1
|
Edmiston T, Cabahug P, Recio A, Sadowsky CL. Bone Health following Spinal Cord Injury: A Clinical Guide to Assessment and Management. Phys Med Rehabil Clin N Am 2025; 36:99-110. [PMID: 39567041 DOI: 10.1016/j.pmr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A marked decrease in bone mineral density is a well recognized, if not always fully addressed, spinal cord injury-related comorbidity. The bone loss starts shortly after paralysis onset, and the loss rate is steep. The diverse etiology includes mechanical, neurologic, endocrine, vascular, and pharmacologic factors. Dual x-ray absorptiometry is available and affordable to quantify the degree of bone loss and follow changes related to treatment. Fragility/low impact fractures occur frequently and can induce significant morbidity. Physical modalities and pharmacologic interventions can be employed to stave off and/or reverse bone loss with variable success rates.
Collapse
Affiliation(s)
- Travis Edmiston
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine; International Center for Spinal Cord Injury, Kennedy Krieger Institute, 11830 West Market Place (suite P), Fulton, MD 20759, USA
| | - Philipines Cabahug
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine; International Center for Spinal Cord Injury, Kennedy Krieger Institute, 801 North Broadway, Baltimore, MD 21205, USA
| | - Albert Recio
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine; International Center for Spinal Cord Injury, Kennedy Krieger Institute, 801 North Broadway, Baltimore, MD 21205, USA
| | - Cristina Lavinia Sadowsky
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine; International Center for Spinal Cord Injury, Kennedy Krieger Institute, 716 North Broadway, Suite 404, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Peng Y, Bramlett HM, Dietrich WD, Marcillo A, Sanchez-Molano J, Furones-Alonso O, Cao JJ, Huang J, Li AA, Feng JQ, Bauman WA, Qin W. Administration of low intensity vibration and a RANKL inhibitor, alone or in combination, reduces bone loss after spinal cord injury-induced immobilization in rats. Bone Rep 2024; 23:101808. [PMID: 39429803 PMCID: PMC11489065 DOI: 10.1016/j.bonr.2024.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
We previously reported an ability of low-intensity vibration (LIV) to improve selected biomarkers of bone turnover and gene expression and reduce osteoclastogenesis but lacking of evident bone accrual. In this study, we demonstrate that a prolonged course of LIV that initiated at 2 weeks post-injury and continued for 8 weeks can protect against bone loss after SCI in rats. LIV stimulates bone formation and improves osteoblast differentiation potential of bone marrow stromal stem cells while inhibiting osteoclast differentiation potential of marrow hematopoietic progenitors to reduce bone resorption. We further demonstrate that the combination of LIV and RANKL antibody reduces SCI-related bone loss more than each intervention alone. Our findings that LIV is efficacious in maintaining sublesional bone mass suggests that such physical-based intervention approach would be a noninvasive, simple, inexpensive and practical intervention to treat bone loss after SCI. Because the combined administration of LIV and RANKL inhibition better preserved sublesional bone after SCI than either intervention alone, this work provides the impetus for the development of future clinical protocols based on the potential greater therapeutic efficacy of combining non-pharmacological (e.g., LIV) and pharmacological (e.g., RANKL inhibitor or other agents) approaches to treat osteoporosis after SCI or other conditions associated with severe immobilization.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
| | - Helen M. Bramlett
- Bruce W. Carter Miami VA Medical Center, Miami, Florida, USA
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. Dalton Dietrich
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alex Marcillo
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juliana Sanchez-Molano
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ofelia Furones-Alonso
- Miami Project to Cure Paralysis, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jay J. Cao
- USDA-ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | | | | | - Jian Q. Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | - William A. Bauman
- Departments of Medicine, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, New York, USA
- Departments of Medicine, USA
| |
Collapse
|
3
|
Hertig-Godeschalk A, Sailer CO, Perret C, Lehnick D, Scheel-Sailer A, Flueck JL. 25-Hydroxyvitamin D Levels and Vitamin D3 Supplementation During Postacute Spinal Cord Injury Rehabilitation. Top Spinal Cord Inj Rehabil 2024; 30:24-34. [PMID: 39619824 PMCID: PMC11603107 DOI: 10.46292/sci24-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Background Insufficient 25-hydroxyvitamin D [25(OH)D] levels are associated with falls, fractures, and worse overall health outcomes. We evaluated 25(OH)D levels in individuals with spinal cord injury or disorder (SCI/D) during postacute rehabilitation who received vitamin D3 supplementation according to routine clinical practice. Associations with clinical outcomes were also assessed. Methods This prospective observational cohort study included individuals aged 18 to 85 years with newly acquired SCI/D admitted for inpatient rehabilitation to a specialized center. The following parameters were collected monthly from admission to discharge as part of the clinical routine: serum 25(OH)D, vitamin D3 supplementation, pressure injuries, bed rest, and falls. 25(OH)D levels were categorized as insufficient (≤75 nmol/L) or sufficient (>75 nmol/L). Descriptive statistics and group comparisons were performed. Results Eighty-seven patients (25 [29%] females, median age 53 [IQR 39-67] years) were included and followed for 186 (163-205) days. The proportion of patients with a sufficient 25(OH)D level increased from 8% (95% CI, 3-16) to 61% (95% CI, 50-71) (p < .001). Ninety-two percent of patients received vitamin D3 (1100 [1000-2000] IU/day). No differences in 25(OH)D levels or supplementation doses were found for the occurrence of pressure injuries, bed rest, or falls. Conclusion This is the first study to examine 25(OH)D levels and vitamin D3 supplementation during postacute SCI/D rehabilitation. Insufficient 25(OH)D levels were prevalent throughout rehabilitation. For some patients, the doses of vitamin D3 used in current clinical practice may be too low to achieve sufficient 25(OH)D levels. Regular monitoring of 25(OH)D levels and individualized supplementation strategies are warranted.
Collapse
Affiliation(s)
| | - Clara O. Sailer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Claudio Perret
- Swiss Paraplegic Research, Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Dirk Lehnick
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Clinical Trial Unit Central Switzerland, University of Lucerne, Lucerne, Switzerland
| | - Anke Scheel-Sailer
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Rehabilitation, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Joelle L. Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| |
Collapse
|
4
|
Tretter BL, Dolbow DR, Ooi V, Farkas GJ, Miller JM, Deitrich JN, Gorgey AS. Neurogenic Aging After Spinal Cord Injury: Highlighting the Unique Characteristics of Aging After Spinal Cord Injury. J Clin Med 2024; 13:7197. [PMID: 39685657 DOI: 10.3390/jcm13237197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Emanating from several decades of study into the effects of the aging process after spinal cord injury (SCI), "accelerated aging" has become a common expression as the SCI accelerates the onset of age-related pathologies. However, the aging process follows a distinct trajectory, characterized by unique patterns of decline that differ from those observed in the general population without SCI. Aging brings significant changes to muscles, bones, and hormones, impacting overall physical function. Muscle mass and strength begin to decrease with a reduction in muscle fibers and impaired repair mechanisms. Bones become susceptible to fractures as bone density decreases. Hormonal changes combined with decreased physical activity accelerate the reduction of muscle mass and increase in body fat. Muscle atrophy and skeletal muscle fiber type transformation occur rapidly and in a unique pattern after SCI. Bone loss develops more rapidly and results in an increased risk of fractures in body regions unique to individuals with SCI. Other factors, such as excessive adiposity, decreased testosterone and human growth hormone, and increased systemic inflammation, contribute to a higher risk of neuropathically driven obesity, dyslipidemia, glucose intolerance, insulin resistance, and increasing cardiovascular disease risk. Cardiorespiratory changes after SCI result in lower exercise heart rates, decreased oxygenation, and mitochondrial dysfunction. While it is important to acknowledge the accelerated aging processes after SCI, it is essential to recognize the distinct differences in the aging process between individuals without physical disabilities and those with SCI. These differences, influenced by neuropathology, indicate that it may be more accurate to describe the aging process in individuals with chronic SCI as neurogenic accelerated aging (NAA). Research should continue to address conditions associated with NAA and how to ameliorate the accelerated rate of premature age-related conditions. This review focuses on the NAA processes and the differences between them and the aging process in those without SCI. Recommendations are provided to help slow the development of premature aging conditions.
Collapse
Affiliation(s)
- Brittany L Tretter
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - David R Dolbow
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
- Physical Therapy Program, William Carey University, Hattiesburg, MS 39401, USA
| | - Vincent Ooi
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Joshua M Miller
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jakob N Deitrich
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Qin Y, Zhao W, Jia Z, Bauman WA, Peng Y, Guo XE, Chen Z, He Z, Cardozo CP, Wang D, Qin W. Neuroprotective macromolecular methylprednisolone prodrug nanomedicine prevents glucocorticoid-induced muscle atrophy and osteoporosis in a rat model of spinal cord injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102773. [PMID: 38960364 PMCID: PMC11513243 DOI: 10.1016/j.nano.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
To address the adverse side effects associated with systemic high-dose methylprednisolone (MP) therapy for acute spinal cord injury (SCI), we have developed a N-2-hydroxypropyl methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP). Intravenous Nano-MP selectively targeted to the inflamed SCI lesion and significantly improved neuroprotection and functional recovery after acute SCI. In the present study, we comprehensively assessed the potential adverse side effects associated with the treatment in the SCI rat models, including reduced body weight and food intake, impaired glucose metabolism, and reduced musculoskeletal mass and integrity. In contrast to free MP treatment, intravenous Nano-MP after acute SCI not only offered superior neuroprotection and functional recovery but also significantly mitigated or even eliminated the aforementioned adverse side effects. The superior safety features of Nano-MP observed in this study further confirmed the clinical translational potential of Nano-MP as a highly promising drug candidate for better clinical management of patients with acute SCI.
Collapse
Affiliation(s)
- Yiwen Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; GCM Grosvenor, New York, USA
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zihao Chen
- Departments of Biotechnology, Brown University, Providence, RI, USA
| | - Zhiming He
- College of Dentistry, New York University, NY, New York, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical Center, Bronx, NY, USA; Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
6
|
Mun C, Sho K, Kim O. Long-term changes in bone mineral density and associated risk factors in individuals with spinal cord injury: A retrospective study. Medicine (Baltimore) 2024; 103:e39790. [PMID: 39331903 PMCID: PMC11441903 DOI: 10.1097/md.0000000000039790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Individuals with spinal cord injury (SCI) experience a notable decrease in bone mass below the level of injury. While studies have primarily focused on the acute phase with a small cohort, this study aimed to provide comprehensive insights into bone loss patterns over time. A total of 427 individuals with SCI who underwent dual-energy X-ray absorptiometry (DXA) testing at the Korea National Rehabilitation Center (2010-2021) were included and analyzed by categorizing the DXA results into 1-year intervals based on postinjury duration. Demographic characteristics (age, sex, body mass index, and alcohol/smoking history) and SCI-related factors (etiology, severity, extent of injury, motor score, and Korean Spinal Cord Independence Measure 3rd edition) were collected and analyzed. Linear mixed models and Bonferroni post hoc tests were performed to assess temporal changes in bone mass and linear regression analysis to assess the associations between possible risk factors and bone loss. DXA results revealed that substantial annual bone loss occurred in the total hip site up to 3 years postinjury and in the femoral neck site up to 2 years postinjury. Old age, women, and low body mass index were significant risk factors for bone loss in the SCI population. Additionally, during the chronic phase, lower Korean Spinal Cord Independence Measure 3rd edition scores were associated with low bone mass. Significant annual bone loss in the hip region persists for up to 3 years postinjury in individuals with SCI. While prioritizing the risk factors for osteoporosis commonly used in the general population, applying the SCIM score in the chronic phase may provide additional information on bone loss risk.
