1
|
Saueressig T, Owen PJ, Pedder H, Tagliaferri S, Kaczorowski S, Altrichter A, Richard A, Miller CT, Donath L, Belavy DL. The importance of context (placebo effects) in conservative interventions for musculoskeletal pain: A systematic review and meta-analysis of randomized controlled trials. Eur J Pain 2024; 28:675-704. [PMID: 38116995 DOI: 10.1002/ejp.2222] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Contextual effects (e.g. patient expectations) may play a role in treatment effectiveness. This study aimed to estimate the magnitude of contextual effects for conservative, non-pharmacological interventions for musculoskeletal pain conditions. A systematic review and meta-analysis of randomized controlled trials (RCTs) that compared placebo conservative non-pharmacological interventions to no treatment for musculoskeletal pain. The outcomes assessed included pain intensity, physical functioning, health-related quality of life, global rating of change, depression, anxiety and sleep at immediate, short-, medium- and/or long-term follow-up. DATABASES AND DATA TREATMENT MEDLINE, EMBASE, CINAHL, Web of Science Core Collection, CENTRAL and SPORTDiscus were searched from inception to September 2021. Trial registry searches, backward and forward citation tracking and searches for prior systematic reviews were completed. The Cochrane risk of bias 2 tool was implemented. RESULTS The study included 64 RCTs (N = 4314) out of 8898 records. For pain intensity, a mean difference of (MD: -5.32, 95% confidence interval (CI): -7.20, -3.44, N = 57 studies with 74 outcomes, GRADE: very low) was estimated for placebo interventions. A small effect in favour of the placebo interventions for physical function was estimated (SMD: -0.22, 95% CI: -0.35, -0.09; N = 37 with 48 outcomes, GRADE: very low). Similar results were found for a broad range of patient-reported outcomes. Meta-regression analyses did not explain heterogeneity among analyses. CONCLUSION The study found that the contextual effect of non-pharmacological conservative interventions for musculoskeletal conditions is likely to be small. However, given the known effect sizes of recommended evidence-based treatments for musculoskeletal conditions, it may still contribute an important component. SIGNIFICANCE Contextual effects of non-pharmacological conservative interventions for musculoskeletal conditions are likely to be small for a broad range of patient-reported outcomes (pain intensity, physical function, quality of life, global rating of change and depression). Contextual effects are unlikely, in isolation, to offer much clinical care. But these factors do have relevance in an overall treatment context as they provide almost 30% of the minimally clinically important difference.
Collapse
Affiliation(s)
| | - Patrick J Owen
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, Australia
| | - Hugo Pedder
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Scott Tagliaferri
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, Australia
| | - Svenja Kaczorowski
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Adina Altrichter
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Antonia Richard
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Clint T Miller
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Victoria, Australia
| | - Lars Donath
- Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany
| | - Daniel L Belavy
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| |
Collapse
|
2
|
Sansevere KS, MacVicar JA, Samuels DR, Yang AK, Johnson SK, Brunyé TT, Ward N. Balancing Act: Acute and Contextual Vestibular Sensations of Cranial Electrotherapy Stimulation Using Survey and Sensor Outcomes in a Non-Clinical Sample. Brain Sci 2024; 14:87. [PMID: 38248302 PMCID: PMC10813998 DOI: 10.3390/brainsci14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cranial electrotherapy stimulation (CES) delivers low-intensity electrical currents to the brain to treat anxiety, depression, and pain. Though CES is considered safe and cost-effective, little is known about side effects emerging across different contexts. Our objective was to investigate how varying physical and cognitive demands impact the frequency and intensity of CES vestibular sensations in a sample of healthy young adults. We used a 2 (stimulation: sham, active) × 2 (physical demand: static sway, dynamic sit-to-stand) × 2 (cognitive demand: single-task remain silent, dual-task count backward) repeated measures design. Vestibular sensations were measured with surveys and wearable sensors capturing balance changes. Active stimulation did not influence reported vestibular sensations. Instead, high physical demand predicted more sensation reports. High cognitive demand, but not active stimulation, predicted postural sway unsteadiness. Significant effects of active stimulation on balance were observed only during the dynamic sit-to-stand transitions. In summary, CES induces vestibular sensations only for a specific outcome under certain circumstances. Our findings imply that consumers can safely maximize the benefits of CES while ensuring they are taking steps to minimize any potential side effects by considering their context and circumstances.
