1
|
Jahromi S, Matarrese MA, Fabbri L, Tamilia E, Perry MS, Madsen JR, Bolton J, Stone SS, Pearl PL, Papadelis C. Overlap of spike and ripple propagation onset predicts surgical outcome in epilepsy. Ann Clin Transl Neurol 2024; 11:2530-2547. [PMID: 39374135 PMCID: PMC11514932 DOI: 10.1002/acn3.52156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE Interictal biomarkers are critical for identifying the epileptogenic focus. However, spikes and ripples lack specificity while fast ripples lack sensitivity. These biomarkers propagate from more epileptogenic onset to areas of spread. The pathophysiological mechanism of these propagations is elusive. Here, we examine zones where spikes and high frequency oscillations co-occur (SHFO), the spatiotemporal propagations of spikes, ripples, and fast ripples, and evaluate the spike-ripple onset overlap (SRO) as an epilepsy biomarker. METHODS We retrospectively analyzed intracranial EEG data from 41 patients with drug-resistant epilepsy. We mapped propagations of spikes, ripples, and fast ripples, and identified their onset and spread zones, as well as SHFO and SRO. We then estimated the SRO prognostic value in predicting surgical outcome and compared it to onset and spread zones of spike, ripple, and fast ripple propagations, and SHFO. RESULTS We detected spikes and ripples in all patients and fast ripples in 12 patients (29%). We observed spike and ripple propagations in 40 (98%) patients. Spike and ripple onsets overlapped in 35 (85%) patients. In good outcome patients, SRO showed higher specificity and precision (p < 0.05) in predicting resection compared to onset and zones of spikes, ripples, and SHFO. Only SRO resection predicted outcome (p = 0.01) with positive and negative predictive values of 82% and 57%, respectively. INTERPRETATION SRO is a specific and precise biomarker of the epileptogenic zone whose removal predicts outcome. SRO is present in most patients with drug-resistant epilepsy. Such a biomarker may reduce prolonged intracranial monitoring and improve outcome.
Collapse
Affiliation(s)
- Saeed Jahromi
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
| | - Margherita A.G. Matarrese
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
- Research Unit of Intelligent Health Technology for Health and Wellbeing, Department of EngineeringUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Lorenzo Fabbri
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
| | - Eleonora Tamilia
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - M. Scott Perry
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
| | - Joseph R. Madsen
- Division of Epilepsy Surgery, Department of NeurosurgeryBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Scellig S.D. Stone
- Division of Epilepsy Surgery, Department of NeurosurgeryBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Christos Papadelis
- Neuroscience Research CenterJane and John Justin Institute for Mind Health, Cook Children's Health Care SystemFort WorthTexasUSA
- Department of BioengineeringThe University of Texas at ArlingtonArlingtonTexasUSA
- Burnett School of MedicineTexas Christian UniversityFort WorthTexasUSA
| |
Collapse
|
2
|
Okabe J, Sato Y. Effectiveness of perampanel for focal seizures determined by interictal gamma oscillation regularity analysis. Epilepsia Open 2024; 9:1968-1971. [PMID: 39165185 PMCID: PMC11450611 DOI: 10.1002/epi4.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Although perampanel (PER) has received approval as an antiseizure medication, reports quantifying its antiseizure effects using electroencephalography (EEG) remain scarce. In a previous study, we demonstrated that the interictal high gamma oscillation regularity (GOR) on scalp EEG is an excellent marker of epileptogenicity. Herein, we investigated whether the antiseizure effect of PER could be quantified through interictal GOR analysis of scalp EEG data. To investigate this, we examined the interictal GOR from 20 s of scalp EEG data before and after PER administration collected from five patients with epilepsy with focal seizures. Prior to PER administration, each patient presented with localized areas with high GOR consistent with brain lesions or seizure semiology. In all patients, the seizures improved following PER administration, and the localized high GOR, which is considered an epileptogenic focus, disappeared. These results indicate that interictal GOR analysis may be a useful tool for the quantitative assessments of the antiseizure effects of PER in focal epilepsy. PLAIN LANGUAGE SUMMARY: This study explored whether perampanel (PER)'s antiseizure effects can be quantified using interictal high gamma oscillation regularity (GOR) analysis from scalp EEG data. Analyzing 20-second EEG segments before and after PER administration in five patients with focal epilepsy, we found that high GOR areas, indicative of epileptogenic foci, disappeared following PER administration. The results suggest that interictal GOR analysis could effectively quantify the antiseizure effects of PER.
Collapse
Affiliation(s)
- Junya Okabe
- Department of NeurosurgeryShowa University School of MedicineTokyoJapan
| | - Yosuke Sato
- Department of NeurosurgeryShowa University School of MedicineTokyoJapan
- Brain Function Analysis and Digital Medicine Research InstituteShowa UniversityTokyoJapan
| |
Collapse
|
3
|
Giansante G, Mazzoleni S, Zippo AG, Ponzoni L, Ghilardi A, Maiellano G, Lewerissa E, van Hugte E, Nadif Kasri N, Francolini M, Sala M, Murru L, Bassani S, Passafaro M. Neuronal network activity and connectivity are impaired in a conditional knockout mouse model with PCDH19 mosaic expression. Mol Psychiatry 2024; 29:1710-1725. [PMID: 36997609 PMCID: PMC11371655 DOI: 10.1038/s41380-023-02022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.
Collapse
Affiliation(s)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Antonio G Zippo
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Luisa Ponzoni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
| | - Anna Ghilardi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Greta Maiellano
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Elly Lewerissa
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Eline van Hugte
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | | | - Luca Murru
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| |
Collapse
|
4
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Javadzadeh Y, Santos A, Aquilino MS, Mylvaganam S, Urban K, Carlen PL. Cannabidiol Exerts Anticonvulsant Effects Alone and in Combination with Δ 9-THC through the 5-HT1A Receptor in the Neocortex of Mice. Cells 2024; 13:466. [PMID: 38534310 DOI: 10.3390/cells13060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study investigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9 Tetrahydrocannabinol (Δ9-THC), as well as (iii) the serotonin (5-HT)1A receptor's role in CBD's mechanism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM CBD alone and combined with Δ9-THC was evaluated. To examine CBD's mechanism of action, slices were pre-treated with a 5-HT1A receptor antagonist before CBD's effect was evaluated. An amount of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However, 10 µM CBD combined with low-dose Δ9-THC (20:3 ratio) displayed significantly greater anticonvulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A receptors before CBD application significantly abolished CBD's effects. Thus, our results demonstrate the efficacy of low-dose CBD and Δ9-THC combined and that CBD exerts its effects, at least in part, through 5-HT1A receptors. These results could address drug-resistance while providing insight into CBD's mechanism of action, laying the groundwork for further testing of cannabinoids as anticonvulsants.
Collapse
Affiliation(s)
- Yasaman Javadzadeh
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Alexandra Santos
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
| | - Mark S Aquilino
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Shanthini Mylvaganam
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
| | | | - Peter L Carlen
- Krembil Research Institute, University Health Network, Toronto, ON M5S 0T8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Medicine (Neurology), University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
6
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
7
|
Zhang L, Ma Z, Yu Y, Li B, Wu S, Liu Y, Baier G. Examining the low-voltage fast seizure-onset and its response to optogenetic stimulation in a biophysical network model of the hippocampus. Cogn Neurodyn 2024; 18:265-282. [PMID: 38406204 PMCID: PMC10881931 DOI: 10.1007/s11571-023-09935-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Low-voltage fast (LVF) seizure-onset is one of the two frequently observed temporal lobe seizure-onset patterns. Depth electroencephalogram profile analysis illustrated that the peak amplitude of LVF onset was deep temporal areas, e.g., hippocampus. However, the specific dynamic transition mechanisms between normal hippocampal rhythmic activity and LVF seizure-onset remain unclear. Recently, the optogenetic approach to gain control over epileptic hyper-excitability both in vitro and in vivo has become a novel noninvasive modulation strategy. Here, we combined biophysical modeling to study LVF dynamics following changes in crucial physiological parameters, and investigated the potential optogenetic intervention mechanism for both excitatory and inhibitory control. In an Ammon's horn 3 (CA3) biophysical model with light-sensitive protein channelrhodopsin 2 (ChR2), we found that the cooperative effects of excessive extracellular potassium concentration of parvalbumin-positive (PV+) inhibitory interneurons and synaptic links could induce abundant types of discharges of the hippocampus, and lead to transitions from gamma oscillations to LVF seizure-onset. Simulations of optogenetic stimulation revealed that the LVF seizure-onset and morbid fast spiking could not be eliminated by targeting PV+ neurons, whereas the epileptic network was more sensitive to the excitatory control of principal neurons with strong optogenetic currents. We illustrate that in the epileptic hippocampal network, the trajectories of the normal and the seizure state are in close vicinity and optogenetic perturbations therefore may result in transitions. The network model system developed in this study represents a scientific instrument to disclose the underlying principles of LVF, to characterize the effects of optogenetic neuromodulation, and to guide future treatment for specific types of seizures.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Zhiyuan Ma
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Ying Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191 China
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China
| | - Gerold Baier
- Cell and Developmental Biology, University College London, London, WC1E 6BT UK
| |
Collapse
|
8
|
Hill B, Peate I. Altered pathophysiology in common neurological conditions. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2023; 32:1032-1038. [PMID: 38006598 DOI: 10.12968/bjon.2023.32.21.1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
This article provides an overview of the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's, multiple sclerosis, epilepsy, stroke and migraine. For each condition, the article highlights key changes that occur in the brain and how these changes contribute to the development and progression of the condition.