Collapse
Affiliation(s)
- Chaeun Mun
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Republic of Korea
| | - Keunyoung Sho
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Republic of Korea
| | - Onyoo Kim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Cirnigliaro CM, Kuo W, Forrest GF, Spungen AM, Parrott JS, Cardozo CP, Pal S, Bauman WA. Exoskeletal-assisted walking combined with transcutaneous spinal cord stimulation to improve bone health in persons with spinal cord injury: study protocol for a prospective randomised controlled trial. BMJ Open 2024; 14:e086062. [PMID: 39289024 PMCID: PMC11409316 DOI: 10.1136/bmjopen-2024-086062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Persons with non-ambulatory spinal cord injury (SCI) undergo immediate unloading of the skeleton and, as a result, have marked loss of bone mineral density below the level of lesion that is directly associated with increased risk of long-bone fractures. There is a paucity of research that has successfully implemented rehabilitation and/or exercise training interventions to mitigate bone loss after acute SCI or reverse bone loss that has already occurred in chronic SCI. This paper describes a research protocol to compare the effect of exoskeletal-assisted walking (EAW) alone versus EAW plus transcutaneous spinal cord stimulation (EAW+tSCS) on bone density, geometry and strength in a cohort of chronic SCI participants. METHODS AND ANALYSIS After meeting eligibility criteria and completing baseline testing, sixteen participants will be block randomised into the EAW alone group or the EAW+tSCS combined group (n=8 each group). Each group will receive a total of 108 overground training sessions (60 min sessions, 3 times a week, for 36 weeks) for the 9-month training period. Imaging for bone density and geometry by dual-energy X-ray absorptiometry and peripheral quantitative CT will be performed prior to starting the intervention (baseline), after 72 training sessions, and again after 108 sessions in each of the intervention arms. CT imaging of both lower extremities will be performed at baseline and at the 9-month time point in each of the intervention arms. Finite element models of bone loading will be generated based on three-dimensional (3D) reconstruction of bone architecture from CT imaging prior to and 9 months after the intervention. ETHICS AND DISSEMINATION This study is currently approved by the Kessler Foundation and James J. Peters VA Medical Center Institutional Review Board. A member of the research team will review and explain the study consent form and will have all eligible participants sign prior to participation in the study. Results from this study will be disseminated to clinicians and researchers in the SCI community at national and international conferences. TRIAL REGISTRATION NUMBER NCT03096197.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Brunswick, NJ, USA
| | - William Kuo
- Department of Biomedical Engineering, New Jersey Institute for Technology, Newark, NJ, USA
| | - Gail F Forrest
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, New Brunswick, NJ, USA
- Center for Spinal Stimulation and Center for Mobility and Rehabilitation Engineering, Kessler Foundation, West Orange, NJ, USA
| | - Ann M Spungen
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Scott Parrott
- Department of Interdisciplinary Studies, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saikat Pal
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - William A Bauman
- Departments of Medicine and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Zhong Q. Resveratrol enhances the protective effects of calcium supplements on spinal cord injury-induced osteoporosis by targeting the SIRT1/FOXO3a pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03412-0. [PMID: 39287671 DOI: 10.1007/s00210-024-03412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Spinal cord injury (SCI) often leads to osteoporosis due to factors like immobilization and hormonal imbalances. Calcium supplements are prescribed to help maintain bone health, but their efficacy may be limited. This study investigated whether resveratrol (RSV), a polyphenolic compound, could enhance the protective effects of calcium supplements on SCI-induced osteoporosis via the SIRT1/FOXO3a pathway, which regulates bone metabolism. Surgical cord transection induced SCI at the T9 vertebral level. An SCI mouse model was used with four groups: sham, SCI, SCI + 2% calcium, and SCI + calcium + RSV (20 mg/kg body weight). Biomechanical testing, gene expression, and Western blots were performed. Resveratrol and calcium supplementation synergistically preserved bone mass, microarchitecture, strength, and fracture resistance compared to calcium alone after SCI. This was accompanied by upregulated osteoblast markers, downregulated osteoclast markers, and increased SIRT1/FOXO3a expression and activation. The results suggest resveratrol enhances calcium's bone-protective effects in SCI-induced osteoporosis by modulating the SIRT1/FOXO3a pathway and osteoblast/osteoclast activities. Combining resveratrol with calcium supplementation may be a promising therapeutic approach for managing SCI-induced osteoporosis.
Collapse
Affiliation(s)
- Qiuwen Zhong
- Department of Orthopedics Guangdong Yingde People's Hospital, Yingde City, 513000, China.
| |
Collapse
|
9
|
Kim S, Kim B, Han KD, Park J, Yoo JE, Choi HL, Chang WH, Cho IY, Shin DW. Risk of fracture among patients with spinal cord injury: A nationwide cohort study in South Korea. Bone 2024; 183:117093. [PMID: 38579925 DOI: 10.1016/j.bone.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Clinical concerns about preventing and managing fractures after spinal cord injury (SCI) have been growing. OBJECTIVE This study investigates the risk of fractures among SCI patients according to the presence of disability, disease severity, and level of injury. METHODS We performed a retrospective cohort study using the Korean National Health Insurance Service (KNHIS 2010-2018) database. We included 5190 SCI patients and 1:3 age- and sex-matched control participants. The primary outcome was fracture, and the cohort was followed until December 31, 2019. RESULTS SCI patients had a higher fracture risk than the matched controls (adjusted hazard ratio [aHR] 1.33, 95 % CI 1.16-1.54). The risk of fracture was higher in the presence of disability (aHR 1.57, 95 % CI 1.19-2.07), especially among patients with severe disability (aHR 1.65, 95 % CI 1.05-2.60). Higher fracture risks were observed among SCI patients regardless of injury level, but statistical significance was found only with cervical-level injury. When we considered site-specific fractures, vertebral (aHR 1.31, 95 % CI 1.04-1.64) and hip fracture risks (aHR 2.04, 95 % CI 1.39-2.98) were both higher among SCI patients than the controls. SCI patients with disability and cervical-level injury showed the highest hip fracture risk (aHR 3.67, 95 % CI 1.90-7.07). CONCLUSIONS Compared with the controls, SCI patients were at higher risk of any fracture, particularly hip fracture, especially those with disability and cervical-level injury. Clinicians should be aware of the fracture risk among SCI patients to provide proper management.
Collapse
Affiliation(s)
- Seonghye Kim
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Junhee Park
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hea Lim Choi
- Department of Family Medicine, Executive Healthcare Clinic, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - In Young Cho
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea; Department of Digital Health, Samsung Advanced Institute for Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Dora IE, Khalil RE, Adler RA, Gorgey AS. Basal Metabolic Rate Versus Dietary Vitamin D and Calcium Intakes and the Association With Body Composition and Bone Health After Chronic Spinal Cord Injury. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2024; 61:469580241278018. [PMID: 39264099 PMCID: PMC11406582 DOI: 10.1177/00469580241278018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
We examined the association among basal metabolic rate (BMR) as well as dietary intakes of vitamin D (Vit D) and calcium on body composition and bone mineral density (BMD) after spinal cord injury (SCI). Cross-sectional design. Veterans Affairs Medical Center, Richmond, VA. About 33 individuals with chronic SCI who recorded their food consumption 3 days per week for 2 weeks. BMR was measured after 10 to 12 h of overnight fast. Average daily vit D and calcium intakes, and total caloric intake were recorded and analyzed using the Nutrition Data System for Research (NDSR) software. Fasting blood analysis for 25-hydroxyvitamin D (25[OH]D) status and Triiodothyronine (T3) status was performed (n = 10). Total and regional BMD, % fat mass (FM), and % lean mass (LM) were measured by dual X-ray absorptiometry scans. Participants consumed less than the Institute of Medicine (IOM) recommended daily allowances (RDA) for vit D (600-800 IU) and calcium (1000-1200 mg) for adults. BMR was positively related to total-lean mass (r = .62, P = .0001; n = 32) and leg-lean mass (r = .51, P = .003; n = 32). Adjusted BMR was negatively related to BMD of the left (r = -.38, P = .047; n = 28) and the right (r = -.41, P = .032; n = 28) proximal tibia. Vit D intake was negatively related to percentage total-FM (r = -.33, P = .07; n = 29) and legs-%FM (r = -.37, P = .047; n = 29). Multivariate regression models indicated that adjusted BMR explained the variance in leg fat mass (34%; P = .002) and percentage fat mass (44%; P < .0001). Persons with SCI are likely to consume less than the RDAs for vit D and calcium. BMR may explain the changes in body composition and bone metabolism. Dietary vit D should be considered as a prophylactic intervention in maintenance of bone health after SCI.