Collapse
Affiliation(s)
- Kayla S. Sansevere
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA 02155, USA (N.W.)
| | - Joel A. MacVicar
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA 02155, USA (N.W.)
| | - Daniel R. Samuels
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA 02155, USA (N.W.)
| | - Audrey K. Yang
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA 02155, USA (N.W.)
| | - Sara K. Johnson
- Eliot-Pearson Department of Child Study and Human Development, Tufts University, 105 College Ave., Medford, MA 02145, USA
| | - Tad T. Brunyé
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA 02155, USA (N.W.)
- U.S. Army Combat Capabilities Development Command Soldier Center, 15 General Greene, Natick, MA 01760, USA
- Center for Applied Brain and Cognitive Sciences, 200 Boston Ave., Suite 1800, Medford, MA 02155, USA
| | - Nathan Ward
- Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA 02155, USA (N.W.)
| |
Collapse
|
3
|
Hua K, Cummings M, Bernatik M, Brinkhaus B, Usichenko T, Dietzel J. Cardiovascular effects of auricular stimulation -a systematic review and meta-analysis of randomized controlled clinical trials. Front Neurosci 2023; 17:1227858. [PMID: 37727325 PMCID: PMC10505819 DOI: 10.3389/fnins.2023.1227858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Background The number of randomized controlled trials using auricular stimulation (AS) such as transauricular vagus nerve stimulation, or other auricular electrostimulation or auricular acupuncture or acupressure, in experimental and clinical settings, has increased markedly over the last three decades. This systematic review focusses on cardiovascular effects of auricular stimulation. Methods and analysis The following databases were searched: MEDLINE (PubMed), EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), ISI Web of Science, and Scopus Database. RCTs were reviewed that had been published in English and European languages. Data collection and analysis was conducted by two reviewers independently. Quality and risk assessment of included studies was performed and the meta-analysis of the effect of the most frequently assessed biomarkers. Results Altogether, 78 trials were included. 38 studies assessed heart rate (HR), 19 studies analyzed heart rate variability (HRV), 31 studies analyzed blood pressure (BP) and 7 studies were identified that measured oxygen saturation (O2), 2 studies on baroreflex sensitivity and 2 studies on skin conductance were evaluated in this review. 26 studies contained continuous data and were eligible for meta-analysis, 50 trials reported non continuous data and were evaluated descriptively. The overall quality of the studies was moderate to low. AS leads to a significant reduction of HR, the changes though were not considered an adverse reaction. Furthermore, when looking at HRV, AS was able to reduce the LF/HF ratio significantly compared to control procedures. No other cardiovascular parameters (blood pressure, oxygen saturation, baroreflex sensitivity) were changed significantly. AS produced only minor side effects in all trials. Conclusion AS can lead to clinically safe reduction of HR and changes in the LF/HF ratio of the HRV, which is presumably via an increase in vagal activity. More research is needed to clarify whether AS can be used to modulate tachycardia or indications with autonomic imbalance. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=231885 PROSPERO, ID CRD42021231885.