Collapse
Affiliation(s)
- Barry Hill
- Associate Professor of Nursing and Critical Care, Northumbria University
| | - Ian Peate
- Editor in Chief, British Journal of Nursing
| |
Collapse
|
9
|
Aracava Y, Albuquerque EX, Pereira EFR. (R,S)-trihexyphenidyl, acting via a muscarinic receptor-independent mechanism, inhibits hippocampal glutamatergic and GABAergic synaptic transmissions: Potential relevance for treatment of organophosphorus intoxication. Neuropharmacology 2023; 239:109684. [PMID: 37549771 PMCID: PMC10590273 DOI: 10.1016/j.neuropharm.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Preclinical studies have reported that, compared to the muscarinic receptor (mAChR) antagonist atropine, (R,S)-trihexyphenidyl (THP) more effectively counters the cholinergic crisis, seizures, and neuropathology triggered by organophosphorus (OP)-induced acetylcholinesterase (AChE) inhibition. The greater effectiveness of THP was attributed to its ability to block mAChRs and N-methyl-d-aspartate-type glutamatergic receptors (NMDARs) in the brain. However, THP also inhibits α7 nicotinic receptors (nAChRs). The present study examined whether THP-induced inhibition of mAChRs, α7 nAChRs, and NMDARs is required to suppress glutamatergic synaptic transmission, whose overstimulation sustains OP-induced seizures. In primary hippocampal cultures, THP (1-30 μM) suppressed the frequency of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) recorded from neurons in nominally Mg2+-free solution. A single sigmoidal function adequately fit the overlapping concentration-response relationships for THP-induced suppression of IPSC and EPSC frequencies yielding an IC50 of 6.3 ± 1.3 μM. Atropine (1 μM), the NMDAR antagonist d,l-2-amino-5-phosphonopentanoic acid (D,L-AP5, 50 μM), and the α7 nAChR antagonist methyllycaconitine (MLA, 10 nM) did not prevent THP-induced inhibition of synaptic transmission. THP (10 μM) did not affect the probability of transmitter release because it had no effect on the frequency of miniature IPSCs and EPSCs recorded in the presence of tetrodotoxin. Additionally, THP had no effect on the amplitudes and decay-time constants of miniature IPSCs and EPSCs; therefore, it did not affect the activity of postsynaptic GABAA and glutamate receptors. This study provides the first demonstration that THP can suppress action potential-dependent synaptic transmission via a mechanism independent of NMDAR, mAChR, and α7 nAChR inhibition.
Collapse
Affiliation(s)
- Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Pracucci E, Graham RT, Alberio L, Nardi G, Cozzolino O, Pillai V, Pasquini G, Saieva L, Walsh D, Landi S, Zhang J, Trevelyan AJ, Ratto GM. Daily rhythm in cortical chloride homeostasis underpins functional changes in visual cortex excitability. Nat Commun 2023; 14:7108. [PMID: 37925453 PMCID: PMC10625537 DOI: 10.1038/s41467-023-42711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Cortical activity patterns are strongly modulated by fast synaptic inhibition mediated through ionotropic, chloride-conducting receptors. Consequently, chloride homeostasis is ideally placed to regulate activity. We therefore investigated the stability of baseline [Cl-]i in adult mouse neocortex, using in vivo two-photon imaging. We found a two-fold increase in baseline [Cl-]i in layer 2/3 pyramidal neurons, from day to night, with marked effects upon both physiological cortical processing and seizure susceptibility. Importantly, the night-time activity can be converted to the day-time pattern by local inhibition of NKCC1, while inhibition of KCC2 converts day-time [Cl-]i towards night-time levels. Changes in the surface expression and phosphorylation of the cation-chloride cotransporters, NKCC1 and KCC2, matched these pharmacological effects. When we extended the dark period by 4 h, mice remained active, but [Cl-]i was modulated as for animals in normal light cycles. Our data thus demonstrate a daily [Cl-]i modulation with complex effects on cortical excitability.
Collapse
Affiliation(s)
- Enrico Pracucci
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Robert T Graham
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Alberio
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gabriele Nardi
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Olga Cozzolino
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Giacomo Pasquini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Luciano Saieva
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Darren Walsh
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Silvia Landi
- Institute of Neuroscience CNR, Pisa, Italy
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Institute of Health, University of Exeter, Hatherly Laboratories, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology. Research Center of Chemical Kinomics, Shangai. Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Gian-Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127, Pisa, Italy.
- Institute of Neuroscience CNR, Pisa, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
11
|
Whitebirch AC, Santoro B, Barnett A, Lisgaras CP, Scharfman HE, Siegelbaum SA. Reduced Cholecystokinin-Expressing Interneuron Input Contributes to Disinhibition of the Hippocampal CA2 Region in a Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2023; 43:6930-6949. [PMID: 37643861 PMCID: PMC10573827 DOI: 10.1523/jneurosci.2091-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
A significant proportion of temporal lobe epilepsy (TLE) patients experience drug-resistant seizures associated with mesial temporal sclerosis, in which there is extensive cell loss in the hippocampal CA1 and CA3 subfields, with a relative sparing of dentate gyrus granule cells and CA2 pyramidal neurons (PNs). A role for CA2 in seizure generation was suggested based on findings of a reduction in CA2 synaptic inhibition (Williamson and Spencer, 1994) and the presence of interictal-like spike activity in CA2 in resected hippocampal tissue from TLE patients (Wittner et al., 2009). We recently found that in the pilocarpine-induced status epilepticus (PILO-SE) mouse model of TLE there was an increase in CA2 intrinsic excitability associated with a loss of CA2 synaptic inhibition. Furthermore, chemogenetic silencing of CA2 significantly reduced seizure frequency, consistent with a role of CA2 in promoting seizure generation and/or propagation (Whitebirch et al., 2022). In the present study, we explored the cellular basis of this inhibitory deficit using immunohistochemical and electrophysiological approaches in PILO-SE male and female mice. We report a widespread decrease in the density of pro-cholecystokinin-immunopositive (CCK+) interneurons and a functional impairment of CCK+ interneuron-mediated inhibition of CA2 PNs. We also found a disruption in the perisomatic perineuronal net in the CA2 stratum pyramidale. Such pathologic alterations may contribute to an enhanced excitation of CA2 PNs and CA2-dependent seizure activity in the PILO-SE mouse model.SIGNIFICANCE STATEMENT Impaired synaptic inhibition in hippocampal circuits has been identified as a key feature that contributes to the emergence and propagation of seizure activity in human patients and animal models of temporal lobe epilepsy (TLE). Among the hippocampal subfields, the CA2 region is particularly resilient to seizure-associated neurodegeneration and has been suggested to play a key role in seizure activity in TLE. Here we report that perisomatic inhibition of CA2 pyramidal neurons mediated by cholecystokinin-expressing interneurons is selectively reduced in acute hippocampal slices from epileptic mice. Parvalbumin-expressing interneurons, in contrast, appear relatively conserved in epileptic mice. These findings advance our understanding of the cellular mechanisms underlying inhibitory disruption in hippocampal circuits in a mouse model of spontaneous recurring seizures.