Collapse
Affiliation(s)
- Ifon E Dora
- Richmond VA Medical Center, Richmond, VA, USA
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Robert A Adler
- Richmond VA Medical Center, Richmond, VA, USA
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ashraf S Gorgey
- Richmond VA Medical Center, Richmond, VA, USA
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Peng Y, Langermann S, Kothari P, Liu L, Zhao W, Hu Y, Chen Z, Moraes de Lima Perini M, Li J, Cao J, Guo XE, Chen L, Bauman WA, Qin W. Anti-Siglec-15 Antibody Prevents Marked Bone Loss after Acute Spinal Cord Injury-Induced Immobilization in Rats. JBMR Plus 2023; 7:e10825. [PMID: 38130761 PMCID: PMC10731123 DOI: 10.1002/jbm4.10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Rapid and extensive sublesional bone loss after spinal cord injury (SCI) is a difficult medical problem that has been refractory to available interventions except the antiresorptive agent denosumab (DMAB). While DMAB has shown some efficacy in inhibiting bone loss, its concurrent inhibition of bone formation limits its use. Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 is expressed on the cell surface of mature osteoclasts. Anti-Siglec-15 antibody (Ab) has been shown to inhibit osteoclast maturation and bone resorption while maintaining osteoblast activity, which is distinct from current antiresorptive agents that inhibit the activity of both osteoclasts and osteoblasts. The goal of the present study is to test a Siglec-15 Ab (NP159) as a new treatment option to prevent bone loss in an acute SCI model. To this end, 4-month-old male Wistar rats underwent complete spinal cord transection and were treated with either vehicle or NP159 at 20 mg/kg once every 2 weeks for 8 weeks. SCI results in significant decreases in bone mineral density (BMD, -18.7%), trabecular bone volume (-43.1%), trabecular connectivity (-59.7%), and bone stiffness (-76.3%) at the distal femur. Treatment with NP159 almost completely prevents the aforementioned deterioration of bone after SCI. Blood and histomorphometric analyses revealed that NP159 is able to greatly inhibit bone resorption while maintaining bone formation after acute SCI. In ex vivo cultures of bone marrow cells, NP159 reduces osteoclastogenesis while increasing osteoblastogenesis. In summary, treatment with NP159 almost fully prevents sublesional loss of BMD and metaphysis trabecular bone volume and preserves bone strength in a rat model of acute SCI. Because of its unique ability to reduce osteoclastogenesis and bone resorption while promoting osteoblastogenesis to maintain bone formation, Siglec-15 Ab may hold greater promise as a therapeutic agent, compared with the exclusively antiresorptive or anabolic agents that are currently used, in mitigating the striking bone loss that occurs after SCI or other conditions associated with severe immobilization. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
| | | | | | | | - Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
| | - Yizhong Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Zihao Chen
- Department of BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | | | - Jiliang Li
- School of Science, Indiana University Purdue UniversityIndianapolisIndianaUSA
| | - Jay Cao
- USDA‐ARS Grand Forks Human Nutrition Research CenterGrand ForksNorth DakotaUSA
| | - X. Edward Guo
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Lieping Chen
- NextCure, IncBeltsvilleMarylandUSA
- Cancer Research, Immunobiology and Medicine, The Yale University School of MedicineNew HavenConnecticutUSA
| | - William A. Bauman
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
- Departments of MedicineRehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veteran Affairs Medical CenterBronxNew YorkUSA
- Departments of MedicineRehabilitation and Human Performance, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
12
|
Pelletier C. Exercise prescription for persons with spinal cord injury: a review of physiological considerations and evidence-based guidelines. Appl Physiol Nutr Metab 2023; 48:882-895. [PMID: 37816259 DOI: 10.1139/apnm-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Persons with spinal cord injury (SCI) experience gains in fitness, physical and mental health from regular participation in exercise and physical activity. Due to changes in physiological function of the cardiovascular, nervous, and muscular systems, general population physical activity guidelines and traditional exercise prescription methods are not appropriate for the SCI population. Exercise guidelines specific to persons with SCI recommend progressive training beginning at 20 min of moderate to vigorous intensity aerobic exercise twice per week transitioning to 30 min three times per week, with strength training of the major muscle groups two times per week. These population-specific guidelines were designed considering the substantial barriers to physical activity for persons with SCI and can be used to frame an individual exercise prescription. Rating of perceived exertion (i.e., perceptually regulated exercise) is a practical way to indicate moderate to vigorous intensity exercise in community settings. Adapted exercise modes include arm cycle ergometry, hybrid arm-leg cycling, and recumbent elliptical equipment. Body weight-supported treadmill training and other rehabilitation modalities may improve some aspects of health and fitness for people with SCI if completed at sufficient intensity. Disability-specific community programs offer beneficial opportunities for persons with SCI to experience quality exercise opportunities but are not universally available.
Collapse
Affiliation(s)
- Chelsea Pelletier
- School of Health Sciences, Faculty of Human and Health Sciences, University of Northern British Columbia, Prince George, BC, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Santana L, Fachin-Martins E, Borges DL, Tenório Cavalcante JG, Babault N, Neto FR, Quagliotti Durigan JL, Marqueti RDC. Neuromuscular disorders in women and men with spinal cord injury are associated with changes in muscle and tendon architecture. J Spinal Cord Med 2023; 46:742-752. [PMID: 35196216 PMCID: PMC10446789 DOI: 10.1080/10790268.2022.2035619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE The present study aimed to determine the association between neuromuscular function, motor function impairment, and muscle and tendon structures in individuals with spinal cord injury (SCI) compared to a control (non-disabled) population. DESIGN A cross-sectional study with a control group. SETTING Center of Adapted Sports Training and Special Physical Education. PARTICIPANTS Fifteen individuals with SCI and motor function impairments participated in the study. A paired non-disabled group was recruited for comparison. INTERVENTIONS Not applicable. OUTCOME MEASURES Muscle (biceps brachii, rectus femoris, vastus lateralis, vastus medialis, and tibialis anterior) and tendon (quadriceps and patellar tendons) structures were assessed by ultrasound imaging (thickness, pennation angle, fascicle length, and echogenicity). Neuromuscular electrophysiological disorders were also assessed using electrodiagnosis techniques (stimulus non-responsivity and chronaxie) in the same muscles. RESULTS Except for the biceps brachii muscle, muscle thickness, pennation angle, and fascicle length were lower (p < 0.01) while echogenicity and chronaxie were greater (p < 0.01) in SCI participants. The SCI participants had a higher prevalence of neuromuscular electrophysiological disorders for all muscles, except the biceps brachii. CONCLUSION Neuromuscular disorders occur in association with muscle and tendon maladaptation in individuals with chronic SCI. A higher prevalence of electrophysiological disorders suggests an acquired polyneuromyopathy for muscles with motor function impairment even though the muscle was innerved, in addition to widespread muscle atrophy.
Collapse
Affiliation(s)
- Larissa Santana
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Emerson Fachin-Martins
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| | - David Lobato Borges
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| | | | - Nicolas Babault
- Centre d'Expertise de la Performance G. Cometti, U1093-INSERM, CAPS, Faculté des Sciences du Sport, Université de Bourgogne-Franche-Comté Dijon, France
| | | | - João Luiz Quagliotti Durigan
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| | - Rita de Cássia Marqueti
- Graduate Program in Rehabilitation Sciences, Universidade de Brasília, Distrito Federal, Brazil
- Graduate Program in Health Sciences and Technologies, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|
14
|
Hart DA. Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules 2023; 13:1136. [PMID: 37509172 PMCID: PMC10377148 DOI: 10.3390/biom13071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During evolution, the development of bone was critical for many species to thrive and function in the boundary conditions of Earth. Furthermore, bone also became a storehouse for calcium that could be mobilized for reproductive purposes in mammals and other species. The critical nature of bone for both function and reproductive needs during evolution in the context of the boundary conditions of Earth has led to complex regulatory mechanisms that require integration for optimization of this tissue across the lifespan. Three important regulatory variables include mechanical loading, sex hormones, and innervation/neuroregulation. The importance of mechanical loading has been the target of much research as bone appears to subscribe to the "use it or lose it" paradigm. Furthermore, because of the importance of post-menopausal osteoporosis in the risk for fractures and loss of function, this aspect of bone regulation has also focused research on sex differences in bone regulation. The advent of space flight and exposure to microgravity has also led to renewed interest in this unique environment, which could not have been anticipated by evolution, to expose new insights into bone regulation. Finally, a body of evidence has also emerged indicating that the neuroregulation of bone is also central to maintaining function. However, there is still more that is needed to understand regarding how such variables are integrated across the lifespan to maintain function, particularly in a species that walks upright. This review will attempt to discuss these regulatory elements for bone integrity and propose how further study is needed to delineate the details to better understand how to improve treatments for those at risk for loss of bone integrity, such as in the post-menopausal state or during prolonged space flight.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone & Joint Research, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
de Sire A, Moggio L, Marotta N, Curci C, Lippi L, Invernizzi M, Mezian K, Ammendolia A. Impact of rehabilitation on volumetric muscle loss in subjects with traumatic spinal cord injury: A systematic review. NeuroRehabilitation 2023; 52:365-386. [PMID: 36806523 DOI: 10.3233/nre-220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) leads to spinal nerve fiber tract damage resulting in functional impairments. Volumetric muscle loss (VML), a skeletal muscle volume abnormal reduction, is represented by atrophy below the injury level. The strategies for VML management included personalized approaches, and no definite indications are available. OBJECTIVE To identify the rehabilitation effects of VML in subjects with SCI (humans and animals). METHODS PubMed, Scopus, and Web of Science databases were systematically searched to identify longitudinal observational studies with individuals affected by traumatic SCI as participants; rehabilitation treatment as intervention; no control, sham treatment, and electrical stimulation programs as control; total lean body and lower limb lean mass, cross-sectional area, functional gait recovery, muscle thickness, and ultrasound intensity, as outcome. RESULTS Twenty-four longitudinal observational studies were included, evaluating different rehabilitation approaches' effects on the VML reduction in subjects affected by SCI. The data showed that electrical stimulation and treadmill training are effective in reducing the VML in this population. CONCLUSION This systematic review underlines the need to treat subjects with traumatic SCI (humans and animals) with different rehabilitation approaches to prevent VML in the subacute and chronic phases. Further clinical observations are needed to overcome the bias and to define the intervention's timing and modalities.
Collapse
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy.,Department of Rehabilitation and Sports Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Lucrezia Moggio
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy.,Rehabilitation Unit, Ospedale degliInfermi, Biella, Italy
| | - Nicola Marotta
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy
| | - Claudio Curci
- Department of Neurosciences, Physical Medicine and Rehabilitation Unit, ASST CarloPoma, Mantova, Italy
| | - Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Translational Medicine, DipartimentoAttività Integrate Ricerca e Innovazione (DAIRI), AziendaOspedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Translational Medicine, DipartimentoAttività Integrate Ricerca e Innovazione (DAIRI), AziendaOspedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Kamal Mezian
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University and General UniversityHospital in Prague, Prague, Czech Republic
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, Physical Medicine and Rehabilitation Unit, University of CatanzaroMagna Graecia, Catanzaro, Italy
| |
Collapse
|
16
|
Axelsson KF, Litsne H, Lorentzon M. Comparison of Fractures Among Older Adults Who Are Ambulatory vs Those Who Use Wheelchairs in Sweden. JAMA Netw Open 2023; 6:e2255645. [PMID: 36780160 PMCID: PMC9926324 DOI: 10.1001/jamanetworkopen.2022.55645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
IMPORTANCE Several diseases and conditions, such as cerebrovascular disease, arthritis, previous fractures, neurological diseases, or amputation, can result in severe immobility justifying wheelchair use for increased mobility. Immobility results in disuse osteoporosis and is considered a risk factor for fracture, although there are no large cohort studies that have investigated fracture risk in patients who use wheelchairs compared with an ambulatory control group. OBJECTIVE To investigate whether immobilized adults who used wheelchairs had a different risk of fracture and injurious falls compared with matched ambulatory controls. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study compared patients who used wheelchairs and controls (propensity score matched 1:1 using 22 variables relating to anthropometrics, general condition, comorbidity, and fall and fracture risk), identified through a national database of adults 65 years or older who underwent a health evaluation (baseline) at Swedish health care facilities. Patients were followed up from January 1, 2007, to December 31, 2017, and data analysis was performed between June 1 and 30, 2022. MAIN OUTCOMES AND MEASURES Incident fracture, injurious falls without fracture, and deaths. RESULTS A total of 55 442 adults using wheelchairs were included in the analysis (mean [SD] age, 83.2 [8.3] years; 60.5% women). Those who used wheelchairs and the 55 442 matched controls were followed up for a median of 2.0 (IQR, 0.5-3.2) and 2.3 (IQR, 0.8-3.6) years, respectively. Patients who used wheelchairs had a lower risk of any fracture (hazard ratio [HR], 0.43 [95% CI, 0.41-0.44]), major osteoporotic fracture (HR, 0.32 [95% CI, 0.31-0.33]), and hip fracture (HR, 0.30 [95% CI, 0.28-0.32]) compared with the ambulatory controls, associations that were only marginally affected by multivariable (same as the matching variables) adjustment. The risk of fall injury was lower among those who used wheelchairs than among ambulatory controls (unadjusted HR for Cox proportional hazards models, 0.48 [95% CI, 0.47-0.50]) and remained highly similar after adjustments. Patients who used wheelchairs had a significantly increased risk of death (HR, 1.35 [95% CI, 1.33-1.36]) compared with controls. Association between wheelchair use and fracture outcomes and injurious falls, calculated using a Fine and Gray model with death as a competing risk, was similar to associations obtained using Cox proportional hazards regression for all fracture outcomes. CONCLUSIONS AND RELEVANCE In this retrospective cohort study of older adults, wheelchair use was associated with a lower risk of fracture than observed in ambulatory controls. These findings suggest that immobility associated with wheelchair use should not be considered a risk factor for fracture.