Collapse
Affiliation(s)
- Kevin Hua
- Institute for Social Medicine, Epidemiology and Health Economics, Berlin Institute of Health, Charité - University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mike Cummings
- British Medical Acupuncture Society, London, United Kingdom
| | | | - Benno Brinkhaus
- Institute for Social Medicine, Epidemiology and Health Economics, Berlin Institute of Health, Charité - University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Taras Usichenko
- Department for Anesthesiology, University Hospital Greifswald, Greifswald, Germany
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Joanna Dietzel
- Institute for Social Medicine, Epidemiology and Health Economics, Berlin Institute of Health, Charité - University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Szymoniuk M, Chin JH, Domagalski Ł, Biszewski M, Jóźwik K, Kamieniak P. Brain stimulation for chronic pain management: a narrative review of analgesic mechanisms and clinical evidence. Neurosurg Rev 2023; 46:127. [PMID: 37247036 PMCID: PMC10227133 DOI: 10.1007/s10143-023-02032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Chronic pain constitutes one of the most common chronic complaints that people experience. According to the International Association for the Study of Pain, chronic pain is defined as pain that persists or recurs longer than 3 months. Chronic pain has a significant impact on individuals' well-being and psychosocial health and the economy of healthcare systems as well. Despite the availability of numerous therapeutic modalities, treatment of chronic pain can be challenging. Only about 30% of individuals with non-cancer chronic pain achieve improvement from standard pharmacological treatment. Therefore, numerous therapeutic approaches were proposed as a potential treatment for chronic pain including non-opioid pharmacological agents, nerve blocks, acupuncture, cannabidiol, stem cells, exosomes, and neurostimulation techniques. Although some neurostimulation methods such as spinal cord stimulation were successfully introduced into clinical practice as a therapy for chronic pain, the current evidence for brain stimulation efficacy in the treatment of chronic pain remains unclear. Hence, this narrative literature review aimed to give an up-to-date overview of brain stimulation methods, including deep brain stimulation, motor cortex stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, cranial electrotherapy stimulation, and reduced impedance non-invasive cortical electrostimulation as a potential treatment for chronic pain.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Jia-Hsuan Chin
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Łukasz Domagalski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland.
| | - Mateusz Biszewski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Jóźwik
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Integrative Pain Solutions, Part 3: Chronic Pain and Evidence-Based Nonpharmacologic Strategies. Holist Nurs Pract 2022; 36:327-329. [PMID: 35981116 DOI: 10.1097/hnp.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ma H, Lin J, He J, Lo DHT, Tsang HWH. Effectiveness of TES and rTMS for the Treatment of Insomnia: Meta-Analysis and Meta-Regression of Randomized Sham-Controlled Trials. Front Psychiatry 2021; 12:744475. [PMID: 34744835 PMCID: PMC8569107 DOI: 10.3389/fpsyt.2021.744475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Transcranial electric stimulation (TES) and repetitive transcranial magnetic stimulation (rTMS) have experienced significant development in treating insomnia. This review aims to examine the effectiveness of randomized sham-controlled trials of TES and rTMS in improving insomnia and examine potential moderators associated with the effect of the treatment. Methods: Nine electronic databases were searched for studies comparing the effects of TES/rTMS with sham group on insomnia from the inception of these databases to June 25, 2021, namely, Medline, Embase, PsycINFO, CINAHL, Cochrane Library, Web of Science, PubMed, ProQuest Dissertation and Thesis, and CNKI. Meta-analyses were conducted to examine the effect of TES and rTMS in treating insomnia. Univariate meta-regression was performed to explore potential treatment moderators that may influence the pooled results. Risk of bias was assessed by using the Cochrane Risk of Bias Tool. Results: A total of 16 TES studies and 27 rTMS studies were included in this review. The pooled results indicated that there was no significant difference between the TES group and the sham group in improving objective measures of sleep. rTMS was superior to its sham group in improving sleep efficiency, total sleep time, sleep onset latency, wake up after sleep onset, and number of awakenings (all p < 0.05). Both TES and rTMS were superior to their sham counterparts in improving sleep quality as measured by the Pittsburgh Sleep Quality Index at post-intervention. The weighted mean difference for TES and rTMS were -1.17 (95% CI: -1.98, -0.36) and -4.08 (95% CI: -4.86, -3.30), respectively. Gender, total treatment sessions, number of pulses per session, and length of treatment per session were associated with rTMS efficacy. No significant relationship was observed between TES efficacy and the stimulation parameters. Conclusions: It seems that TES and rTMS have a chance to play a decisive role in the therapy of insomnia. Possible dose-dependent and gender difference effects of rTMS are suggested.