Collapse
Affiliation(s)
- Alexander C Whitebirch
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| | - Christos Panagiotis Lisgaras
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Langone Health, New York, New York 10016
- Department of Psychiatry, New York University Langone Health, New York, New York 10016
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Steven A Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University Irving Medical Center, New York, New York 10027
| |
Collapse
|
12
|
Morris G, Avoli M, Bernard C, Connor K, de Curtis M, Dulla CG, Jefferys JGR, Psarropoulou C, Staley KJ, Cunningham MO. Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2571-2585. [PMID: 37642296 DOI: 10.1111/epi.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations.
Collapse
Affiliation(s)
- Gareth Morris
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| | - Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John G R Jefferys
- Department of Physiology, 2nd Medical School, Motol, Charles University, Prague, Czech Republic
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Doubovikov ED, Serdyukova NA, Greenberg SB, Gascoigne DA, Minhaj MM, Aksenov DP. Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression. Cells 2023; 12:2229. [PMID: 37759452 PMCID: PMC10527339 DOI: 10.3390/cells12182229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Electric fields are now considered a major mechanism of epileptiform activity. However, it is not clear if another electrophysiological phenomenon, burst suppression, utilizes the same mechanism for its bursting phase. Thus, the purpose of this study was to compare the role of ephaptic coupling-the recruitment of neighboring cells via electric fields-in generating bursts in epilepsy and burst suppression. We used local injections of the GABA-antagonist picrotoxin to elicit epileptic activity and a general anesthetic, sevoflurane, to elicit burst suppression in rabbits. Then, we applied an established computational model of pyramidal cells to simulate neuronal activity in a 3-dimensional grid, with an additional parameter to trigger a suppression phase based on extra-cellular calcium dynamics. We discovered that coupling via electric fields was sufficient to produce bursting in scenarios where inhibitory control of excitatory neurons was sufficiently low. Under anesthesia conditions, bursting occurs with lower neuronal recruitment in comparison to seizures. Our model predicts that due to the effect of electric fields, the magnitude of bursts during seizures should be roughly 2-3 times the magnitude of bursts that occur during burst suppression, which is consistent with our in vivo experimental results. The resulting difference in magnitude between bursts during anesthesia and epileptiform bursts reflects the strength of the electric field effect, which suggests that burst suppression and epilepsy share the same ephaptic coupling mechanism.
Collapse
Affiliation(s)
- Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Steven B. Greenberg
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Mohammed M. Minhaj
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Suzuki I, Matsuda N, Han X, Noji S, Shibata M, Nagafuku N, Ishibashi Y. Large-Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS-MEA Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207732. [PMID: 37088859 PMCID: PMC10369302 DOI: 10.1002/advs.202207732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The electrophysiological technology having a high spatiotemporal resolution at the single-cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal-oxide semiconductor (CMOS)-microelectrode array (MEA) is used that uses 236 880 electrodes each with an electrode size of 11.22 × 11.22 µm and 236 880 covering a wide area of 5.5 × 5.9 mm in presenting a detailed and single-cell-level neural activity analysis platform for brain slices, human iPS cell-derived cortical networks, peripheral neurons, and human brain organoids. Propagation pattern characteristics between brain regions changes the synaptic propagation into compounds based on single-cell time-series patterns, classification based on single DRG neuron firing patterns and compound responses, axonal conduction characteristics and changes to anticancer drugs, and network activities and transition to compounds in brain organoids are extracted. This detailed analysis of neural activity at the single-cell level using the CMOS-MEA provides a new understanding of the basic mechanisms of brain circuits in vitro and ex vivo, on human neurological diseases for drug discovery, and compound toxicity assessment.
Collapse
Affiliation(s)
- Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Xiaobo Han
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Shuhei Noji
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Mikako Shibata
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| |
Collapse
|
15
|
Khodadadi M, Zare M, Ghasemi Z, Karimzadeh F, Golab F, Amini N, Mehrabi S, Joghataei MT, Ahmadirad N. High and Low-Frequency Stimulation Effect on Epileptiform Activity in Brain Slices. Med J Islam Repub Iran 2023; 37:40. [PMID: 37284692 PMCID: PMC10240548 DOI: 10.47176/mjiri.37.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 06/08/2023] Open
Abstract
Background Neurostimulation is one of the new therapeutic approaches in patients with drug-resistant epilepsy, and despite its high efficiency, its mechanism of action is still unclear. On the one hand, electrical stimulation in the human brain is immoral; on the other hand, the creation of the epilepsy model in laboratory animals affects the entire brain network. As a result, one of the ways to achieve the neurostimulation mechanism is to use epileptiform activity models In vitro. In vitro models, by accessing the local network from the whole brain, we can understand the mechanisms of action of neurostimulation. Methods A literature search using scientific databases including PubMed, Google Scholar, and Scopus, using "Neurostimulation" and "epileptiform activity" combined with "high-frequency stimulation", " low-frequency stimulation ", and "brain slices" as keywords were conducted, related concepts to the topic gathered and are used in this paper. Results Electrical stimulation causes neuronal depolarization and the release of GABAA, which inhibits neuronal firing. Also, electrical stimulation inhibits the nervous tissue downstream of the stimulation site by preventing the passage of nervous activity from the upstream to the downstream of the axon. Conclusion Neurostimulation techniques consisting of LFS and HFS have a potential role in treating epileptiform activity, with some studies having positive results. Further investigations with larger sample sizes and standardized outcome measures can be conducted to validate the results of previous studies.
Collapse
Affiliation(s)
- Marzieh Khodadadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Meysam Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares
University, Tehran, Iran
| | - Zahra Ghasemi
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | - Fariba Karimzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| | - Soraya Mehrabi
- Department of Physiology, Faculty of Medicine, Iran University of Medical
Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
- Department of Anatomy, Faculty of Medicine, Iran University of Medical
Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences,
Tehran, Iran
| |
Collapse
|
16
|
Magloire V, Savtchenko LP, Jensen TP, Sylantyev S, Kopach O, Cole N, Tyurikova O, Kullmann DM, Walker MC, Marvin JS, Looger LL, Hasseman JP, Kolb I, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Curr Biol 2023; 33:1249-1264.e7. [PMID: 36921605 PMCID: PMC10615848 DOI: 10.1016/j.cub.2023.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
Collapse
Affiliation(s)
- Vincent Magloire
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Nicholas Cole
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ivan Pavlov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
17
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
18
|
Scalmani P, Paterra R, Mantegazza M, Avoli M, de Curtis M. Involvement of GABAergic Interneuron Subtypes in 4-Aminopyridine-Induced Seizure-Like Events in Mouse Entorhinal Cortex in Vitro. J Neurosci 2023; 43:1987-2001. [PMID: 36810229 PMCID: PMC10027059 DOI: 10.1523/jneurosci.1190-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Single-unit recordings performed in temporal lobe epilepsy patients and in models of temporal lobe seizures have shown that interneurons are active at focal seizure onset. We performed simultaneous patch-clamp and field potential recordings in entorhinal cortex slices of GAD65 and GAD67 C57BL/6J male mice that express green fluorescent protein in GABAergic neurons to analyze the activity of specific interneuron (IN) subpopulations during acute seizure-like events (SLEs) induced by 4-aminopyridine (4-AP; 100 μm). IN subtypes were identified as parvalbuminergic (INPV, n = 17), cholecystokinergic (INCCK), n = 13], and somatostatinergic (INSOM, n = 15), according to neurophysiological features and single-cell digital PCR. INPV and INCCK discharged at the start of 4-AP-induced SLEs characterized by either low-voltage fast or hyper-synchronous onset pattern. In both SLE onset types, INSOM fired earliest before SLEs, followed by INPV and INCCK discharges. Pyramidal neurons became active with variable delays after SLE onset. Depolarizing block was observed in ∼50% of cells in each INs subgroup, and it was longer in IN (∼4 s) than in pyramidal neurons (<1 s). As SLE evolved, all IN subtypes generated action potential bursts synchronous with the field potential events leading to SLE termination. High-frequency firing throughout the SLE occurred in one-third of INPV and INSOM We conclude that entorhinal cortex INs are very active at the onset and during the progression of SLEs induced by 4-AP. These results support earlier in vivo and in vivo evidence and suggest that INs have a preferential role in focal seizure initiation and development.SIGNIFICANCE STATEMENT Focal seizures are believed to result from enhanced excitation. Nevertheless, we and others demonstrated that cortical GABAergic networks may initiate focal seizures. Here, we analyzed for the first time the role of different IN subtypes in seizures generated by 4-aminopyridine in the mouse entorhinal cortex slices. We found that in this in vitro focal seizure model, all IN types contribute to seizure initiation and that INs precede firing of principal cells. This evidence is in agreement with the active role of GABAergic networks in seizure generation.