Collapse
Affiliation(s)
- Kristian F. Axelsson
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Närhälsan Norrmalm Health Centre, Skövde, Sweden
| | - Henrik Litsne
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne
- Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
17
|
Zhan J, Luo D, Zhao B, Chen S, Luan J, Luo J, Hou Y, Hou Y, Xu W, Yan W, Qi J, Li X, Zhang Q, Lin D. Polydatin administration attenuates the severe sublesional bone loss in mice with chronic spinal cord injury. Aging (Albany NY) 2022; 14:8856-8875. [DOI: 10.18632/aging.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jiheng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Luo
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Bingde Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shudong Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Jiyao Luan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou 450046, China
| | - Junhua Luo
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yonghui Hou
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Wenke Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wanying Yan
- National Quality Testing Center for Processed Food, Guangzhou Inspection and Testing Certification Group Company Limited, Guangzhou 511447, China
| | - Ji Qi
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xing Li
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
| | - Qing Zhang
- Postdoctoral Research Station, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Spine, Wangjing Hospital of Chinese Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dingkun Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Postdoctoral Workstation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Research Team on the Prevention and Treatment of Spinal Degenerative Disease, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, China
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
18
|
Etingen B, Carbone LD, Guihan M, Ray C, Aslam H, Elam R, Weaver FM. Lower extremity fracture prevention and management in persons with spinal cord injuries and disorders: The patient perspective. J Spinal Cord Med 2022; 45:946-956. [PMID: 33830880 PMCID: PMC9662005 DOI: 10.1080/10790268.2021.1907675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CONTEXT/OBJECTIVE To describe patient experiences with fracture prevention and management among persons with spinal cord injuries/disorders (SCI/D). DESIGN Qualitative data collected via semi-structured telephone interviews. SETTING Veterans Health Administration (VA) SCI/D System of Care. PARTICIPANTS Veterans with SCI/D (n = 32) who had experienced at least one lower-extremity fracture in the prior 18 months. INTERVENTIONS N/A. OUTCOME MEASURES Interview questions addressed patients': pre-fracture knowledge of osteoporosis and bone health, diagnosis and management of osteoporosis, history and experiences with fracture treatment, and post-fracture care and experiences. RESULTS Participants expressed concerns about bone health and fractures in particular, which for some, limited activities and participation. Participants recalled receiving little information from providers about bone health or osteoporosis and described little knowledge about osteoporosis prevention prior to their fracture. Few participants reported medication management for osteoporosis, however many reported receiving radiographs/scans to confirm a fracture and most reported being managed non-operatively. Some reported preference for surgical treatment and believed their outcomes would have been better had their fracture been managed differently. Many reported not feeling fully included in treatment decision-making. Some described decreased function, independence and/or participation post-fracture. CONCLUSION(S) Our results indicate that persons with SCI/D report lacking substantive knowledge about bone health and/or fracture prevention, and following fracture, feel unable and/or hesitant to resume pre-fracture participation. In addition, our findings indicate that individuals with SCI/D may not feel as engaged as they would like to be in establishing fracture treatment plans. As such, persons with SCI/D may benefit from ongoing discussions with providers about risks and benefits of fracture treatment options and consideration of subsequent function and participation, to ensure patients preferences are considered.
Collapse
Affiliation(s)
- Bella Etingen
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research and Development Service, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA,Correspondence to: Bella Etingen, Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines Jr. VA Hospital, 5000 South 5th Avenue (151H), Hines, Illinois60141, USA. Ph: (708) 202-4922.
| | - Laura D. Carbone
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA,Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Marylou Guihan
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research and Development Service, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cara Ray
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research and Development Service, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
| | - Hamad Aslam
- Shepherd Center for Spinal Cord Injury Rehabilitation, Atlanta, Georgia, USA
| | - Rachel Elam
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Frances M. Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research and Development Service, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA,Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University, Maywood, Illinois, USA
| |
Collapse
|
19
|
White WD, Mansfield JT, Gosai EV, Groah SL. Vertebral insufficiency fractures as a cause of autonomic dysreflexia in a patient with chronic tetraplegia: A case report. J Spinal Cord Med 2022; 45:769-772. [PMID: 33054643 PMCID: PMC9542342 DOI: 10.1080/10790268.2020.1829421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Context: Osteoporosis is a known complication in spinal cord injury patients and can result in an increased risk of fractures and associated morbidity. Bone demineralization is most common in long bones below the level of injury. The pathogenesis is complex and not fully understood.Findings: We present the case of a 65-year-old male with chronic spinal cord injury who was found to have multiple vertebral compression fractures causing autonomic dysreflexia and new onset spasticity.Conclusion/Clinical Relevance: This case illustrates the need for improved awareness, diagnosis, and prevention for this disease process.
Collapse
Affiliation(s)
- William D. White
- Department of Rehabilitation Medicine, MedStar Georgetown University, Washington, DC, USA,MedStar National Rehabilitation Hospital, Washington, DC, USA,Correspondence to: W. Daniel White, Department of Rehabilitation Medicine, MedStar Georgetown University, 102 Irving St. NW, Washington, DC, 20010, USA; Ph: 202-877-1000.
| | - John T. Mansfield
- Department of Rehabilitation Medicine, MedStar Georgetown University, Washington, DC, USA,MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Erika V. Gosai
- MedStar National Rehabilitation Hospital, Washington, DC, USA
| | - Suzanne L. Groah
- Department of Rehabilitation Medicine, MedStar Georgetown University, Washington, DC, USA,MedStar National Rehabilitation Hospital, Washington, DC, USA
| |
Collapse
|
20
|
Antoniou G, Benetos IS, Vlamis J, Pneumaticos SG. Bone Mineral Density Post a Spinal Cord Injury: A Review of the Current Literature Guidelines. Cureus 2022; 14:e23434. [PMID: 35494917 PMCID: PMC9038209 DOI: 10.7759/cureus.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/05/2022] Open
|
21
|
Fernández Dorado MT, Díaz Merino MDS, García Marco D, Cuena Boy R, Blanco Samper B, Martínez Dhier L, Labarta Bertol C. Preventive treatment with alendronate of loss of bone mineral density in acute traumatic spinal cord injury. Randomized controlled clinical trial. Spinal Cord 2022; 60:687-693. [DOI: 10.1038/s41393-022-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/09/2022]
|
22
|
Hook MA, Falck A, Dundumulla R, Terminel M, Cunningham R, Sefiani A, Callaway K, Gaddy D, Geoffroy CG. Osteopenia in a Mouse Model of Spinal Cord Injury: Effects of Age, Sex and Motor Function. BIOLOGY 2022; 11:biology11020189. [PMID: 35205056 PMCID: PMC8869334 DOI: 10.3390/biology11020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In the first two years following spinal cord injury, people lose up to 50% of bone below the injury. This injury-induced bone loss significantly affects rehabilitation and leaves people vulnerable to fractures and post-fracture complications, including lung and urinary tract infections, blood clots in the veins, and depression. Unfortunately, little is known about the factors driving this bone loss. In fact, even though we know that injury, age, and sex independently increase bone loss, there have been no studies looking at the cumulative effects of these variables. People with spinal injury are aging, and the age at which injuries occur is increasing. It is essential to know whether these factors together will further compromise bone. To examine this, we assessed bone loss in young and old, male and female mice after spinal injury. As expected, we found that aging alone decreased motor activity and bone volume. Spinal injury also reduced bone volume, but it did not worsen the effects of age. Instead, injury effects appeared related to reduced rearing activity. The data suggest that although partial weight-bearing does not reduce bone loss after spinal cord injury, therapies that put full weight on the legs may be clinically effective. Abstract After spinal cord injury (SCI), 80% of individuals are diagnosed with osteopenia or osteoporosis. The dramatic loss of bone after SCI increases the potential for fractures 100-fold, with post-fracture complications occurring in 54% of cases. With the age of new SCI injuries increasing, we hypothesized that a SCI-induced reduction in weight bearing could further exacerbate age-induced bone loss. To test this, young (2–3 months) and old (20–30 months) male and female mice were given a moderate spinal contusion injury (T9–T10), and recovery was assessed for 28 days (BMS, rearing counts, distance traveled). Tibial trabecular bone volume was measured after 28 days with ex vivo microCT. While BMS scores did not differ across groups, older subjects travelled less in the open field and there was a decrease in rearing with age and SCI. As expected, aging decreased trabecular bone volume and cortical thickness in both old male and female mice. SCI alone also reduced trabecular bone volume in young mice, but did not have an additional effect beyond the age-dependent decrease in trabecular and cortical bone volume seen in both sexes. Interestingly, both rearing and total activity correlated with decreased bone volume. These data underscore the importance of load and use on bone mass. While partial weight-bearing does not stabilize/reverse bone loss in humans, our data suggest that therapies that simulate complete loading may be effective after SCI.