Collapse
Affiliation(s)
- Haixia Ma
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jingxia Lin
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jiali He
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Dilys Hoi Ting Lo
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Hector W. H. Tsang
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| |
Collapse
|
7
|
Mascarenhas RO, Souza MB, Oliveira MX, Lacerda AC, Mendonça VA, Henschke N, Oliveira VC. Association of Therapies With Reduced Pain and Improved Quality of Life in Patients With Fibromyalgia: A Systematic Review and Meta-analysis. JAMA Intern Med 2021; 181:104-112. [PMID: 33104162 PMCID: PMC7589080 DOI: 10.1001/jamainternmed.2020.5651] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Fibromyalgia is a chronic condition that results in a significant burden to individuals and society. OBJECTIVE To investigate the effectiveness of therapies for reducing pain and improving quality of life (QOL) in people with fibromyalgia. DATA SOURCES Searches were performed in the MEDLINE, Cochrane, Embase, AMED, PsycInfo, and PEDro databases without language or date restrictions on December 11, 2018, and updated on July 15, 2020. STUDY SELECTION All published randomized or quasi-randomized clinical trials that investigated therapies for individuals with fibromyalgia were screened for inclusion. DATA EXTRACTION AND SYNTHESIS Two reviewers independently extracted data and assessed risk of bias using the 0 to 10 PEDro scale. Effect sizes for specific therapies were pooled using random-effects models. The quality of evidence was assessed using the Grading of Recommendations Assessment (GRADE) approach. MAIN OUTCOMES AND MEASURES Pain intensity measured by the visual analog scale, numerical rating scales, and other valid instruments and QOL measured by the Fibromyalgia Impact Questionnaire. RESULTS A total of 224 trials including 29 962 participants were included. High-quality evidence was found in favor of cognitive behavioral therapy (weighted mean difference [WMD], -0.9; 95% CI, -1.4 to -0.3) for pain in the short term and was found in favor of central nervous system depressants (WMD, -1.2 [95% CI, -1.6 to -0.8]) and antidepressants (WMD, -0.5 [95% CI, -0.7 to -0.4]) for pain in the medium term. There was also high-quality evidence in favor of antidepressants (WMD, -6.8 [95% CI, -8.5 to -5.2]) for QOL in the short term and in favor of central nervous system depressants (WMD, -8.7 [95% CI, -11.3 to -6.0]) and antidepressants (WMD, -3.5 [95% CI, -4.5 to -2.5]) in the medium term. However, these associations were small and did not exceed the minimum clinically important change (2 points on an 11-point scale for pain and 14 points on a 101-point scale for QOL). Evidence for long-term outcomes of interventions was lacking. CONCLUSIONS AND RELEVANCE This systematic review and meta-analysis suggests that most of the currently available therapies for the management of fibromyalgia are not supported by high-quality evidence. Some therapies may reduce pain and improve QOL in the short to medium term, although the effect size of the associations might not be clinically important to patients.