Collapse
Affiliation(s)
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Massimo Mantegazza
- Université Côte d'Azur, 06560 Valbonne-Sophia Antipolis, France
- Institute of Molecular and Cellular Pharmacology, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7275, Laboratoire d'Excellence/Canaux Ioniques d'Intérêt Thérapeutique, 06650 Valbonne-Sophia Antipolis, France
- Institut National de la Santé et de la Recherche Médicale, 06650 Valbonne-Sophia Antipolis, France
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Departments of Neurology and Neurosurgery and Physiology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
19
|
Wickham J, Ledri M, Andersson M, Kokaia M. Cell-specific switch for epileptiform activity: critical role of interneurons in the mouse subicular network. Cereb Cortex 2023; 33:6171-6183. [PMID: 36611229 PMCID: PMC10183737 DOI: 10.1093/cercor/bhac493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/09/2023] Open
Abstract
During epileptic seizures, neuronal network activity is hyper synchronized whereby GABAergic parvalbumin-interneurons may have a key role. Previous studies have mostly utilized 4-aminopyridine to induce epileptiform discharges in brain slices from healthy animals. However, it is not clear if the seizure-triggering ability of parvalbumin-interneurons also holds true without the use of external convulsive agents. Here, we investigate whether synchronized activation of parvalbumin-interneurons or principal cells can elicit epileptiform discharges in subiculum slices of epileptic mice. We found that selective synchronized activation of parvalbumin-interneurons or principal cells with optogenetics do not result in light-induced epileptiform discharges (LIEDs) neither in epileptic nor in normal brain slices. Adding 4-aminopyridine to slices, activation of parvalbumin-interneurons still failed to trigger LIEDs. In contrast, such activation of principal neurons readily generated LIEDs with features resembling afterdischarges. When GABAA receptor blocker was added to the perfusion medium, the LIEDs were abolished. These results demonstrate that in subiculum, selective synchronized activation of principal excitatory neurons can trigger epileptiform discharges by recruiting a large pool of downstream interneurons. This study also suggests region-specific role of principal neurons and interneurons in ictogenesis, opening towards differential targeting of specific brain areas for future treatment strategies tailored for individual patients with epilepsy.
Collapse
Affiliation(s)
- J Wickham
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| |
Collapse
|
20
|
Avoli M, Lévesque M. GABA B Receptors: are they Missing in Action in Focal Epilepsy Research? Curr Neuropharmacol 2022; 20:1704-1716. [PMID: 34429053 PMCID: PMC9881065 DOI: 10.2174/1570159x19666210823102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of; ,Department of Experimental Medicine, Sapienza University of Rome, 00185Rome, Italy,Address correspondence to this author at the Montreal Neurological Institute-Hospital, 3801 University Street, Montréal, Canada, H3A 2B4, QC; Tels: +1 514 998 6790; +39 333 483 1060; E-mail:
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of;
| |
Collapse
|
21
|
Sato Y, Tsuji Y, Yamazaki M, Fujii Y, Shirasawa A, Harada K, Mizutani T. Interictal High Gamma Oscillation Regularity as a Marker for Presurgical Epileptogenic Zone Localization. Oper Neurosurg (Hagerstown) 2022; 23:164-173. [PMID: 35486873 DOI: 10.1227/ons.0000000000000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/12/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND To ensure that epilepsy surgery is effective, accurate presurgical localization of the epileptogenic zone is essential. Our previous reports demonstrated that interictal high gamma oscillation (30-70 Hz) regularity (GOR) on intracranial electroencephalograms is related to epileptogenicity. OBJECTIVE To examine whether preoperative GOR analysis with interictal high-density electroencephalography (HD-EEG) improves the accuracy of epileptogenic focus localization and enhances postoperative seizure control. METHODS We calculated GOR from 20 seconds of HD-EEG data for 21 patients with refractory focal epilepsy (4 with nonlesional temporal lobe epilepsy) scheduled for epilepsy surgery. Low-resolution brain electromagnetic tomography was used to analyze the high GOR source. To validate our findings, we made comparisons with other conventional localization methods and postoperative seizure outcomes. RESULTS In all patients, the areas of interictal high GOR were identified and resected. All patients were seizure-free after the operation. The concordance between the results of interictal high GOR on HD-EEG and those of source estimation of interictal discharge was fully overlapping in 10 cases, partially overlapping in 8 cases, and discordant in 3 cases. The concordance between the results of interictal high GOR on HD-EEG and those of interictal 123 I-iomazenil single-photon emission computed tomography was fully overlapping in 8 cases, partially overlapping in 11 cases, and discordant in 2 cases. In 4 patients with nonlesional temporal lobe epilepsy, the interictal high GOR on HD-EEG was useful in confirming the epileptogenic zone. CONCLUSION The interictal high GOR on HD-EEG is an excellent marker for presurgical epileptogenic zone localization.
Collapse
Affiliation(s)
- Yosuke Sato
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| | - Yoshihito Tsuji
- Department of Neurosurgery, Matsubara Tokushukai Hospital, Osaka, Japan
| | | | | | | | | | - Tohru Mizutani
- Department of Neurosurgery, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Lamers D, Landi S, Mezzena R, Baroncelli L, Pillai V, Cruciani F, Migliarini S, Mazzoleni S, Pasqualetti M, Passafaro M, Bassani S, Ratto GM. Perturbation of Cortical Excitability in a Conditional Model of PCDH19 Disorder. Cells 2022; 11:cells11121939. [PMID: 35741068 PMCID: PMC9222106 DOI: 10.3390/cells11121939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9–25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.
Collapse
Affiliation(s)
- Didi Lamers
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Silvia Landi
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Roberta Mezzena
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Laura Baroncelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Federica Cruciani
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Sara Migliarini
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Massimo Pasqualetti
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Correspondence:
| |
Collapse
|
23
|
Cole ER, Grogan DP, Laxpati NG, Fernandez AM, Skelton HM, Isbaine F, Gutekunst CA, Gross RE. Evidence supporting deep brain stimulation of the medial septum in the treatment of temporal lobe epilepsy. Epilepsia 2022; 63:2192-2213. [PMID: 35698897 DOI: 10.1111/epi.17326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/28/2022]
Abstract
Electrical brain stimulation has become an essential treatment option for more than one third of epilepsy patients who are resistant to pharmacological therapy and are not candidates for surgical resection. However, currently approved stimulation paradigms achieve only moderate success, on average providing approximately 75% reduction in seizure frequency and extended periods of seizure freedom in nearly 20% of patients. Outcomes from electrical stimulation may be improved through the identification of novel anatomical targets, particularly those with significant anatomical and functional connectivity to the epileptogenic zone. Multiple studies have investigated the medial septal nucleus (i.e., medial septum) as such a target for the treatment of mesial temporal lobe epilepsy. The medial septum is a small midline nucleus that provides a critical functional role in modulating the hippocampal theta rhythm, a 4-7-Hz electrophysiological oscillation mechanistically associated with memory and higher order cognition in both rodents and humans. Elevated theta oscillations are thought to represent a seizure-resistant network activity state, suggesting that electrical neuromodulation of the medial septum and restoration of theta-rhythmic physiology may not only reduce seizure frequency, but also restore cognitive comorbidities associated with mesial temporal lobe epilepsy. Here, we review the anatomical and physiological function of the septohippocampal network, evidence for seizure-resistant effects of the theta rhythm, and the results of stimulation experiments across both rodent and human studies, to argue that deep brain stimulation of the medial septum holds potential to provide an effective neuromodulation treatment for mesial temporal lobe epilepsy. We conclude by discussing the considerations necessary for further evaluating this treatment paradigm with a clinical trial.