Collapse
Affiliation(s)
- Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
- Correspondence: ; Tel.: +1-979-436-0568
| | - Alyssa Falck
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; (A.F.); (D.G.)
| | - Ravali Dundumulla
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Kayla Callaway
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Dana Gaddy
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; (A.F.); (D.G.)
| | - Cédric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| |
Collapse
|
23
|
Kunimatsu R, Kimura A, Sakata S, Tsuka Y, Yoshimi Y, Abe T, Kado I, Yashima Y, Izumino J, Nakatani A, Kitagawa M, Miyauchi M, Takata T, Tanimoto K. Effects of baicalin on the proliferation and expression of OPG and RANKL in human cementoblast-lineage cells. J Dent Sci 2022; 17:162-169. [PMID: 35028034 PMCID: PMC8739232 DOI: 10.1016/j.jds.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background/purpose Baicalin, a natural bioactive flavonoid extracted from Scutellaria baicalensis Georgi, mediates bone metabolism, and recent studies have revealed that it has cell signaling properties. However, its biological functions in cementoblasts still remain unclear. This study therefore aimed to investigate the effects of baicalin on bone resorption markers, including osteoprotegerin (OPG) and receptor activator of nuclear factor-κβ ligand (RANKL), in human cementoblast-lineage cells, as well as their proliferation ability. Materials and methods Human cementoblast cell line (HCEM) cells were cultured and treated with 0, 0.01, 0.1, or 1 μM of baicalin. The proliferative capacity of cultured HCEM cells was analyzed using bromodeoxyuridine immunoassay and cell counting. The baicalin effect on OPG and RANKL expression was determined using quantitative polymerase chain reaction (qPCR) and western blotting. Furthermore, OPG expression was measured in 1 μM baicalin-treated HCEM cells in the presence or absence of the Wnt signaling pathway inhibitor, Dickkopf (Dkk)-1, using qPCR and western blotting. Results The addition of 0.01, 0.1, and 1 μM of baicalin did not significantly change the proliferative capacity of cultured HCEM cells. Compared with the non-supplemented group, baicalin increased and suppressed OPG and RANKL gene and protein expression, respectively, in a concentration-dependent manner. OPG mRNA and protein expression levels were increased by 1 μM baicalin, which was suppressed by Dkk-1 addition. Conclusion Baicalin enhanced OPG expression in HCEM cells through the Wnt/beta-catenin signaling pathway, which could contribute to periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Yashima
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jin Izumino
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
24
|
Peng Y, Zhao W, Hu Y, Guo XE, Wang J, Hao K, He Z, Toro C, Bauman WA, Qin W. Administration of High-Dose Methylprednisolone Worsens Bone Loss after Acute Spinal Cord Injury in Rats. Neurotrauma Rep 2022; 2:592-602. [PMID: 35018361 PMCID: PMC8742306 DOI: 10.1089/neur.2021.0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The administration of high-dose methylprednisolone (MP) for 24–48 h after traumatic spinal cord injury (SCI) has been shown to improve functional recovery. The known adverse effects of MP on skeletal muscle and the immune system, though, have raised clinically relevant safety concerns. However, the effect of MP administration on SCI-induced bone loss has not been evaluated to date. This study examined the adverse effects of high-dose MP administration on skeletal bone after acute SCI in rodents. Male rats underwent spinal cord transection at T3–T4, which was followed by an intravenous injection of MP and subsequent infusion of MP for 24 h. At 2 days, animals were euthanized and hindlimb bone samples were collected. MP significantly reduced bone mineral density (−6.7%) and induced deterioration of bone microstructure (trabecular bone volume/tissue volume, −18.4%; trabecular number, −19.4%) in the distal femur of SCI rats. MP significantly increased expression in the hindlimb bones of osteoclastic genes receptor activator of nuclear factor-κB ligand (RANKL; +402%), triiodothyronine receptor auxiliary protein (+32%), calcitonin receptor (+41%), and reduced osteoprotegerin/RANKL ratio (−72%) compared to those of SCI-vehicle animals. Collectively, 1 day of high-dose MP at a dose comparable to the dosing regimen prescribed to patients who qualify to receive this treatment approach with acute SCI increased loss of bone mass and integrity below the level of lesion than that of animals that had SCI alone, and was associated with further elevation in the expression of genes involved in pathways associated with osteoclastic bone resorption than that observed in SCI animals.
Collapse
Affiliation(s)
- Yuanzhen Peng
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Wei Zhao
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhiming He
- College of Dentistry, New York University, New York, New York, USA
| | - Carlos Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- *Address correspondence to: Weiping Qin, MD, PhD, James J. Peters Veteran Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| |
Collapse
|
25
|
Wu X, Xu X, Liu Q, Ding J, Liu J, Huang Z, Huang Z, Wu X, Li R, Yang Z, Jiang H, Liu J, Zhu Q. Unilateral cervical spinal cord injury induces bone loss and metabolic changes in non-human primates ( Macaca fascicularis). J Orthop Translat 2021; 29:113-122. [PMID: 34178602 PMCID: PMC8193057 DOI: 10.1016/j.jot.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/14/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND/OBJECTIVE The deleterious effects of chronic spinal cord injury (SCI) on the skeleton in rats, especially the lower extremities, has been proved previously. However, the long-term skeletal changes after SCI in non-human primates (NHP) have been scarcely studied. This study aimed to evaluate the bone loss in limbs and vertebrae and the bone metabolic changes in NHP after unilateral cervical spinal cord contusion injury. METHODS Twelve Macaca fascicularis were randomly divided into the SCI (n=8) and the Sham (n=4) groups. The SCI models were established using hemi-contusion cervical spinal cord injury on fifth cervical vertebra (C5), and were further evaluated by histological staining and neurophysiological monitoring. Changes of bone microstructures, bone biomechanics, and bone metabolism markers were assessed by micro-CT, micro-FEA and serological kit. RESULTS The NHP hemi-contusion cervical SCI model led to consistent unilateral limb dysfunction and potential plasticity in the face of loss of spinal cord. Furthermore, the cancellous bone mass of ipsilateral humerus and radius decreased significantly compared to the contralateral side. The bone volume fraction of humerus and radius were 17.2% and 20.1% on the ipsilateral while 29.0% and 30.1% on the contralateral respectively. Similarly, the thickness of the cortical bone in the ipsilateral forelimbs was significantly decreased, as well as the bone strength of the ipsilateral forelimbs. These changes were accompanied by diminished concentration of osteocalcin and total procollagen type 1 N-terminal propeptide (t-P1NP) as well as increased level of β-C-terminal cross-linking telopeptide of type 1collagen (β-CTX) in serological testing. CONCLUSIONS The present study demonstrated that hemi-SCI induced loss of bone mass and compromised biomechanical performance in ipsilateral forelimbs, which could be indicated by both muscle atrophy and serological changes of bone metabolism, and associated with a consistent loss of large-diameter cells of sensory neurons in the dorsal root ganglia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our study, for the first time, demonstrated the bone loss in limbs and vertebrae as well as the bone metabolic changes in non-human primates after unilateral spinal cord injury (SCI). This may help to elucidate the role of muscle atrophy, serological changes and loss of sensory neurons in the mechanisms of SCI-induced osteoporosis, which would be definitely better compared with rodent models.
Collapse
Affiliation(s)
- Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin Xu
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianyang Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhou Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, Vancouver, BritishColumbia, Canada
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Holman ME, Chang G, Ghatas MP, Saha PK, Zhang X, Khan MR, Sima AP, Adler RA, Gorgey AS. Bone and non-contractile soft tissue changes following open kinetic chain resistance training and testosterone treatment in spinal cord injury: an exploratory study. Osteoporos Int 2021; 32:1321-1332. [PMID: 33443609 DOI: 10.1007/s00198-020-05778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
UNLABELLED Twenty men with spinal cord injury (SCI) were randomized into two 16-week intervention groups receiving testosterone treatment (TT) or TT combined with resistance training (TT + RT). TT + RT appears to hold the potential to reverse or slow down bone loss following SCI if provided over a longer period. INTRODUCTION Persons with SCI experience bone loss below the level of injury. The combined effects of resistance training and TT on bone quality following SCI remain unknown. METHODS Men with SCI were randomized into 16-week treatments receiving TT or TT + RT. Magnetic resonance imaging (MRI) of the right lower extremity before participation and post-intervention was used to visualize the proximal, middle, and distal femoral shaft, the quadriceps tendon, and the intermuscular fascia of the quadriceps. For the TT + RT group, MRI microarchitecture techniques were utilized to elucidate trabecular changes around the knee. Individual mixed models were used to estimate effect sizes. RESULTS Twenty participants completed the pilot trial. A small effect for yellow marrow in the distal femur was indicated as increases following TT and decreases following TT + RT were observed. Another small effect was observed as the TT + RT group displayed greater increases in intermuscular fascia length than the TT arm. Distal femur trabecular changes for the TT + RT group were generally small in effect (decreased trabecular thickness variability, spacing, and spacing variability; increased network area). Medium effects were generally observed in the proximal tibia (increased plate width, trabecular thickness, and network area; decreased trabecular spacing and spacing variability). CONCLUSIONS This pilot suggests longer TT + RT interventions may be a viable rehabilitation technique to combat bone loss following SCI. CLINICAL TRIAL REGISTRATION Registered with clinicaltrials.gov : NCT01652040 (07/27/2012).
Collapse
Affiliation(s)
- M E Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - G Chang
- Department of Radiology, NYU School of Medicine, New York, NY, 10016, USA
| | - M P Ghatas
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - P K Saha
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - X Zhang
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - M R Khan
- Department of Radiology, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A P Sima
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - R A Adler
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA
| | - A S Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VAMC, Richmond, VA, 23249, USA.
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
27
|
Treatment of bilateral sacral insufficiency fractures with sacroplasty in a patient with motor complete tetraplegia. Spinal Cord Ser Cases 2021; 7:23. [PMID: 33741891 PMCID: PMC7979759 DOI: 10.1038/s41394-021-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/08/2022] Open
Abstract
Introduction Osteoporosis is a common secondary complication of spinal cord injury, with fragility fractures typically occurring in the lower body and management often is conservative. Case presentation We present a 52-year-old male with chronic complete tetraplegia who presented to the emergency room with unremitting autonomic dysreflexia (AD). He was admitted for medical management of the AD when a source of the AD could not be identified. After an extensive workup, the patient was found to have bilateral sacral insufficiency fractures. He subsequently underwent sacroplasty with immediate and full resolution of AD symptoms and return to full premorbid function within 24 h. Discussion People with chronic spinal cord injury (SCI) are at risk for spinal column fragility fractures in addition to lower extremity fractures. Vertebroplasty may be a safe option for treatment of insufficiency fractures in situations where conservative care may put people at risk for significant immobility-associated complications.
Collapse
|
28
|
The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22063057. [PMID: 33802713 PMCID: PMC8002377 DOI: 10.3390/ijms22063057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects approximately 300,000 people in the United States. Most individuals who sustain severe SCI also develop subsequent osteoporosis. However, beyond immobilization-related lack of long bone loading, multiple mechanisms of SCI-related bone density loss are incompletely understood. Recent findings suggest neuronal impairment and disability may lead to an upregulation of receptor activator of nuclear factor-κB ligand (RANKL), which promotes bone resorption. Disruption of Wnt signaling and dysregulation of RANKL may also contribute to the pathogenesis of SCI-related osteoporosis. Estrogenic effects may protect bones from resorption by decreasing the upregulation of RANKL. This review will discuss the current proposed physiological and cellular mechanisms explaining osteoporosis associated with SCI. In addition, we will discuss emerging pharmacological and physiological treatment strategies, including the promising effects of estrogen on cellular protection.