Collapse
Affiliation(s)
| | - Mateus Bastos Souza
- Postgraduate Program in Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ana Cristina Lacerda
- Postgraduate Program in Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vanessa Amaral Mendonça
- Postgraduate Program in Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Nicholas Henschke
- Institute for Musculoskeletal Health, The University of Sydney School of Public Health, Sydney, New South Wales, Australia
| | - Vinícius Cunha Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
8
|
Ahn H, Galle K, Mathis KB, Miao H, Montero-Hernandez S, Jackson N, Ju HH, McCrackin H, Goodwin C, Hargraves A, Jain B, Dinh H, Abdul-Mooti S, Park L, Pollonini L. Feasibility and efficacy of remotely supervised cranial electrical stimulation for pain in older adults with knee osteoarthritis: A randomized controlled pilot study. J Clin Neurosci 2020; 77:128-133. [PMID: 32402609 PMCID: PMC7308202 DOI: 10.1016/j.jocn.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Cranial electrical stimulation (CES) is a noninvasive brain stimulation technique that has been shown to improve pain. However, few studies have investigated the potential benefits associated with remotely supervised CES in older adults with knee osteoarthritis (OA). The aim of this study was to examine the feasibility and preliminary efficacy of remotely supervised CES via secure videoconferencing software on clinical pain severity, experimental pain sensitivity, and pain-related cortical response in older adults with knee OA. Thirty participants with symptomatic knee OA pain were randomly assigned to receive 10 daily sessions (60 min each) of remotely supervised CES (n = 15) or sham CES (n = 15) over two weeks. We measured clinical pain severity via a Numeric Rating Scale, experimental pain sensitivity (e.g., heat pain sensitivity, pressure pain sensitivity, and conditioned pain modulation) using quantitative sensory testing, and pain-related cortical response via functional near-infrared spectroscopy imaging. We also measured participant satisfaction with treatment using the Client Satisfaction Questionnaire. Active CES significantly reduced scores on the Numeric Rating Scale and increased heat pain threshold, pressure pain thresholds, and conditioned pain modulation. We also found significant changes in pain-related cortical hemodynamic activity after CES. Participants tolerated CES well without serious adverse effects and were satisfied with the treatment. Our findings demonstrate promising clinical efficacy of remotely supervised CES for older adults with knee OA.
Collapse
Affiliation(s)
- Hyochol Ahn
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Kelli Galle
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenneth B Mathis
- Department of Orthopedic Surgery, School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hongyu Miao
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Natalie Jackson
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hsiao-Hui Ju
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heather McCrackin
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Catherine Goodwin
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Allison Hargraves
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhawna Jain
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helen Dinh
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sarah Abdul-Mooti
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lindsey Park
- Department of Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luca Pollonini
- Department of Engineering Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
9
|
Coskun Benlidayi I. The effectiveness and safety of electrotherapy in the management of fibromyalgia. Rheumatol Int 2020; 40:1571-1580. [PMID: 32524302 DOI: 10.1007/s00296-020-04618-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Treating fibromyalgia is a challenging task for physicians. With its multifaceted features, fibromyalgia requires a comprehensive management strategy focusing on both the pharmacological and non-pharmacological treatment options. During the last decades, there has been growing evidence regarding the role of electrotherapy in fibromyalgia treatment. In this regard, the present article aimed to review the recent literature on the effectiveness and safety of the electrotherapy in the treatment of fibromyalgia. A literature search was conducted through PubMed/MEDLINE and Scopus databases. Transcutaneous electrical nerve stimulation (TENS), non-invasive brain stimulation (transcranial direct current/magnetic stimulation), and light amplification by stimulated emission of radiation (LASER) emerged as the most commonly examined electrotherapy techniques in fibromyalgia. Currently, there is growing data regarding the effectiveness of electrotherapy in the management of fibromyalgia-related pain. Besides, non-invasive electrotherapy techniques are related to no/minor side effects. Further studies are warranted to identify the optimal treatment protocols for each electrotherapy modality.
Collapse
Affiliation(s)
- Ilke Coskun Benlidayi
- Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Cukurova University, Adana, Turkey.