Collapse
Affiliation(s)
- Eric R Cole
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Nealen G Laxpati
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alejandra M Fernandez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry M Skelton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Faical Isbaine
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Lado WE, Xu X, Hablitz JJ. Modulation of Epileptiform Activity by Three Subgroups of GABAergic Interneurons in Mouse Somatosensory Cortex. Epilepsy Res 2022; 183:106937. [DOI: 10.1016/j.eplepsyres.2022.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
|
25
|
Helling RM, Shmuely S, Bauer PR, Tolner EA, Visser GH, Thijs RD. Tracking cortical excitability dynamics with transcranial magnetic stimulation in focal epilepsy. Ann Clin Transl Neurol 2022; 9:540-551. [PMID: 35297209 PMCID: PMC8994988 DOI: 10.1002/acn3.51535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The lack of reliable biomarkers constrain epilepsy management. We assessed the potential of repeated transcranial magnetic stimulation with electromyography (TMS-EMG) to track dynamical changes in cortical excitability on a within-subject basis. METHODS We recruited people with refractory focal epilepsy who underwent video-EEG monitoring and drug tapering as part of the presurgical evaluation. We performed daily TMS-EMG measurements with additional postictal assessments 1-6 h following seizures to assess resting motor threshold (rMT), and motor evoked potentials (MEPs) with single- and paired-pulse protocols. Anti-seizure medication (ASM) regimens were recorded for the day before each measurement and expressed in proportion to the dosage before tapering. Additional measurements were performed in healthy controls to evaluate day-to-day rMT variability. RESULTS We performed 77 (58 baseline, 19 postictal) measurements in 16 people with focal epilepsy and 35 in seven healthy controls. Controls showed minimal day-to-day rMT variation. Withdrawal of ASMs was associated with a lower rMT without affecting MEPs of single- and paired-pulse TMS-EMG paradigms. Postictal measurements following focal to bilateral tonic-clonic seizures demonstrated unaltered rMT and increased short interval intracortical inhibition, while measurements following focal seizures with impaired awareness showed decreased rMT's and reduced short and long interval intracortical inhibition. CONCLUSION Serial within-subject rMT measurements yielded reproducible, stable results in healthy controls. ASM tapering and seizures had distinct effects on TMS-EMG excitability indices in people with epilepsy. Drug tapering decreased rMT, indicating increased overall corticospinal excitability, whereas seizures affected intracortical inhibition with contrasting effects between seizure types.
Collapse
Affiliation(s)
- Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Sharon Shmuely
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Germany
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, UK.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
26
|
Frazzini V, Mathon B, Donneger F, Cousyn L, Hanin A, Nguyen-Michel VH, Adam C, Lambrecq V, Dupont S, Poncer JC, Bielle F, Navarro V. Epilepsy related to focal neuronal lipofuscinosis: extra-frontal localization, EEG signatures and GABA involvement. J Neurol 2022; 269:4102-4109. [DOI: 10.1007/s00415-022-11024-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
27
|
Chizhov AV, Amakhin DV, Smirnova EY, Zaitsev AV. Ictal wavefront propagation in slices and simulations with conductance-based refractory density model. PLoS Comput Biol 2022; 18:e1009782. [PMID: 35041661 PMCID: PMC8797236 DOI: 10.1371/journal.pcbi.1009782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/28/2022] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
The mechanisms determining ictal discharge (ID) propagation are still not clear. In the present study, we aimed to examine these mechanisms in animal and mathematical models of epileptiform activity. Using double-patch and extracellular potassium ion concentration recordings in rat hippocampal-cortical slices, we observed that IDs moved at a speed of about 1 mm/s or less. The mechanisms of such slow propagation have been studied with a mathematical, conductance-based refractory density (CBRD) model that describes the GABA- and glutamatergic neuronal populations’ interactions and ion dynamics in brain tissue. The modeling study reveals two main factors triggerring IDs: (i) increased interneuronal activity leading to chloride ion accumulation and a consequent depolarizing GABAergic effect and (ii) the elevation of extracellular potassium ion concentration. The local synaptic transmission followed by local potassium ion extrusion and GABA receptor-mediated chloride ion accumulation underlies the ID wavefront’s propagation. In contrast, potassium ion diffusion in the extracellular space is slower and does not affect ID’s speed. The short discharges, constituting the ID, propagate much faster than the ID front. The accumulation of sodium ions inside neurons due to their hyperactivity and glutamatergic currents boosts the Na+/K+ pump, which terminates the ID. Knowledge of the mechanism of ID generation and propagation contributes to the development of new treatments against epilepsy. During an epileptic seizure, neuronal excitation spreads across the brain tissue and is accompanied by significant changes in ionic concentrations. Ictal discharge front spreads at low speeds, less than 1 mm/s. Mechanisms underlying this phenomenon are not yet well understood. We study these mechanisms using electrophysiological recordings in brain slices and computer simulations. Our detailed biophysical model describing neuronal populations’ interaction, spatial propagation, and ionic dynamics reproduces the generation and propagation of spontaneously repeating ictal discharges. The simulations are consistent with our recordings of the electrical activity and the extracellular potassium ion concentration. We distinguished between the two alternative mechanisms of the ictal wavefront propagation: (i) the diffusion of potassium ions released from excited neurons, which depolarizes distant neurons and thus supports excitation, and (ii) the axonal spread of excitation followed by the local extracellular potassium ion accumulation that supports the excitation. Our simulations provide evidence in favor of the latter mechanism. Our experiment-based modeling contributes to a mathematical description of brain tissue functioning and potentially contributes to developing new treatments against epilepsy.
Collapse
Affiliation(s)
- Anton V. Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
- * E-mail:
| | - Dmitry V. Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena Yu. Smirnova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
28
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
30
|
Longatti A, Ponzoni L, Moretto E, Giansante G, Lattuada N, Colombo MN, Francolini M, Sala M, Murru L, Passafaro M. Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice. Mol Neurobiol 2021; 58:6092-6110. [PMID: 34455539 PMCID: PMC8639580 DOI: 10.1007/s12035-021-02502-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/15/2021] [Indexed: 11/03/2022]
Abstract
Rho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.
Collapse
Affiliation(s)
- Anna Longatti
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | | | - Edoardo Moretto
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Giorgia Giansante
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Norma Lattuada
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maria Nicol Colombo
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| |
Collapse
|
31
|
Rhee JK, Iwamoto Y, Baker BJ. Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators. Front Neuroanat 2021; 15:741711. [PMID: 34795565 PMCID: PMC8592998 DOI: 10.3389/fnana.2021.741711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) expressed pan-neuronally were able to optically resolve bicuculline induced spontaneous oscillations in brain slices of the mouse motor cortex. Three GEVIs were used that differ in their timing of response to voltage transients as well as in their voltage ranges. The duration, number of cycles, and frequency of the recorded oscillations reflected the characteristics of each GEVI used. Multiple oscillations imaged in the same slice never originated at the same location, indicating the lack of a “hot spot” for induction of the voltage changes. Comparison of pan-neuronal, Ca2+/calmodulin-dependent protein kinase II α restricted, and parvalbumin restricted GEVI expression revealed distinct profiles for the excitatory and inhibitory cells in the spontaneous oscillations of the motor cortex. Resolving voltage fluctuations across space, time, and cell types with GEVIs represent a powerful approach to dissecting neuronal circuit activity.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Bradley J Baker
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
32
|
Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, Avoli M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev 2021; 130:274-291. [PMID: 34437936 DOI: 10.1016/j.neubiorev.2021.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, 41100 Modena, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada; Departments of Physiology, McGill University, Montreal, QC, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy.