Collapse
|
29
|
Iyer P, Beck EJ, Walton KL. A systematic review of the effect of dietary interventions on cardiovascular disease risk in adults with spinal cord injury. J Spinal Cord Med 2021; 44:184-203. [PMID: 30945998 PMCID: PMC7952075 DOI: 10.1080/10790268.2019.1592926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CONTEXT Cardiovascular disease is one of the leading causes of mortality in individuals with spinal cord injury (SCI), highlighting the need for targeted risk minimization interventions. OBJECTIVE To determine the effect of dietary interventions on CVD risk in adults with SCI. METHODS A systematic literature review of studies investigating the impact of dietary intervention on CVD risk in SCI individuals was conducted according to the PRISMA statement. CASP checklists were used for critical appraisal, Academy of Nutrition and Dietetics Quality criteria checklist (QCC) for determining risk of bias and the GRADE approach to ascertain the quality of evidence of the outcomes. The results were reported descriptively. RESULTS A total of eight studies were included from the identified 862 articles. Dietary intervention strategies varied across all studies, as did the outcome measures. Adult learning theories were not considered. The lack of controlled trials (two only) meant that while some interventions proved useful, risk of bias was high. Outcome measures were assessed as low to very low quality again identifying that this area is highly under-researched. CONCLUSION Despite documented evidence of the benefits of diet on CVD risk reduction, this review has identified a dearth of research in SCI. Nonetheless, the review emphasizes the potential of diet in conjunction with exercise in minimizing CVD risk in SCI. Further good quality research backed by robust data collection, simple, actionable strategies and knowledge translation techniques are essential to ascertain the effects of dietary intervention in lowering CVD risk in SCI.
Collapse
Affiliation(s)
- Priya Iyer
- School of Medicine, University of Wollongong & Dietitian, Royal Rehab, Sydney, Australia
| | - Eleanor J. Beck
- School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Karen L. Walton
- School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
30
|
Ghatas MP, Khan MR, Gorgey AS. Skeletal muscle stiffness as measured by magnetic resonance elastography after chronic spinal cord injury: a cross-sectional pilot study. Neural Regen Res 2021; 16:2486-2493. [PMID: 33907038 PMCID: PMC8374562 DOI: 10.4103/1673-5374.313060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Skeletal muscle stiffness is altered after spinal cord injury (SCI). Assessing muscle stiffness is essential for rehabilitation and pharmaceutical interventions design after SCI. The study used magnetic resonance elastography to assess the changes in stiffness after chronic SCI compared to matched able-bodied controls and determine its association with muscle size, spasticity, and peak torque in persons with SCI. Previous studies examined the association between muscle stiffness and spasticity, however, we are unaware of other studies that examined the effects of muscle composition on stiffness after SCI. Ten participants (one female) with chronic SCI and eight (one female) matched able-bodied controls participated in this cross-sectional study. Magnetic resonance elastography was utilized to monitor stiffness derived from shear waves propagation. Modified Ashworth scale was used to evaluate spasticity scores in a blinded fashion. Peak isometric and isokinetic torques were measured using a biodex dynamometer. Stiffness values were non-significantly lower (12.5%; P = 0.3) in the SCI group compared to able-bodied controls. Moreover, stiffness was positively related to vastus lateralis whole muscle cross-sectional area (CSA) (r2 = 0.64, P < 0.005) and vastus lateralis absolute muscle CSA after accounting for intramuscular fat (r2 = 0.78, P < 0.0007). Stiffness was also positively correlated to both isometric (r2= 0.55-0.57, P < 0.05) and isokinetic peak (r2= 0.46-0.48, P < 0.05) torques. Our results suggest that larger clinical trial is warranted to confirm the preliminary findings that muscle stiffness is altered after SCI compared to healthy controls. Stiffness appeared to be influenced by infiltration of intramuscular fat and modestly by the spasticity of the paralyzed muscles. The preliminary data indicated that the relationship between muscle stiffness and peak torque is not altered with changing the frequency of pulses or angular velocities. All study procedures were approved by the Institutional Review Board at the Hunter Holmes McGuire VA Medical Center, USA (IRB #: 02314) on May 3, 2017.
Collapse
Affiliation(s)
- Mina P Ghatas
- Department of Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - M Rehan Khan
- Department of Radiology, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
| | - Ashraf S Gorgey
- Department of Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
XU ZJ, XIANG L, QI W, PAN K, LI W, TAN Y, CHENG Z. Effect of electroacupuncture combined with osteoporosis treatment apparatus on bone metabolism in patients with spinal cord injury. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020. [DOI: 10.1016/j.wjam.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Liu X, Liu M, Turner R, Iwaniec U, Kim H, Halloran B. Dried plum mitigates spinal cord injury-induced bone loss in mice. JOR Spine 2020; 3:e1113. [PMID: 33392451 PMCID: PMC7770201 DOI: 10.1002/jsp2.1113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/07/2022] Open
Abstract
Spinal cord injury (SCI) is accompanied by rapid loss of bone and increased risk of low impact fractures. Current pharmacological treatment approaches have proven to be relatively ineffective in preventing or treating bone loss after SCI. Dietary supplementation with dried plum (DP) has been shown to have dramatic effects on bone in various other disease models. In this study, we tested the efficacy of DP in preventing bone loss after SCI and restoring bone that has already been lost in response to SCI. Male C57BL/6J mice (3-month-old) underwent SCI and were fed a diet containing 25% DP by weight or a control diet for up to 4 weeks to assess whether DP can prevent bone loss. To determine whether DP could restore bone already lost due to SCI, mice were put on a control diet for 2 weeks (to allow bone loss) and then shifted to a DP supplemented diet for an additional 2 weeks. The skeletal responses to SCI and dietary supplementation with DP were assessed using microCT analysis, bone histomorphometry and strength testing. Dietary supplementation with DP completely prevented the loss of bone and bone strength induced by SCI in acutely injured mice. DP also could restore a fraction of the bone lost and attenuate the loss of bone strength after SCI. These results suggest that dietary supplementation with DP or factors derived from DP may prove to be an effective treatment for the loss of bone in patients with SCI.
Collapse
Affiliation(s)
- Xuhui Liu
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of Orthopedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Mengyao Liu
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of Orthopedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Russell Turner
- Skeletal Biology Laboratory, College of Public Health and Human ScienceOregon State UniversityCorvallisOregonUSA
| | - Urszula Iwaniec
- Skeletal Biology Laboratory, College of Public Health and Human ScienceOregon State UniversityCorvallisOregonUSA
| | - Hubert Kim
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of Orthopedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Bernard Halloran
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
33
|
Weaver FM, Gonzalez B, Ray C, Etingen B, Schwartz A, Burns S, Le B, Aslam H, Priebe M, Carbone LD. Factors influencing providers' decisions on management of bone health in people with spinal cord injury. Spinal Cord 2020; 59:787-795. [PMID: 33239741 DOI: 10.1038/s41393-020-00589-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Survey. OBJECTIVES Managing osteoporosis in persons with chronic spinal cord injury (SCI) is difficult as little evidence exists regarding effective strategies. We examined the effect of key factors on providers' bone health management decisions in persons with SCI. SETTING USA. METHODS Providers reviewed blocks of 9 hypothetical cases that varied on four factors: osteoporosis, osteopenia, or normal bone mineral density using dual-energy X-ray absorptiometry (DXA); DXA region of interest (lumbar spine, hip, knee), prior lower extremity fracture; and no or limited ambulation. They indicated how likely they would recommend pharmacological management, what treatment(s) they would recommend, and whether they would request another DXA before treatment. RESULTS Eighty-two healthcare providers completed the survey. Treatment recommendations for bisphosphonates and Vitamin D/calcium supplements, respectively, were more likely if there was a prior fracture (OR: 2.65, 95%CI: 1.76-3.99, p < 0.0001; OR: 2.96, 95%CI: 1.40-6.26, p = 0.004) and if a DXA scan found osteopenia (OR: 2.23, 95%CI: 1.41-3.54, p = 0.001; OR: 6.56, 95%CI: 2.71-15.85, p < 0.0001) or osteoporosis (OR: 12.08, 95%CI: 7.09-20.57, p < 0.0001; OR: 4.54, 95%CI: 2.08-9.90, p < 0.0001). Another DXA scan was more likely to be requested if there was a prior fracture (OR: 1.75, 95%CI: 1.10-2.78, p = 0.02) but less likely if the person was nonambulatory (OR: 0.41, 95%: 0.19-0.90, p = 0.03). CONCLUSIONS Prior fracture and DXA findings influenced treatment recommendations for bone health management in SCI. Reliance on lumbar spine scans to determine bone loss and treatment identifies a knowledge gap for which future education is required.
Collapse
Affiliation(s)
- Frances M Weaver
- Center of Innovation for Complex Chronic Healthcare, Hines VA Hospital, Hines, IL, USA. .,Parkinson School of Health Sciences and Public Health, Loyola University, Chicago, IL, USA.
| | - Beverly Gonzalez
- Center of Innovation for Complex Chronic Healthcare, Hines VA Hospital, Hines, IL, USA.,Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cara Ray
- Center of Innovation for Complex Chronic Healthcare, Hines VA Hospital, Hines, IL, USA
| | - Bella Etingen
- Center of Innovation for Complex Chronic Healthcare, Hines VA Hospital, Hines, IL, USA
| | - Alan Schwartz
- Department of Medical Education, and Department of Pediatrics at the University of Illinois at Chicago, Chicago, IL, USA
| | - Stephen Burns
- Spinal Cord Injury Service, VA Puget Sound health Care System, Seattle, WA, USA.,Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Brian Le
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hammad Aslam
- Altanta Rehabilitation Consultants, Duluth, GA, USA
| | - Michael Priebe
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Laura D Carbone
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| |
Collapse
|
34
|
Slocum C, Halloran M, Unser C. A Primary Care Provider's Guide to Clinical Needs of Women With Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2020; 26:166-171. [PMID: 33192043 DOI: 10.46292/sci2603-166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Women are a growing proportion of individuals with SCI and have distinctive health needs spanning the life course that demand deliberate consideration and clinical expertise. Practitioners caring for women with SCI must incorporate broad medical knowledge of SCI physiology and health promotion for women, including differences in complication rates following SCI, and work collaboratively with rehabilitation, medical, and surgical specialists to optimize function and health for women with SCI. Clinical researchers must continue to perform population-based studies to best characterize the evolving needs of women with SCI and evaluate treatment efficacy and care delivery models to best serve this population.