| |
Collapse
|
10
|
Ahmed S, Plazier M, Ost J, Stassijns G, Deleye S, Ceyssens S, Dupont P, Stroobants S, Staelens S, De Ridder D, Vanneste S. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study. BMC Neurol 2018; 18:191. [PMID: 30419855 PMCID: PMC6233518 DOI: 10.1186/s12883-018-1190-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
Background Fibromyalgia is a chronic disorder characterized by widespread musculoskeletal pain accompanied by fatigue, sleep, memory, and mood problems. Recently, occipital nerve field stimulation (ONS) has been proposed as an effective potential treatment for fibromyalgia-related pain. The aim of this study is to unravel the neural mechanism behind occipital nerve stimulation’s ability to suppress pain in fibromyalgia patients. Materials and methods Seven patients implanted with subcutaneous electrodes in the C2 dermatoma were enrolled for a Positron Emission Tomography (PET) H215O activation study. These seven patients were selected from a cohort of 40 patients who were part of a double blind, placebo-controlled study followed by an open label follow up at six months. The H215O PET scans were taken during both the “ON” (active stimulation) and “OFF” (stimulating device turned off) conditions. Electroencephalogram (EEG) data were also recorded for the implanted fibromyalgia patients during both the “ON” and “OFF” conditions. Results Relative to the “OFF” condition, ONS stimulation resulted in activation in the dorsal lateral prefrontal cortex, comprising the medial pain pathway, the ventral medial prefrontal cortex, and the bilateral anterior cingulate cortex as well as parahippocampal area, the latter two of which comprise the descending pain pathway. Relative deactivation was observed in the left somatosensory cortex, constituting the lateral pain pathway as well as other sensory areas such as the visual and auditory cortex. The EEG results also showed increased activity in the descending pain pathway. The pregenual anterior cingulate cortex extending into the ventral medial prefrontal cortex displayed this increase in the theta, alpha1, alpha2, beta1, and beta2 frequency bands. Conclusion PET shows that ONS exerts its effect via activation of the descending pain inhibitory pathway and the lateral pain pathway in fibromyalgia, while EEG shows activation of those cortical areas that could be responsible for descending inhibition system recruitment. Trial Registration This study is registered with ClinicalTrials.gov, number NCT00917176 (June 10, 2009).
Collapse
Affiliation(s)
- Shaheen Ahmed
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Mark Plazier
- Department of Neurosurgery, University Hospital Antwerp, Antwerp, Belgium
| | | | - Gaetane Stassijns
- Department of physical health hand rehabilitation, University Hospital Antwerp, Edegem, Belgium
| | - Steven Deleye
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Sarah Ceyssens
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Patrick Dupont
- Department of Cognitive Neurology, UZ Leuven, Leuven, Belgium
| | - Sigrid Stroobants
- Department of nuclear medicine, University Hospital Antwerp, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Centre, University of Antwerp, Edegem, Belgium
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA.
| |
Collapse
|
11
|
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months' duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three 'Summary of findings' tables. MAIN RESULTS We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.rTMSMeta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to < 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).CESFor CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).tDCSAnalysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).Adverse eventsAll forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. AUTHORS' CONCLUSIONS There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Brunel University LondonHealth Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical SciencesKingston LaneUxbridgeMiddlesexUKUB8 3PH
| | - Louise Marston
- University College LondonResearch Department of Primary Care & Population HealthRoyal Free Campus, Rowland HillLondonUKNW3 2PF
| | - Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkLancashireUKL39 4QP
| | - Lorraine H DeSouza
- Brunel University LondonDepartment of Clinical Sciences/Health Ageing Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeMiddlesexUKUB8 3PH
| | - Benedict M Wand
- The University of Notre Dame Australia FremantleSchool of Physiotherapy19 Mouat Street (PO Box 1225)PerthWest AustraliaAustralia6959
| | | |
Collapse
|
12
|