| |
Collapse
|
33
|
Chvojka J, Kudlacek J, Chang WC, Novak O, Tomaska F, Otahal J, Jefferys JGR, Jiruska P. The role of interictal discharges in ictogenesis - A dynamical perspective. Epilepsy Behav 2021; 121:106591. [PMID: 31806490 DOI: 10.1016/j.yebeh.2019.106591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Interictal epileptiform discharge (IED) is a traditional hallmark of epileptic tissue that is generated by the synchronous activity of a population of neurons. Interictal epileptiform discharges represent a heterogeneous group of pathological activities that differ in shape, duration, spatiotemporal distribution, underlying cellular and network mechanisms, and their relationship to seizure genesis. The exact role of IEDs in epilepsy is still not well understood, and there remains a persistent dichotomy about the impact on IEDs on seizures. Proseizure, antiseizure, and no impact on ictogenesis have all been described in previous studies. In this article, we review the existing knowledge on the role of interictal discharges in seizure genesis, and we discuss how dynamical approaches to ictogenesis can explain the existing dichotomy about the multifaceted role of IEDs in ictogenesis. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Wei-Chih Chang
- Faculty of Veterinary Medicine and Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | - Ondrej Novak
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Tomaska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
34
|
Ahnaou A, Drinkenburg WHIM. Sleep, neuronal hyperexcitability, inflammation and neurodegeneration: Does early chronic short sleep trigger and is it the key to overcoming Alzheimer's disease? Neurosci Biobehav Rev 2021; 129:157-179. [PMID: 34214513 DOI: 10.1016/j.neubiorev.2021.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
Evidence links neuroinflammation to Alzheimer's disease (AD); however, its exact contribution to the onset and progression of the disease is poorly understood. Symptoms of AD can be seen as the tip of an iceberg, consisting of a neuropathological build-up in the brain of extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated aggregates of Tau (pTau), which are thought to stem from an imbalance between its production and clearance resulting in loss of synaptic health and dysfunctional cortical connectivity. The glymphatic drainage system, which is particularly active during sleep, plays a key role in the clearance of proteinopathies. Poor sleep can cause hyperexcitability and promote Aβ and tau pathology leading to systemic inflammation. The early neuronal hyperexcitability of γ-aminobutyric acid (GABA)-ergic inhibitory interneurons and impaired inhibitory control of cortical pyramidal neurons lie at the crossroads of excitatory/inhibitory imbalance and inflammation. We outline, with a prospective framework, a possible vicious spiral linking early chronic short sleep, neuronal hyperexcitability, inflammation and neurodegeneration. Understanding the early predictors of AD, through an integrative approach, may hold promise for reducing attrition in the late stages of neuroprotective drug development.
Collapse
Affiliation(s)
- A Ahnaou
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium.
| | - W H I M Drinkenburg
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium
| |
Collapse
|
35
|
Wu D, Zhang W, Lu H, Liu X, Sun W. Transitional pattern as a potential marker of epileptogenic zone in focal epilepsy - Clinical observations from intracerebral recordings. Epilepsy Res 2021; 174:106676. [PMID: 34051573 DOI: 10.1016/j.eplepsyres.2021.106676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the characteristics of transition from interictal to ictal phase in intracranial recordings and further to determine the potential marker of epileptogenic zone. METHODS Eighteen patients with drug-refractory epilepsy who underwent stereo-electroencephalography (SEEG) evaluation and subsequent resective surgery were included. All patients were seizure-free post-operatively. The recorded seizures were retrospectively reviewed and time episodes including 5 min before electrographic onset were selected for further analysis to verify the presence of a transitional pattern in the transitional phase, which was distinct from interictal background and ictal onset. Besides, the components of transitional patterns which characterized by different pathological waveforms were identified by visual analysis and time-frequency analysis. The prevalence of transitional patterns between resection and non-resection, lesion and non-lesion sites were compared. In addition, the association between transitional patterns and types of epilepsy was explored. RESULTS Six transitional patterns characterized by different combinations of multiple pathological waveforms by visual analysis combined with time-frequency analysis were identified: spike/spike-waves/polyspikes; spike superimposed by HFOs; spike superimposed by gamma oscillations; spike followed by suppression; spike superimposed by HFOs and followed by suppression; and spike superimposed by gamma oscillations and followed by suppression. A higher prevalence of transitional patterns in resection than non-resection (p < 0.001) and in lesion than non-lesion contacts (p < 0.001). The pattern characterized by spike superimposed by HFOs and followed by suppression was more prevalent in resection than non-resection sites (p = 0.004). Further, there was an association between the complexity of transitional patterns and the location of contacts. Patterns with higher degree of complexity were more likely to be inside the resection area (p = 0.035). Besides, we found the pattern with spike superimposed by HFOs was associated more with limbic epilepsy than neocortical epilepsy (p < 0.001), whereas another 3 patterns, spike superimposed by gamma oscillation, spike followed by suppression and spike combined with HFOs and suppression, were observed more frequently in neocortical epilepsy than limbic epilepsy (p = 0.018, 0.011 and < 0.001, respectively). CONCLUSION Transitional patterns from interictal to ictal state were characterized by different combinations of multiple pathological waveforms, which may be a potential marker of epileptogenic zone. Our findings support that the interaction of different neuronal oscillations or waveforms generated by different neuronal populations may be the potential mechanism of seizure generation.
Collapse
Affiliation(s)
- Dan Wu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Hongjuan Lu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xingzhou Liu
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
36
|
Pérez-Cervera A, Hlinka J. Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators. PLoS Comput Biol 2021; 17:e1008521. [PMID: 33780437 PMCID: PMC8032201 DOI: 10.1371/journal.pcbi.1008521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 02/22/2021] [Indexed: 01/24/2023] Open
Abstract
The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures. Despite its simplicity, the modelling of epileptic dynamics as a slow-fast transition between low and high activity states mediated by some slow feedback variable is a relatively novel albeit fruitful approach. This study is the first, to our knowledge, characterizing the response of such slow-fast models of epileptic brain to perturbations by computing its isochrons. Besides its numerical computation, we theoretically determine which factors shape the geometry of isochrons for planar slow-fast oscillators. As a consequence, we introduce a theoretical approach providing a clear understanding of the response of perturbations of slow-fast oscillators. Within the epilepsy context, this elucidates the origin of the contradictory role of interictal epileptiform discharges in the transition to seizure, manifested by both pro-convulsive and anti-convulsive effect depending on the amplitude, frequency and timing. More generally, this paper provides theoretical framework highlighting the role of the slow flow component on the response to perturbations in relaxation oscillators, pointing to the general phenomena in such slow-fast oscillators ubiquitous in biological systems.
Collapse
Affiliation(s)
- Alberto Pérez-Cervera
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- * E-mail: (AP); (JH)
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- * E-mail: (AP); (JH)
| |
Collapse
|
37
|
Two-photon calcium imaging of seizures in awake, head-fixed mice. Cell Calcium 2021; 96:102380. [PMID: 33676317 DOI: 10.1016/j.ceca.2021.102380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022]
Abstract
Epilepsy is a severe neurological disorder defined by spontaneous seizures. Current treatment options fail in a large proportion of patients, while questions as to the basic mechanisms of seizure initiation and propagation remain. Advances in imaging of seizures in experimental model systems could lead to a better understanding of mechanisms of seizures and epilepsy. Recent studies have used two-photon calcium imaging (2 P imaging) in awake, behaving mice in head-fixed preparations to image seizures in vivo at high speed and cellular-level resolution to identify key seizure-related cell classes. Here, we discuss such advances and present 2 P imaging data of excitatory neurons and defined subsets of cerebral cortex GABAergic inhibitory interneurons during naturalistic seizures in a mouse model of Dravet syndrome (Scn1a+/- mice) along with other behavioral measures. Results demonstrate differential recruitment of discrete interneuron subclasses, which could inform mechanisms of seizure generation and propagation in Dravet syndrome and other epilepsies.
