DOI: 10.1098/rspb.2023.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Movements are naturally composed of submovements, i.e. recurrent speed pulses (2-3 Hz), possibly reflecting intermittent feedback-based motor adjustments. In visuomotor (unimanual) synchronization tasks, partners alternate submovements over time, indicating mutual coregulation. However, it is unclear whether submovement coordination is organized differently between and within individuals. Indeed, different types of information may be variably exploited for intrapersonal and interpersonal coordination. Participants performed a series of bimanual tasks alone or in pairs, with or without visual feedback (solo task only). We analysed the relative timing of submovements between their own hands or between their own hands and those of their partner. Distinct coordinative structures emerged at the submovement level depending on the relevance of visual feedback. Specifically, the relative timing of submovements (between partners/effectors) shifts from alternation to simultaneity and a mixture of both when coordination is achieved using vision (interpersonal), proprioception/efference-copy only (intrapersonal, without vision) or all information sources (intrapersonal, with vision), respectively. These results suggest that submovement coordination represents a behavioural proxy for the adaptive weighting of different sources of information within action-perception loops. In sum, the microstructure of movement reveals common principles governing the dynamics of sensorimotor control to achieve both intra- and interpersonal coordination.
Collapse
Affiliation(s)
- Giovanni Nazzaro
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Marco Emanuele
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Julien Laroche
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Chiara Esposto
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Cheron G, Simar C, Cebolla AM. The oscillatory nature of the motor and perceptive kinematics invariants: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 46:80-84. [PMID: 37327669 DOI: 10.1016/j.plrev.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium.
| | - Cédric Simar
- Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
12
|
Bardi L, Langford ZD, Cristofori I. Visual sensitivity to biological motion invariants in humans at birth: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 46:122-124. [PMID: 37356361 DOI: 10.1016/j.plrev.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Lara Bardi
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/UMR 5229, Bron, France; Université Claude Bernard, Lyon 1, Villeurbanne, France.
| | - Zachary D Langford
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/UMR 5229, Bron, France; Université Claude Bernard, Lyon 1, Villeurbanne, France
| | - Irene Cristofori
- Institut des Sciences Cognitives Marc Jeannerod, CNRS/UMR 5229, Bron, France; Université Claude Bernard, Lyon 1, Villeurbanne, France
| |
Collapse
|
13
|
Labaune O, Berret B. The vigor law as a kinematic invariant at work in perceptual-cognitive processes: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 46:1-4. [PMID: 37210934 DOI: 10.1016/j.plrev.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Affiliation(s)
- Ombeline Labaune
- Laboratory of Visuomotor Control and Gravitational Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France; CIAMS, Université d'Orléans, Orléans, France.
| |
Collapse
|
14
|
Lacquaniti F, La Scaleia B, Zago M. Non-invariants may be used for socially-relevant perceptual decisions: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 45:60-62. [PMID: 37121136 DOI: 10.1016/j.plrev.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Francesco Lacquaniti
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Myrka Zago
- Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; Department of Civil Engineering and Computer Science Engineering and Centre of Space Bio-medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
15
|
d'Avella A, Russo M, Berger DJ, Maselli A. Neuromuscular invariants in action execution and perception: Comment on "Motor invariants in action execution and perception" by Torricelli et al. Phys Life Rev 2023; 45:63-65. [PMID: 37121137 DOI: 10.1016/j.plrev.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Andrea d'Avella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Marta Russo
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Neurology, Tor Vergata Polyclinic, Rome, Italy
| | - Denise J Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
16
|
Morasso P. Taming the abundance of degrees of freedom: Comment on "Motor invariants in action execution and perception" by Francesco Torricelli et al. Phys Life Rev 2023; 44:166-169. [PMID: 36753907 DOI: 10.1016/j.plrev.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
|