O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2018; 3:CD008208. [PMID: 29547226 PMCID: PMC7039253 DOI: 10.1002/14651858.cd008208.pub4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months' duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three 'Summary of findings' tables. MAIN RESULTS We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.rTMSMeta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to < 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).CESFor CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).tDCSAnalysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).Adverse eventsAll forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. AUTHORS' CONCLUSIONS There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Brunel UniversityDepartment of Clinical Sciences/Health Economics Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeUKUB8 3PH
| | - Louise Marston
- University College LondonResearch Department of Primary Care & Population HealthRoyal Free Campus, Rowland HillLondonUKNW3 2PF
| | - Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkUKL39 4QP
| | - Lorraine H DeSouza
- Brunel University LondonDepartment of Clinical Sciences/Health Ageing Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeUKUB8 3PH
| | - Benedict M Wand
- The University of Notre Dame AustraliaSchool of Physiotherapy19 Mouat Street (PO Box 1225)FremantleAustralia6959
| |
Collapse
|
13
|
Bikson M, Paneri B, Mourdoukoutas A, Esmaeilpour Z, Badran BW, Azzam R, Adair D, Datta A, Fang XH, Wingeier B, Chao D, Alonso-Alonso M, Lee K, Knotkova H, Woods AJ, Hagedorn D, Jeffery D, Giordano J, Tyler WJ. Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimul 2017; 11:134-157. [PMID: 29122535 DOI: 10.1016/j.brs.2017.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/16/2017] [Accepted: 10/15/2017] [Indexed: 01/17/2023] Open
Abstract
We present device standards for low-power non-invasive electrical brain stimulation devices classified as limited output transcranial electrical stimulation (tES). Emerging applications of limited output tES to modulate brain function span techniques to stimulate brain or nerve structures, including transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial pulsed current stimulation (tPCS), have engendered discussion on how access to technology should be regulated. In regards to legal regulations and manufacturing standards for comparable technologies, a comprehensive framework already exists, including quality systems (QS), risk management, and (inter)national electrotechnical standards (IEC). In Part 1, relevant statutes are described for medical and wellness application. While agencies overseeing medical devices have broad jurisdiction, enforcement typically focuses on those devices with medical claims or posing significant risk. Consumer protections regarding responsible marketing and manufacture apply regardless. In Part 2 of this paper, we classify the electrical output performance of devices cleared by the United States Food and Drug Administration (FDA) including over-the-counter (OTC) and prescription electrostimulation devices, devices available for therapeutic or cosmetic purposes, and devices indicated for stimulation of the body or head. Examples include iontophoresis devices, powered muscle stimulators (PMS), cranial electrotherapy stimulation (CES), and transcutaneous electrical nerve stimulation (TENS) devices. Spanning over 13 FDA product codes, more than 1200 electrical stimulators have been cleared for marketing since 1977. The output characteristics of conventional tDCS, tACS, and tPCS techniques are well below those of most FDA cleared devices, including devices that are available OTC and those intended for stimulation on the head. This engineering analysis demonstrates that with regard to output performance and standing regulation, the availability of tDCS, tACS, or tPCS to the public would not introduce risk, provided such devices are responsibly manufactured and legally marketed. In Part 3, we develop voluntary manufacturer guidance for limited output tES that is aligned with current regulatory standards. Based on established medical engineering and scientific principles, we outline a robust and transparent technical framework for ensuring limited output tES devices are designed to minimize risks, while also supporting access and innovation. Alongside applicable medical and government activities, this voluntary industry standard (LOTES-2017) further serves an important role in supporting informed decisions by the public.
Collapse
Affiliation(s)
- Marom Bikson
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA.