Collapse
Affiliation(s)
| | - Molly Halloran
- Thomas Jefferson University Department of Medicine, Philadelphia, Pennsylvania
| | - Cody Unser
- Cody Unser First Step Foundation, Albuquerque, New Mexico
| |
Collapse
|
35
|
Chandran VD, Lambach RL, Gibbons RS, Andrews BJ, Beaupre GS, Pal S. Tibiofemoral forces during FES rowing in individuals with spinal cord injury. Comput Methods Biomech Biomed Engin 2020; 24:231-244. [PMID: 32940534 DOI: 10.1080/10255842.2020.1821880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study is to determine the tibiofemoral forces during functional electrical stimulation (FES) rowing in individuals with spinal cord injury (SCI). We analysed the motion of five participants with SCI during FES rowing, with simultaneous measurements of (i) three-dimensional marker trajectories, (ii) foot reaction forces (FRFs), (iii) ergometer handle forces, and (iv) timestamps for electrical stimulation of the quadriceps and hamstrings muscles. We created full-body musculoskeletal models in OpenSim to determine subject-specific tibiofemoral forces during FES rowing. The peak magnitudes of tibiofemoral forces averaged over five participants with SCI were 2.43 ± 0.39 BW and 2.25 ± 0.71 BW for the left and right legs, respectively. The peak magnitudes of FRFs were 0.19 ± 0.04 BW in each leg. The peak magnitude of handle forces was 0.47 ± 0.19 BW. Peak tibiofemoral force was associated with peak FRF (magnitudes, R2 = 0.56, p = 0.013) and peak handle force (magnitudes, R2 = 0.54, p = 0.016). The ratios of peak magnitude of tibiofemoral force to peak magnitude of FRF were 12.9 ± 1.9 (left) and 11.6 ± 2.4 (right), and to peak magnitude of handle force were 5.7 ± 2.3 (left) and 4.9 ± 0.9 (right). This work lays the foundation for developing a direct exercise intensity metric for bone mechanical stimulus at the knee during rehabilitation exercises. Clinical Significance: Knowledge of tibiofemoral forces from exercises such as FES rowing may provide clinicians the ability to personalize rehabilitation protocols to ensure that an SCI patient is receiving the minimum dose of mechanical stimulus necessary to maintain bone health.
Collapse
Affiliation(s)
- Vishnu D Chandran
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Rebecca L Lambach
- Musculoskeletal Research Laboratory, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Robin S Gibbons
- Centre for Rehabilitation Engineering and Assistive Technologies, University College London, Stanmore, UK
| | - Brian J Andrews
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Biomedical Engineering Group, School of Engineering, Warwick University, Coventry, UK
| | - Gary S Beaupre
- Musculoskeletal Research Laboratory, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.,Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
36
|
Invernizzi M, de Sire A, Carda S, Venetis K, Renò F, Cisari C, Fusco N. Bone Muscle Crosstalk in Spinal Cord Injuries: Pathophysiology and Implications for Patients' Quality of Life. Curr Osteoporos Rep 2020; 18:422-431. [PMID: 32519284 DOI: 10.1007/s11914-020-00601-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to provide a comprehensive overview of (i) bone and muscle tissue modifications pathophysiology in spinal cord injury (SCI), (ii) experimental data on the physiopathological mechanisms underpinning these modifications and their similarities with the aging process, and (iii) potential clinical implications in the management of the disabling sequelae of SCI. RECENT FINDINGS Several studies attempted to describe the biology underpinning the links between bone and muscle tissues in the setting of highly disabling conditions, such as osteoporosis, sarcopenia, and neurodegenerative disorders, although these bidirectional connections remain still unclear. SCI could be considered an in vivo paradigmatic model of the bone muscle interactions in unloading conditions that might be expanded in the field of neurodegenerative disorders or cancer studies. Future studies should take into consideration the newer insights into bone muscle crosstalk in order to develop multitargeted and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rehabilitation Unit, "Mons. L. Novarese" Hospital, Moncrivello, Vercelli, Italy
| | - Stefano Carda
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Konstantinos Venetis
- Ph.D. Program in Translational Medicine, University of Milan, Milan, Italy
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital "Maggiore della Carità", Novara, Italy
| | - Nicola Fusco
- Division of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Weaver FM, Etingen B, Guihan M, Ray C, Priebe M, Burns S, Carbone L. Spinal cord injury providers' perspectives on managing sublesional osteoporosis. J Spinal Cord Med 2020; 43:428-434. [PMID: 31859610 PMCID: PMC7480594 DOI: 10.1080/10790268.2019.1704552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: Persons with spinal cord injuries (SCI) experience rapid sublesional bone loss following injury (1, 3). Evidence on preventing/managing osteoporosis in SCI is lacking. This project examined how providers manage bone loss in SCI. Design: Telephone interviews with SCI providers. Setting: VA SCI centers and clinics. Participants: Veterans Administration SCI centers and clinics were categorized on their average number of dual-energy X-ray absorptiometry (DXA) scans (FY2014-2016). Twelve SCI providers from high and low DXA-ordering sites were interviewed. Questions included osteoporosis screening/diagnosis, prevention/treatment strategies, secondary causes of osteoporosis, and osteoporotic fracture complications. Interviews were audio-recorded, transcribed, and analyzed. Results: Providers described a lack of standardized guidelines for managing osteoporosis in SCI. They most often screened for osteoporosis using DXA when: (1) considering use of a new device or activity, (2) for patients with a history of fracture. Some providers assumed that non-ambulatory SCI patients already have osteoporosis so infrequently ordered DXAs. Assessment of secondary causes of osteoporosis was uncommon. Fracture prevention strategies identified included weight-bearing and engaging in activities like adaptive sports. Vitamin D and calcium were frequently prescribed as a result of deficiencies identified during lab testing. Providers seldom prescribed FDA-approved medications for osteoporosis. Post-fracture complications encountered included nonunion/malunion and compartment syndrome. Providers indicated that patients often experienced psychological stress, anxiety and depression following fractures. Conclusion: Providers described a lack of evidence for screening and management of patients with SCI and osteoporosis. Future efforts should include developing evidence-informed guidelines to aid providers in osteoporosis management.
Collapse
Affiliation(s)
- Frances M. Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines VA Hospital, Hines, Illinois, USA,Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, Illinois, USA,Correspondence to: Frances M. Weaver, Edward Hines VA Hospital, Center of Innovation for Complex Chronic Healthcare, Hines, IL60304, USA.
| | - Bella Etingen
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines VA Hospital, Hines, Illinois, USA
| | - Marylou Guihan
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines VA Hospital, Hines, Illinois, USA
| | - Cara Ray
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Edward Hines VA Hospital, Hines, Illinois, USA
| | - Michael Priebe
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Stephen Burns
- Department of Veterans Affairs-Puget Sound Health Care System, Seattle, Washington, USA,Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Laura Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA,Department of Medicine, Division of Rheumatology, J. Harold Harrison, MD, Distinguished Chair in Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
38
|
Bass A, Morin SN, Vermette M, Aubertin-Leheudre M, Gagnon DH. Incidental bilateral calcaneal fractures following overground walking with a wearable robotic exoskeleton in a wheelchair user with a chronic spinal cord injury: is zero risk possible? Osteoporos Int 2020; 31:1007-1011. [PMID: 31932962 DOI: 10.1007/s00198-020-05277-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/01/2020] [Indexed: 01/19/2023]
Abstract
Many individuals with spinal cord injury (SCI) rely on wheelchairs as their primary mode of locomotion leading to reduced weight-bearing on the lower extremities, which contributes to severe bone loss and increased risk of fragility fractures. Engaging in a walking program may reverse this vicious cycle, as this promotes lower extremity weight-bearing and mobility, which may reduce bone loss and fragility fracture risk. However, fragility fracture risk associated with the use of wearable robotic exoskeletons (WREs) in individuals with SCI needs consideration. A 35-year-old man with chronic complete sensorimotor SCI (neurological level = T6) and low initial bone mineral density enrolled in a 6- to 8-week WRE-assisted walking program after successfully completing an initial clinical screening process and two familiarization sessions with the WRE. However, after the first training session with the WRE, he developed bilateral localized ankle edema. Training was suspended, and a CT-scan revealed bilateral calcaneal fractures, which healed with conservative treatment over a 12-week period. Opportunities for improving clinical screening and WRE design are explored. The relevance of developing clinical practice guidelines for safe initiation and progression of intensity during WRE-assisted walking programs is highlighted. This case of bilateral calcaneal fractures illustrates that aiming for "zero risk" during WRE-assisted walking programs may not be realistic. Although WREs are a relatively new technology, current evidence confirms their potential to greatly improve health and quality of life in individuals with chronic SCI. Hence, ensuring their safe use remains a key priority.
Collapse
Affiliation(s)
- A Bass
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) of the Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - S N Morin
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - M Vermette
- Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) of the Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - M Aubertin-Leheudre
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - D H Gagnon
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) of the Centre Intégré Universitaire de Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada.
| |
Collapse
|
39
|
Peng Y, Zhao W, Hu Y, Li F, Guo XE, Wang D, Bauman WA, Qin W. Rapid bone loss occurs as early as 2 days after complete spinal cord transection in young adult rats. Spinal Cord 2020; 58:309-317. [PMID: 31664187 PMCID: PMC7869834 DOI: 10.1038/s41393-019-0371-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVE This study examined how soon after spinal cord injury (SCI) bone loss occurs, and investigated the underlying molecular mechanism. METHODS Eight-week-old male Wistar rats underwent complete transection of the thoracic spinal cord at T3-4 or sham operation (n = 10-12 per group). Blood, hindlimb bone samples, and bone marrows were collected at 2 and 7 days after SCI. RESULTS The neurologically motor-complete SCI causes loss of bone mass and deterioration of trabecular bone microstructure as early as 2 days after injury; these skeletal defects become more evident at 7 days. These changes are associated with a dramatic increase in levels of bone resorption maker CTX in blood. Alternations of gene expression in hindlimb bone tissues and bone marrow cells at the first week after SCI were examined. Gene expressions responsible for both bone resorption and formation are increased at 2 days post-SCI, and the associated bone loss and bone deterioration are likely the result of higher levels of osteoclastic resorption over osteoblastic formation, as may be extrapolated from findings at molecular levels. CONCLUSIONS Rapid bone loss occurs as early as 2 days after motor-complete SCI and interventions for inhibiting bone resorption and prompting bone formation should start as soon as possible after the injury to prevent bone loss.
Collapse
Affiliation(s)
- Yuanzhen Peng
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Wei Zhao
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Yizhong Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fei Li
- Yantaishan Hospital, Yantai, Shandong, China
| | - X Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, USA.
