1
|
Zheng B, Zheng Y, Hu W, Chen Z. Dissecting the networks underlying diverse brain disorders after prenatal glucocorticoid overexposure. Arch Toxicol 2024; 98:1975-1990. [PMID: 38581585 DOI: 10.1007/s00204-024-03733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.
Collapse
Affiliation(s)
- Baixiu Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024; 12:1416. [PMID: 39061990 PMCID: PMC11274075 DOI: 10.3390/biomedicines12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Valproic acid (VPA) has anticancer, anti-inflammatory, and epigenetic effects. The study aimed to determine the expression of carcinogenesis-related SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 in adult glioblastoma U87 MG and T98G cells and the effects of 0.5 mM, 0.75 mM, and 1.5 mM doses of VPA. RNA gene expression was determined by RT-PCR. GAPDH was used as a control. U87 and T98G control cells do not express SLC5A8 or CDH1. SLC12A5 was expressed in U87 control but not in T98G control cells. The SLC12A2 expression in the U87 control was significantly lower than in the T98G control. T98G control cells showed significantly higher CDH2 expression than U87 control cells. VPA treatment did not affect SLC12A2 expression in U87 cells, whereas treatment dose-dependently increased SLC12A2 expression in T98G cells. Treatment with 1.5 mM VPA induced SLC5A8 expression in U87 cells, while treatment of T98G cells with VPA did not affect SLC5A8 expression. Treatment of U87 cells with VPA significantly increased SLC12A5 expression. VPA increases CDH1 expression depending on the VPA dose. CDH2 expression was significantly increased only in the U87 1.5 mM VPA group. Tested VPA doses significantly increased CDH2 expression in T98G cells. When approaching treatment tactics, assessing the cell's sensitivity to the agent is essential.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| |
Collapse
|
3
|
Ying Y, Liu W, Wang H, Shi J, Wang Z, Fei J. GABA transporter mGat4 is involved in multiple neural functions in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119740. [PMID: 38697303 DOI: 10.1016/j.bbamcr.2024.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of GABA transporters (GATs). mGAT4 (encoded by Slc6a11) is another GAT besides GAT1 (encoded by Slc6a1) that functions in GABA reuptake in CNS. Research on the function of mGAT4 is still in its infancy. We developed an mGat4 knockout mouse model (mGat4-/- mice) and performed a series of behavioral analyses for the first time to study the effect of mGat4 on biological processes in CNS. Our results indicated that homozygous mGat4-/- mice had less depression, anxiety-like behavior and more social activities than their wild-type littermate controls. However, they had weight loss and showed motor incoordination and imbalance. Meanwhile, mGat4-/- mice showed increased pain threshold and hypoalgesia behavior in nociceptive stimulus and learning and memory impairments. The expression of multiple components of the GABAergic system including GAD67, GABAA and KCC2 was altered. There is little or no compensatory change in mGat1. In a word, mGat4 may play a key role in normal motor coordination, sensation, emotion, learning and memory and could be the potential target of neurological disorders.
Collapse
Affiliation(s)
- Yue Ying
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weitong Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Haoyue Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jiahao Shi
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jian Fei
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China.
