1
|
Tabatabaee RS, Naghdi T, Peyravian M, Kiani MA, Golmohammadi H. An Invisible Dermal Nanotattoo-Based Smart Wearable Sensor for eDiagnostics of Jaundice. ACS NANO 2024; 18:28012-28025. [PMID: 39356285 DOI: 10.1021/acsnano.4c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Despite substantial progress in the diagnosis of jaundice/hyperbilirubinemia as the most common disease and cause of hospitalization of newborns, on the eve of Industry/Healthcare 5.0, the development of accurate and reliable wearable diagnostic sensors for noninvasive smart monitoring of bilirubin (BIL) is still in high demand. Aiming to fabricate a smart wearable sensor for early diagnosis of neonatal jaundice and its therapeutic monitoring, we here report a fluorescent dermal nanotattoo that further coupled with an IoT-integrated wearable optoelectronic reader for minimally invasive, continuous, and real-time monitoring of BIL in interstitial fluid. Selective recovery of quenched fluorescence of the dermal tattoo sensor, composed of biocompatible dissolving/hydrogel microneedles loaded with fluorescent carbon quantum dots, upon blue light exposure used for jaundice phototherapy was utilized for highly selective BIL sensing. The fascinating features of our developed smart wearable tattoo sensor and its successful results with high correlation with blood BIL results make it a highly promising sensor for easy, minimally invasive, reliable, and smart eDiagnostics and continuous therapeutic eMonitoring of jaundice and other BIL-induced diseases at the point of care. We envision that the developed nanotattoo sensing bioplatform will inspire the development of future smart tattoo sensors in various diagnostic and monitoring scenarios.
Collapse
Affiliation(s)
- Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Mohammad Peyravian
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Mohammad Ali Kiani
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
- IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
2
|
Qiu Y, Wang F, Zhang Z, Shi K, Song Y, Lu J, Xu M, Qian M, Zhang W, Wu J, Zhang Z, Chai H, Liu A, Jiang H, Wu H. Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking. SCIENCE ADVANCES 2024; 10:eadp0348. [PMID: 39047112 PMCID: PMC11268415 DOI: 10.1126/sciadv.adp0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Replicating human somatosensory networks in robots is crucial for dexterous manipulation, ensuring the appropriate grasping force for objects of varying softness and textures. Despite advances in artificial haptic sensing for object recognition, accurately quantifying haptic perceptions to discern softness and texture remains challenging. Here, we report a methodology that uses a bimodal haptic sensor to capture multidimensional static and dynamic stimuli, allowing for the simultaneous quantification of softness and texture features. This method demonstrates synergistic measurements of elastic and frictional coefficients, thereby providing a universal strategy for acquiring the adaptive gripping force necessary for scarless, antislippage interaction with delicate objects. Equipped with this sensor, a robotic manipulator identifies porcine mucosal features with 98.44% accuracy and stably grasps visually indistinguishable mature white strawberries, enabling reliable tissue palpation and intelligent picking. The design concept and comprehensive guidelines presented would provide insights into haptic sensor development, promising benefits for robotics.
Collapse
Affiliation(s)
- Ye Qiu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Fangnan Wang
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuang Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kuanqiang Shi
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Yi Song
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jiutian Lu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Minjia Xu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Mengyuan Qian
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Wenan Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jixuan Wu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zheng Zhang
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Chai
- Zhijiang College of Zhejiang University of Technology, Shaoxing, Zhejiang 312030, China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Huaping Wu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National “2011 Plan”), Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
3
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Tian G, Deng W, Yang T, Zhang J, Xu T, Xiong D, Lan B, Wang S, Sun Y, Ao Y, Huang L, Liu Y, Li X, Jin L, Yang W. Hierarchical Piezoelectric Composites for Noninvasive Continuous Cardiovascular Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313612. [PMID: 38574762 DOI: 10.1002/adma.202313612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Continuous monitoring of blood pressure (BP) and multiparametric analysis of cardiac functions are crucial for the early diagnosis and therapy of cardiovascular diseases. However, existing monitoring approaches often suffer from bulky and intrusive apparatus, cumbersome testing procedures, and challenging data processing, hampering their applications in continuous monitoring. Here, a heterogeneously hierarchical piezoelectric composite is introduced for wearable continuous BP and cardiac function monitoring, overcoming the rigidity of ceramic and the insensitivity of polymer. By optimizing the hierarchical structure and components of the composite, the developed piezoelectric sensor delivers impressive performances, ensuring continuous and accurate monitoring of BP at Grade A level. Furthermore, the hemodynamic parameters are extracted from the detected signals, such as local pulse wave velocity, cardiac output, and stroke volume, all of which are in alignment with clinical results. Finally, the all-day tracking of cardiac function parameters validates the reliability and stability of the developed sensor, highlighting its potential for personalized healthcare systems, particularly in early diagnosis and timely intervention of cardiovascular disease.
Collapse
Affiliation(s)
- Guo Tian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jieling Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianpei Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Boling Lan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shenglong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yong Ao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Longchao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuelan Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
5
|
Jiang Y, Ye D, Li A, Zhang B, Han W, Niu X, Zeng M, Guo L, Zhang G, Yin Z, Huang Y. Transient charge-driven 3D conformal printing via pulsed-plasma impingement. Proc Natl Acad Sci U S A 2024; 121:e2402135121. [PMID: 38771869 PMCID: PMC11145272 DOI: 10.1073/pnas.2402135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024] Open
Abstract
Seamless integration of microstructures and circuits on three-dimensional (3D) complex surfaces is of significance and is catalyzing the emergence of many innovative 3D curvy electronic devices. However, patterning fine features on arbitrary 3D targets remains challenging. Here, we propose a facile charge-driven electrohydrodynamic 3D microprinting technique that allows micron- and even submicron-scale patterning of functional inks on a couple of 3D-shaped dielectrics via an atmospheric-pressure cold plasma jet. Relying on the transient charging of exposed sites arising from the weakly ionized gas jet, the specified charge is programmably deposited onto the surface as a virtual electrode with spatial and time spans of ~mm in diameter and ~μs in duration to generate a localized electric field accordantly. Therefore, inks with a wide range of viscosities can be directly drawn out from micro-orifices and deposited on both two-dimensional (2D) planar and 3D curved surfaces with a curvature radius down to ~1 mm and even on the inner wall of narrow cavities via localized electrostatic attraction, exhibiting a printing resolution of ~450 nm. In addition, several conformal electronic devices were successfully printed on 3D dielectric objects. Self-aligned 3D microprinting, with stacking layers up to 1400, is also achieved due to the electrified surfaces. This microplasma-induced printing technique exhibits great advantages such as ultrahigh resolution, excellent compatibility of inks and substrates, antigravity droplet dispersion, and omnidirectional printing on 3D freeform surfaces. It could provide a promising solution for intimately fabricating electronic devices on arbitrary 3D surfaces.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Dong Ye
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Aokang Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Wenhu Han
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Xuechen Niu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Mingtao Zeng
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Lianbo Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Guanjun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Zhouping Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| |
Collapse
|