- Departments of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Ghnenis AB, Burns DT, Osimanjiang W, He G, Bushman JS. A Long-Term Pilot Study on Sex and Spinal Cord Injury Shows Sexual Dimorphism in Functional Recovery and Cardio-Metabolic Responses. Sci Rep 2020; 10:2762. [PMID: 32066802 PMCID: PMC7026076 DOI: 10.1038/s41598-020-59628-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
More than a quarter of a million individuals in the US live with spinal cord injury (SCI). SCI disrupts neural circuitry to vital organs in the body. Despite severe incidences of long-term peripheral complications from SCI, the cardio-metabolic consequences and divergences in sex-related responses are not well described. We examined the effects of SCI on functional recovery, cardiac structure and function, body composition, and glucose metabolism on adult female and male Sprague Dawley (SD) rats. SCI was induced at T10 via contusion. Measured outcomes include behavioral assessment, body weight, dual-energy X-ray absorptiometry (DEXA) for body composition, echocardiography for cardiac structure and function, intraperitoneal glucose tolerance test (IPGTT) for glucose metabolism, insulin tolerance test (ITT), and histology of cardiac structure at the endpoint. There was a decrease in body fat percentage in both sexes, with SCI females disproportionately affected in percent body fat change. Left ventricular internal diameter during systole (LVIDs) was decreased in SCI females more than in SCI males. No significant differences in glucose metabolism were observed up to 20 weeks post-injury (PI). These data show significant cardio-metabolic differences as a consequence of SCI and, furthermore, that sex is an underlying factor in these differences.
Collapse
Affiliation(s)
- Adel B Ghnenis
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Daniel T Burns
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Wupu Osimanjiang
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Guanglong He
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Jared S Bushman
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA.
| |
Collapse
|
41
|
Das DK, Graham ZA, Cardozo CP. Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives. Acta Physiol (Oxf) 2020; 228:e13367. [PMID: 31442362 DOI: 10.1111/apha.13367] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/11/2019] [Accepted: 08/03/2019] [Indexed: 12/13/2022]
Abstract
Myokines are molecules produced and secreted by skeletal muscle to act in an auto-, para- and endocrine manner to alter physiological function of target tissues. The growing number of effects of myokines on metabolism of distant tissues provides a compelling case for crosstalk between skeletal muscle and other tissues and organs to regulate metabolic homoeostasis. In this review, we summarize and discuss the current knowledge regarding the impact on metabolism of several canonical and recently identified myokines. We focus specifically on myostatin, β-aminoisobutyric acid, interleukin-15, meteorin-like and myonectin, and discuss how these myokines are induced and regulated as well as their overall function. We also review how these myokines may serve as potential prognostic biomarkers that reflect whole-body metabolism and how they may be attractive therapeutic targets for treating muscle and metabolic diseases.
Collapse
Affiliation(s)
- Dibash K. Das
- National Center for the Medical Consequences of Spinal Cord Injury James J. Peters VA Medical Center Bronx NY USA
- Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA
| | - Zachary A. Graham
- Birmingham VA Medical Center University of Alabama‐Birmingham Birmingham AL USA
- Department of Cell, Developmental, and Integrative Biology University of Alabama‐Birmingham Birmingham AL USA
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury James J. Peters VA Medical Center Bronx NY USA
- Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA
- Department of Rehabilitation Medicine Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
42
|
Arfat Y, Rani A, Jingping W, Hocart CH. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis. J Comp Physiol B 2020; 190:1-16. [DOI: 10.1007/s00360-019-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
43
|
Sadowsky CL, Mingioni N, Zinski J. A Primary Care Provider's Guide to Bone Health in Spinal Cord-Related Paralysis. Top Spinal Cord Inj Rehabil 2020; 26:128-133. [PMID: 32760192 PMCID: PMC7384544 DOI: 10.46292/sci2602-128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Individuals with spinal cord injury/disorder (SCI/D) are at high risk for developing secondary osteoporosis. Bone loss after neurologic injury is multifactorial and is dependent on the time from and extent of neurologic injury. Most bone loss occurs in the first year after complete motor paralysis, and fractures occur most commonly in the distal femur and proximal tibia (paraplegic fracture). The 2019 International Society for Clinical Densitometry Position Statement in SCI establishes that dual-energy X-ray absorptiometry (DXA) can be used to both diagnose osteoporosis and predict lower extremity fracture risk in individuals with SCI/D. Pharmacologic treatments used in primary osteoporosis have mixed results when used for SCI/D-related osteoporosis. Ambulation, standing, and electrical stimulation may be helpful at increasing bone mineral density (BMD) in individuals with SCI/D but do not necessarily correlate with fracture risk reduction. Clinicians caring for individuals with spinal cord-related paralysis must maintain a high index of suspicion for fragility fractures and consider referral for surgical evaluation and management.
Collapse
Affiliation(s)
- Cristina L Sadowsky
- International Center for Spinal Cord Injury/Kennedy Krieger Institute, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Nina Mingioni
- Department of Internal Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Zinski
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
45
|
Champs APS, Maia GAG, Oliveira FG, de Melo GCN, Soares MMS. Osteoporosis-related fractures after spinal cord injury: a retrospective study from Brazil. Spinal Cord 2019; 58:484-489. [DOI: 10.1038/s41393-019-0387-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
|
46
|
Zleik N, Weaver F, Harmon RL, Le B, Radhakrishnan R, Jirau-Rosaly WD, Craven BC, Raiford M, Hill JN, Etingen B, Guihan M, Heggeness MH, Ray C, Carbone L. Prevention and management of osteoporosis and osteoporotic fractures in persons with a spinal cord injury or disorder: A systematic scoping review. J Spinal Cord Med 2019; 42:735-759. [PMID: 29745791 PMCID: PMC6830234 DOI: 10.1080/10790268.2018.1469808] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives: The primary objective was to review the literature regarding methodologies to assess fracture risk, to prevent and treat osteoporosis and to manage osteoporotic fractures in SCI/D.Study Design: Scoping review.Settings/Participants: Human adult subjects with a SCI/D.Outcome measures: Strategies to identify persons with SCI/D at risk for osteoporotic fractures, nonpharmacological and pharmacological therapies for osteoporosis and management of appendicular fractures.Results: 226 articles were included in the scoping review. Risk of osteoporotic fractures in SCI is predicted by a combination of DXA-defined low BMD plus clinical and demographic characteristics. Screening for secondary causes of osteoporosis, in particular hyperparathyroidism, hyperthyroidism, vitamin D insufficiency and hypogonadism, should be considered. Current antiresorptive therapies for treatment of osteoporosis have limited efficacy. Use of surgery to treat fractures has increased and outcomes are good and comparable to conservative treatment in most cases. A common adverse event following fracture was delayed healing.Conclusions: Most of the research in this area is limited by small sample sizes, weak study designs, and significant variation in populations studied. Future research needs to address cohort definition and study design issues.
Collapse
Affiliation(s)
- Nour Zleik
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Frances Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Robert L. Harmon
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
| | - Brian Le
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Wanda D. Jirau-Rosaly
- Department of Medicine, Division of Geriatrics, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - B. Catharine Craven
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Mattie Raiford
- School of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jennifer N. Hill
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Bella Etingen
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
| | - Marylou Guihan
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
| | - Michael H. Heggeness
- Department of Orthopaedic Surgery, University of Kansas School of Medicine, Wichita, Kansas, USA
| | - Cara Ray
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Laura Carbone
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
47
|
Osteoporosis in Veterans with Spinal Cord Injury: an Overview of Pathophysiology, Diagnosis, and Treatments. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-019-09265-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Darrow D, Balser D, Netoff TI, Krassioukov A, Phillips A, Parr A, Samadani U. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury. J Neurotrauma 2019; 36:2325-2336. [PMID: 30667299 PMCID: PMC6648195 DOI: 10.1089/neu.2018.6006] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidural Spinal Cord Stimulation (eSCS) in combination with extensive rehabilitation has been reported to restore volitional movement in a select group of subjects after motor-complete spinal cord injury (SCI). Numerous questions about the generalizability of these findings to patients with longer term SCI have arisen, especially regarding the possibility of restoring autonomic function. To better understand the effect of eSCS on volitional movement and autonomic function, two female participants five and 10 years after injury at ages 48 and 52, respectively, with minimal spinal cord preservation on magnetic resonance imaging were implanted with an eSCS system at the vertebral T12 level. We demonstrated that eSCS can restore volitional movement immediately in two female participants in their fifth and sixth decade of life with motor and sensory-complete SCI, five and 10 years after sustaining severe radiographic injuries, and without prescribed or significant pre-habilitation. Both patients experienced significant improvements in surface electromyography power during a volitional control task with eSCS on. Cardiovascular function was also restored with eSCS in one participant with cardiovascular dysautonomia using specific eSCS settings during tilt challenge while not affecting function in a participant with normal cardiovascular function. Orgasm was achieved for the first time since injury in one participant with and immediately after eSCS. Bowel-bladder synergy improved in both participants while restoring volitional urination in one with eSCS. While numerous questions remain, the ability to restore some supraspinal control over motor function below the level of injury, cardiovascular function, sexual function, and bowel and bladder function should promote intense efforts to investigate and develop optimization strategies to maximize recovery in all participants with chronic SCI.
Collapse
Affiliation(s)
- David Darrow
- 1Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - David Balser
- 2Department of Surgery, Division of Neurosurgery, Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - Theoden I Netoff
- 3Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Andrei Krassioukov
- 4International Collaboration on Repair Discoveries; Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Phillips
- 5Departments of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ann Parr
- 1Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Uzma Samadani
- 6Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota
| |
Collapse
|
49
|
Dionyssiotis Y. Is prophylaxis for osteoporosis indicated after acute spinal cord injury? Spinal Cord Ser Cases 2019; 5:24. [PMID: 31240120 DOI: 10.1038/s41394-019-0167-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023] Open
Abstract
Spinal cord injury (SCI)-related osteoporosis is common complication in people with tetraplegia or paraplegia. Studies have shown that sublesional regions are severely demineralized. Loss of bone and sequential fractures are major problems in people with SCI that lead to further immobilization and decreasing quality of life. Despite extensive research mechanisms of this bone impairment are inadequately understood. This article discusses basics of bone metabolism physiopathology along with pharmaceutical prevention and treatment approaches to manage acute SCI-related bone loss.
Collapse
Affiliation(s)
- Yannis Dionyssiotis
- Physical Medicine and Rehabilitation Clinic, General University Hospital of Ioannina, Ioannina, Greece.
| |
Collapse
|
50
|
Prophylactic treatment of osteoporosis after SCI: promising research, but not yet indicated. Spinal Cord Ser Cases 2019; 5:25. [PMID: 31666986 DOI: 10.1038/s41394-019-0166-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
In persons with spinal cord injury (SCI), osteoporosis and associated fragility fractures are a prevalent phenomenon with clinically meaningful morbidity and mortality. Prevention of osteoporosis utilizing both physical modalities and pharmacological therapies is an area of high-clinical importance. In our perspective, the current body of research cannot provide clear guidance on prophylactic interventions to prevent osteoporosis specifically to stratify SCI subjects to their risk for fragility fractures. Without this critical research, clinicians cannot weigh the risk versus benefits of interventions, such as bisphosphonates, which is not a benign treatment. Other treatments such as physical modalities provide little risk and have other therapeutic benefit. This perspective is an argument that the current research does not indicate prophylactic pharmacological intervention to prevent osteoporosis in the SCI population.
Collapse
|