| | - Bhaskar Paneri
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | - Andoni Mourdoukoutas
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | - Zeinab Esmaeilpour
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | - Bashar W Badran
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | | | - Devin Adair
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | | | - Xiao Hui Fang
- The City College of New York, Department of Biomedical Engineering, New York, NY 10031, USA
| | | | - Daniel Chao
- Halo Neuroscience Inc., San Francisco, CA 94103, USA
| | - Miguel Alonso-Alonso
- Harvard Medical School, Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Boston, MA, USA
| | - Kiwon Lee
- Ybrain Inc., Sampyeong-dong, Seongnam-si, South Korea
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, USA
| | | | | | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, USA
| | - William J Tyler
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Taylor AG, Fischer-White TG, Anderson JG, Adelstein KE, Murugesan M, Lewis JE, Scott MM, Gaykema RPA, Goehler LE. Stress, Inflammation and Pain: A Potential Role for Monocytes in Fibromyalgia-related Symptom Severity. Stress Health 2016; 32:503-513. [PMID: 27925450 DOI: 10.1002/smi.2648] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022]
Abstract
The possibility that immunological changes might contribute to symptom severity in fibromyalgia (FM) prompted this proof-of-concept study to determine whether differences in monocyte subpopulations might be present in persons with FM compared with healthy controls. Relationships were assessed by comparing specific symptoms in those with FM (n = 20) and patterns of monocyte subpopulations with healthy age-matched and gender-matched controls (n = 20). Within the same time frame, all participants provided a blood sample and completed measures related to pain, fatigue, sleep disturbances, perceived stress, positive and negative affect and depressed mood (and the Fibromyalgia Impact Questionnaire for those with FM). Monocyte subpopulations were assessed using flow cytometry. No differences were observed in total percentages of circulating monocytes between the groups; however, pain was inversely correlated with percentages of circulating classical (r = -0.568, p = 0.011) and intermediate (r = -0.511, p = 0.025) monocytes in the FM group. Stress and pain were highly correlated (r = 0.608, p = 0.004) in the FM group. The emerging pattern of changes in the percentages of circulating monocyte subpopulations concomitant with higher ratings of perceived pain and the correlation between stress and pain found in the FM group warrant further investigation. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ann Gill Taylor
- Department of Acute and Specialty Care, School of Nursing, University of Virginia, Charlottesville, VA, USA
| | | | - Joel G Anderson
- Department of Acute and Specialty Care, School of Nursing, University of Virginia, Charlottesville, VA, USA
| | | | - Maheswari Murugesan
- PhD Program, School of Nursing, University of Virginia, Charlottesville, VA, USA
| | - Janet E Lewis
- Division of Clinical Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael M Scott
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ronald P A Gaykema
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lisa E Goehler
- Department of Acute and Specialty Care, School of Nursing, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Abstract
This double-blind, sham-controlled study sought to investigate the effectiveness of cranial electrotherapy stimulation (CES) for the treatment of bipolar II depression (BD II). After randomization, the active group participants (n = 7) received 2 mA CES treatment for 20 minutes five days a week for 2 weeks, whereas the sham group (n = 9) had the CES device turned on and off. Symptom non-remitters from both groups received an additional 2 weeks of open-label active treatment. Active CES treatment but not sham treatment was associated with a significant decrease in the Beck Depression Inventory (BDI) scores from baseline to the second week (p = 0.003) maintaining significance until week 4 (p = 0.002). There was no difference between the groups in side effects frequency. The results of this small study indicate that CES may be a safe and effective treatment for BD II suggesting that further studies on safety and efficacy of CES may be warranted.
Collapse
|
16
|
Plazier M, Ost J, Stassijns G, De Ridder D, Vanneste S. C2 Nerve Field Stimulation for the Treatment of Fibromyalgia: A Prospective, Double-blind, Randomized, Controlled Cross-over Study. Brain Stimul 2015; 8:751-7. [DOI: 10.1016/j.brs.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/01/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022] Open
|
17
|
Anderson JG, Kebaish SA, Lewis JE, Taylor AG. Effects of Cranial Electrical Stimulation on Activity in Regions of the Basal Ganglia in Individuals with Fibromyalgia. J Altern Complement Med 2014; 20:206-7. [DOI: 10.1089/acm.2014.1501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joel G. Anderson
- Center for the Study of Complementary and Alternative Therapies, University of Virginia, Charlottesville, VA
| | - Samy A. Kebaish
- Center for the Study of Complementary and Alternative Therapies, University of Virginia, Charlottesville, VA
| | - Janet E. Lewis
- Division of Clinical Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Ann Gill Taylor
- Center for the Study of Complementary and Alternative Therapies, University of Virginia, Charlottesville, VA
| |
Collapse
|
18
|
A Randomized, Controlled, Double-Blind Pilot Study of the Effects of Cranial Electrical Stimulation on Activity in Brain Pain Processing Regions in Individuals with Fibromyalgia. Explore (NY) 2013; 9:32-40. [DOI: 10.1016/j.explore.2012.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 02/05/2023]
|