Collapse
|
38
|
Lévesque M, Biagini G, Avoli M. Neurosteroids and Focal Epileptic Disorders. Int J Mol Sci 2020; 21:ijms21249391. [PMID: 33321734 PMCID: PMC7763947 DOI: 10.3390/ijms21249391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neurosteroids are a family of compounds that are synthesized in principal excitatory neurons and glial cells, and derive from the transformation of cholesterol into pregnenolone. The most studied neurosteroids—allopregnanolone and allotetrahydrodeoxycorticosterone (THDOC)—are known to modulate GABAA receptor-mediated transmission, thus playing a role in controlling neuronal network excitability. Given the role of GABAA signaling in epileptic disorders, neurosteroids have profound effects on seizure generation and play a role in the development of chronic epileptic conditions (i.e., epileptogenesis). We review here studies showing the effects induced by neurosteroids on epileptiform synchronization in in vitro brain slices, on epileptic activity in in vivo models, i.e., in animals that were made epileptic with chemoconvulsant treatment, and in epileptic patients. These studies reveal that neurosteroids can modulate ictogenesis and the occurrence of pathological network activity such as interictal spikes and high-frequency oscillations (80–500 Hz). Moreover, they can delay the onset of spontaneous seizures in animal models of mesial temporal lobe epilepsy. Overall, this evidence suggests that neurosteroids represent a new target for the treatment of focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital & Department of Neurology and Neurosurgery, 3801 University Street, Montreal, QC H3A 2B4, Canada;
- Correspondence: ; Tel.: +1-514-398-8909
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital & Department of Neurology and Neurosurgery, 3801 University Street, Montreal, QC H3A 2B4, Canada;
- Department of Physiology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
39
|
Köksal Ersöz E, Modolo J, Bartolomei F, Wendling F. Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS Comput Biol 2020; 16:e1008430. [PMID: 33166277 PMCID: PMC7676664 DOI: 10.1371/journal.pcbi.1008430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/19/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a dynamic and complex neurological disease affecting about 1% of the worldwide population, among which 30% of the patients are drug-resistant. Epilepsy is characterized by recurrent episodes of paroxysmal neural discharges (the so-called seizures), which manifest themselves through a large-amplitude rhythmic activity observed in depth-EEG recordings, in particular in local field potentials (LFPs). The signature characterizing the transition to seizures involves complex oscillatory patterns, which could serve as a marker to prevent seizure initiation by triggering appropriate therapeutic neurostimulation methods. To investigate such protocols, neurophysiological lumped-parameter models at the mesoscopic scale, namely neural mass models, are powerful tools that not only mimic the LFP signals but also give insights on the neural mechanisms related to different stages of seizures. Here, we analyze the multiple time-scale dynamics of a neural mass model and explain the underlying structure of the complex oscillations observed before seizure initiation. We investigate population-specific effects of the stimulation and the dependence of stimulation parameters on synaptic timescales. In particular, we show that intermediate stimulation frequencies (>20 Hz) can abort seizures if the timescale difference is pronounced. Those results have the potential in the design of therapeutic brain stimulation protocols based on the neurophysiological properties of tissue.
Collapse
Affiliation(s)
| | - Julien Modolo
- University of Rennes, Inserm-U1099, LTSI, Rennes, France
| | - Fabrice Bartolomei
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
- APHM, Timone Hospital, Clinical Neurophysiology, Marseille, France
| | | |
Collapse
|
40
|
Serrano-Reyes M, García-Vilchis B, Reyes-Chapero R, Cáceres-Chávez VA, Tapia D, Galarraga E, Bargas J. Spontaneous Activity of Neuronal Ensembles in Mouse Motor Cortex: Changes after GABAergic Blockade. Neuroscience 2020; 446:304-322. [PMID: 32860933 DOI: 10.1016/j.neuroscience.2020.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/02/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.
Collapse
Affiliation(s)
- Miguel Serrano-Reyes
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Brisa García-Vilchis
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Rosa Reyes-Chapero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City 04510, Mexico.
| |
Collapse
|
41
|
Neurostimulation stabilizes spiking neural networks by disrupting seizure-like oscillatory transitions. Sci Rep 2020; 10:15408. [PMID: 32958802 PMCID: PMC7506027 DOI: 10.1038/s41598-020-72335-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
An improved understanding of the mechanisms underlying neuromodulatory approaches to mitigate seizure onset is needed to identify clinical targets for the treatment of epilepsy. Using a Wilson–Cowan-motivated network of inhibitory and excitatory populations, we examined the role played by intrinsic and extrinsic stimuli on the network’s predisposition to sudden transitions into oscillatory dynamics, similar to the transition to the seizure state. Our joint computational and mathematical analyses revealed that such stimuli, be they noisy or periodic in nature, exert a stabilizing influence on network responses, disrupting the development of such oscillations. Based on a combination of numerical simulations and mean-field analyses, our results suggest that high variance and/or high frequency stimulation waveforms can prevent multi-stability, a mathematical harbinger of sudden changes in network dynamics. By tuning the neurons’ responses to input, stimuli stabilize network dynamics away from these transitions. Furthermore, our research shows that such stabilization of neural activity occurs through a selective recruitment of inhibitory cells, providing a theoretical undergird for the known key role these cells play in both the healthy and diseased brain. Taken together, these findings provide new vistas on neuromodulatory approaches to stabilize neural microcircuit activity.
Collapse
|
42
|
Stefanits H, Milenkovic I, Mahr N, Pataraia E, Baumgartner C, Hainfellner JA, Kovacs GG, Kasprian G, Sieghart W, Yilmazer-Hanke D, Czech T. Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 2020; 78:1022-1048. [PMID: 31631219 DOI: 10.1093/jnen/nlz085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
The amygdala has long been implicated in the pathophysiology of human temporal lobe epilepsy (TLE). The different nuclei of this complex structure are interconnected and share reciprocal connections with the hippocampus and other brain structures, partly via the entorhinal cortex. Expression of GABAA receptor subunits α1, α2, α3, α5, β2, β2/3, and γ2 was evaluated by immunohistochemistry in amygdala specimens and the entorhinal cortex of 12 TLE patients and 12 autopsy controls. A substantial decrease in the expression of α1, α2, α3, and β2/3 subunits was found in TLE cases, accompanied by an increase of γ2 subunit expression in many nuclei. In the entorhinal cortex, the expression of all GABAA receptor subunits was decreased except for the α1 subunit, which was increased on cellular somata. The overall reduction in α subunit expression may lead to decreased sensitivity to GABA and its ligands and compromise phasic inhibition, whereas upregulation of the γ2 subunit might influence clustering and kinetics of receptors and impair tonic inhibition. The description of these alterations in the human amygdala is important for the understanding of network changes in TLE as well as the development of subunit-specific therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Harald Stefanits
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ivan Milenkovic
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Nina Mahr
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ekaterina Pataraia
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Christoph Baumgartner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Johannes A Hainfellner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gabor G Kovacs
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gregor Kasprian
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Werner Sieghart
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Thomas Czech
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| |
Collapse
|
43
|
Hamed SA. Cortical excitability in epilepsy and the impact of antiepileptic drugs: transcranial magnetic stimulation applications. Expert Rev Neurother 2020; 20:707-723. [PMID: 3251028 DOI: 10.1080/14737175.2020.1780122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Epileptic conditions are characterized by impaired cortical excitation/inhibition balance and interneuronal disinhibition. Transcranial magnetic stimulation (TMS) is a neurophysiological method that assesses brain excitation/inhibition. AREA COVERED This review was written after a detailed search in PubMed, EMBASE, ISI web of science, SciELO, Scopus, and Cochrane Controlled Trials databases from 1990 to 2020. It summarizes TMS applications for diagnostic and therapeutic purposes in epilepsy. TMS studies help to distinguish different epilepsy conditions and explore the antiepileptic drugs' (AEDs') effects on neuronal microcircuits and plasticity mechanisms. Repetitive TMS studies showed that low-frequency rTMS (0.33-1 Hz) can reduce seizures' frequency in refractory epilepsy or pause ongoing seizures; however, there is no current approval for its use in such patients as adjunctive treatment to AEDs. EXPERT OPINION There are variable and conflicting TMS results which reflect the distinct pathogenic mechanisms of each epilepsy condition, the dynamic epileptogenic process over the long disease course resulting in the development of recurrent spontaneous seizures and/or progression of epilepsy after it is established, and the differential effect of AEDs on cortical excitability. Future epilepsy research should focus on combined TMS/functional connectivity studies that explore the complex cortical excitability circuits and networks using different TMS parameters and techniques.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut, Egypt
| |
Collapse
|
44
|
Nakatani M, Matsumoto R, Kobayashi K, Hitomi T, Inouchi M, Matsuhashi M, Kinoshita M, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Takahashi R, Hattori N, Ikeda A. Electrical cortical stimulations modulate spike and post-spike slow-related high-frequency activities in human epileptic foci. Clin Neurophysiol 2020; 131:1741-1754. [PMID: 32504935 DOI: 10.1016/j.clinph.2020.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Using interictal epileptiform discharges (IEDs), consisting of spikes and post-spike slow waves (PSSs), and IED-related high-frequency activities (HFAs), we elucidated inhibitory effects of electrical cortical stimulation (ECS) on human epileptic foci. METHODS We recruited 8 patients with intractable focal epilepsy, and 50-Hz ECS was applied to the seizure-onset zone (SOZ) and non-SOZ. Before (5-min) and after (20-min) ECS, we evaluated the number of IED, the amplitudes of spikes and PSSs, spike-related HFA power, and PSS-related low gamma (30-50 Hz) activities. RESULTS SOZ stimulation significantly decreased the number of IEDs and amplitude of spikes. Spike-related HFA power values in fast ripple (200-300 Hz) and ripple (80-150 Hz) bands were significantly suppressed only by SOZ stimulation in 4 and 3 patients, respectively. Among 4 patients with discrete PSSs, the amplitude ratio of spike/PSS decreased and the PSS-related low gamma activity power increased significantly in 2 patients and marginally in 1 patient. CONCLUSIONS ECS potentially modulates cortical excitability by reducing excitation and increasing inhibition, and monitoring IED-related HFAs may help achieve the optimal effects of ECS. SIGNIFICANCE IED and IED-related HFAs are dynamic, potential surrogate markers for epileptic excitability during the interictal period.
Collapse
Affiliation(s)
- Mitsuyoshi Nakatani
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Morito Inouchi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurosurgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
45
|
Chen LY, Lévesque M, Avoli M. KCC2 antagonism and gabaergic synchronization in the entorhinal cortex in the absence of ionotropic glutamatergic receptor signalling. Neuropharmacology 2020; 167:107982. [PMID: 32014449 DOI: 10.1016/j.neuropharm.2020.107982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
γ-Aminobutyric acid (GABA), which is released by interneurons, plays an active role in generating interictal epileptiform spikes during blockade of ionotropic glutamatergic signalling, but it remains unclear whether and how the K+-Cl- cotransporter 2 (KCC2) influences these paroxysmal events. Therefore, we employed tetrode recordings in the in vitro rat entorhinal cortex (EC) to analyze the effects of the KCC2 antagonist VU0463271 on 4-aminopyridine (4AP)-induced interictal spikes that were pharmacologically isolated by applying ionotropic glutamatergic receptor antagonists. After the addition of VU0463271, these interictal spikes continued to occur at similar rates as in control (i.e., during application of 4AP with ionotropic glutamatergic receptor antagonists) but were smaller and shorter. Despite the absence of ionotropic glutamatergic receptor signalling, both interneurons and principal cells increased their firing during interictal spikes. Moreover, we found that KCC2 antagonism increased interneuron firing but decreased principal cell firing during the interictal spike rising phase; in contrast, during the falling phase, interneuron firing decreased in the presence of VU0463271 while no change was observed in principal cell firing. Overall, our results show that KCC2 antagonism enhances interneuron excitability at the onset of interictal spikes generated by the EC neuronal networks during blockade of ionotropic glutamatergic transmission but disrupts later neuronal recruitment.
Collapse
Affiliation(s)
- Li-Yuan Chen
- Montreal Neurological Institute and Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, 3801 University Street, Montreal, H3A 2B4, QC, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute and Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, 3801 University Street, Montreal, H3A 2B4, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, 3801 University Street, Montreal, H3A 2B4, QC, Canada.
| |
Collapse
|
46
|
Propagating Activity in Neocortex, Mediated by Gap Junctions and Modulated by Extracellular Potassium. eNeuro 2020; 7:ENEURO.0387-19.2020. [PMID: 32098762 PMCID: PMC7096537 DOI: 10.1523/eneuro.0387-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parvalbumin-expressing interneurons in cortical networks are coupled by gap junctions, forming a syncytium that supports propagating epileptiform discharges, induced by 4-aminopyridine. It remains unclear, however, whether these propagating events occur under more natural states, without pharmacological blockade. In particular, we investigated whether propagation also happens when extracellular K+ rises, as is known to occur following intense network activity, such as during seizures. We examined how increasing [K+]o affects the likelihood of propagating activity away from a site of focal (200–400 μm) optogenetic activation of parvalbumin-expressing interneurons. Activity was recorded using a linear 16-electrode array placed along layer V of primary visual cortex. At baseline levels of [K+]o (3.5 mm), induced activity was recorded only within the illuminated area. However, when [K+]o was increased above a threshold level (50th percentile = 8.0 mm; interquartile range = 7.5–9.5 mm), time-locked, fast-spiking unit activity, indicative of parvalbumin-expressing interneuron firing, was also recorded outside the illuminated area, propagating at 59.1 mm/s. The propagating unit activity was unaffected by blockade of GABAergic synaptic transmission, but it was modulated by glutamatergic blockers, and was reduced, and in most cases prevented altogether, by pharmacological blockade of gap junctions, achieved by any of the following three different drugs: quinine, mefloquine, or carbenoxolone. Washout of quinine rapidly re-established the pattern of propagating activity. Computer simulations show qualitative differences between propagating discharges in high [K+]o and 4-aminopyridine, arising from differences in the electrotonic effects of these two manipulations. These interneuronal syncytial interactions are likely to affect the complex electrographic dynamics of seizures, once [K+]o is raised above this threshold level.
Collapse
|
47
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
48
|
Lévesque M, Ragsdale D, Avoli M. Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Curr Neuropharmacol 2020; 17:830-842. [PMID: 30479217 PMCID: PMC7052840 DOI: 10.2174/1570159x17666181127124803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
The synchronized activity of neuronal networks under physiological conditions is mirrored by specific oscillatory patterns of the EEG that are associated with different behavioral states and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity characterized by interictal and ictal discharges in epileptic patients and animal models. This review focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in the generation of epileptiform synchronization. For each mechanism, we discuss the actions of antiepileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated currents to prevent seizures in epileptic patients. These findings provide insights into the mechanisms of seizure initiation and maintenance, thus leading to the development of specific pharmacological treatments for focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - David Ragsdale
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada.,Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada.,Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
49
|
Rich S, Chameh HM, Rafiee M, Ferguson K, Skinner FK, Valiante TA. Inhibitory Network Bistability Explains Increased Interneuronal Activity Prior to Seizure Onset. Front Neural Circuits 2020; 13:81. [PMID: 32009908 PMCID: PMC6972503 DOI: 10.3389/fncir.2019.00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Recent experimental literature has revealed that GABAergic interneurons exhibit increased activity prior to seizure onset, alongside additional evidence that such activity is synchronous and may arise abruptly. These findings have led some to hypothesize that this interneuronal activity may serve a causal role in driving the sudden change in brain activity that heralds seizure onset. However, the mechanisms predisposing an inhibitory network toward increased activity, specifically prior to ictogenesis, without a permanent change to inputs to the system remain unknown. We address this question by comparing simulated inhibitory networks containing control interneurons and networks containing hyperexcitable interneurons modeled to mimic treatment with 4-Aminopyridine (4-AP), an agent commonly used to model seizures in vivo and in vitro. Our in silico study demonstrates that model inhibitory networks with 4-AP interneurons are more prone than their control counterparts to exist in a bistable state in which asynchronously firing networks can abruptly transition into synchrony driven by a brief perturbation. This transition into synchrony brings about a corresponding increase in overall firing rate. We further show that perturbations driving this transition could arise in vivo from background excitatory synaptic activity in the cortex. Thus, we propose that bistability explains the increase in interneuron activity observed experimentally prior to seizure via a transition from incoherent to coherent dynamics. Moreover, bistability explains why inhibitory networks containing hyperexcitable interneurons are more vulnerable to this change in dynamics, and how such networks can undergo a transition without a permanent change in the drive. We note that while our comparisons are between networks of control and ictogenic neurons, the conclusions drawn specifically relate to the unusual dynamics that arise prior to seizure, and not seizure onset itself. However, providing a mechanistic explanation for this phenomenon specifically in a pro-ictogenic setting generates experimentally testable hypotheses regarding the role of inhibitory neurons in pre-ictal neural dynamics, and motivates further computational research into mechanisms underlying a newly hypothesized multi-step pathway to seizure initiated by inhibition.
Collapse
Affiliation(s)
- Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marjan Rafiee
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Katie Ferguson
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Frances K Skinner
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Chauvière L. Potential causes of cognitive alterations in temporal lobe epilepsy. Behav Brain Res 2020; 378:112310. [DOI: 10.1016/j.bbr.2019.112310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
|