| |
Collapse
|
4
|
Li MR, Luo XJ, Peng J. Role of sonic hedgehog signaling pathway in the regulation of ion channels: focus on its association with cardio-cerebrovascular diseases. J Physiol Biochem 2023; 79:719-730. [PMID: 37676576 DOI: 10.1007/s13105-023-00982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Sonic hedgehog (SHH) signaling is vital for cell differentiation and proliferation during embryonic development, yet its role in cardiac, cerebral, and vascular pathophysiology is under debate. Recent studies have demonstrated that several compounds of SHH signaling regulate ion channels, which in turn affect the behavior of target cells. Some of these ion channels are involved in the cardio-cerebrovascular system. Here, we first reviewed the SHH signaling cascades, then its interaction with ion channels, and their impact on cardio-cerebrovascular diseases. Considering the complex cross talk of SHH signaling with other pathways that also affect ion channels and their potential impact on the cardio-cerebrovascular system, we highlight the necessity of thoroughly studying the effect of SHH signaling on ion homeostasis, which could serve as a novel mechanism for cardio-cerebrovascular diseases. Activation of SHH signaling influence ion channels activity, which in turn influence ion homeostasis, membrane potential, and electrophysiology, could serve as a novel strategy for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
5
|
Aikins AO, Farmer GE, Little JT, Cunningham JT. Effects of bile duct ligation on the inhibitory control of supraoptic vasopressin neurons. J Neuroendocrinol 2023; 35:e13312. [PMID: 37337093 PMCID: PMC10942741 DOI: 10.1111/jne.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
Dilutional hyponatremia due to increased plasma arginine vasopressin (AVP) is associated with liver cirrhosis. However, plasma AVP remains elevated despite progressive hypoosmolality. This study investigated changes to inhibitory control of supraoptic nucleus (SON) AVP neurons during liver cirrhosis. Experiments were conducted with adult male Sprague-Dawley rats. Bile duct ligation was used as a model of chronic liver cirrhosis. An adeno-associated virus containing a construct with an AVP promoter and either green fluorescent protein (GFP) or a ratiometric chloride indicator, ClopHensorN, was bilaterally injected into the SON of rats. After 2 weeks, rats received either BDL or sham surgery, and liver cirrhosis was allowed to develop for 4 weeks. In vitro, loose patch recordings of action potentials were obtained from GFP-labeled and unlabeled SON neurons in response to a brief focal application of the GABAA agonist muscimol (100 μM). Changes to intracellular chloride ([Cl]i) following muscimol application were determined by changes to the fluorescence ratio of ClopHensorN. The contribution of cation chloride cotransporters NKCC1 and KCC2 to changes in intracellular chloride was investigated using their respective antagonists, bumetanide (BU, 10 μM) and VU0240551 (10 μM). Plasma osmolality and hematocrit were measured as a marker of dilutional hyponatremia. The results showed reduced or absent GABAA -mediated inhibition in a greater proportion of AVP neurons from BDL rats as compared to sham rats (100% inhibition in sham vs. 47% in BDL, p = .001). Muscimol application was associated with increased [Cl]i in most cells from BDL as compared to cells from sham rats (χ2 = 30.24, p < .001). NKCC1 contributed to the impaired inhibition observed in BDL rats (p < .001 BDL - BU vs. BDL + BU). The results show that impaired inhibition of SON AVP neurons and increased intracellular chloride contribute to the sustained dilutional hyponatremia in liver cirrhosis.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
6
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
7
|
Scalmani P, Paterra R, Mantegazza M, Avoli M, de Curtis M. Involvement of GABAergic Interneuron Subtypes in 4-Aminopyridine-Induced Seizure-Like Events in Mouse Entorhinal Cortex in Vitro. J Neurosci 2023; 43:1987-2001. [PMID: 36810229 PMCID: PMC10027059 DOI: 10.1523/jneurosci.1190-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Single-unit recordings performed in temporal lobe epilepsy patients and in models of temporal lobe seizures have shown that interneurons are active at focal seizure onset. We performed simultaneous patch-clamp and field potential recordings in entorhinal cortex slices of GAD65 and GAD67 C57BL/6J male mice that express green fluorescent protein in GABAergic neurons to analyze the activity of specific interneuron (IN) subpopulations during acute seizure-like events (SLEs) induced by 4-aminopyridine (4-AP; 100 μm). IN subtypes were identified as parvalbuminergic (INPV, n = 17), cholecystokinergic (INCCK), n = 13], and somatostatinergic (INSOM, n = 15), according to neurophysiological features and single-cell digital PCR. INPV and INCCK discharged at the start of 4-AP-induced SLEs characterized by either low-voltage fast or hyper-synchronous onset pattern. In both SLE onset types, INSOM fired earliest before SLEs, followed by INPV and INCCK discharges. Pyramidal neurons became active with variable delays after SLE onset. Depolarizing block was observed in ∼50% of cells in each INs subgroup, and it was longer in IN (∼4 s) than in pyramidal neurons (<1 s). As SLE evolved, all IN subtypes generated action potential bursts synchronous with the field potential events leading to SLE termination. High-frequency firing throughout the SLE occurred in one-third of INPV and INSOM We conclude that entorhinal cortex INs are very active at the onset and during the progression of SLEs induced by 4-AP. These results support earlier in vivo and in vivo evidence and suggest that INs have a preferential role in focal seizure initiation and development.SIGNIFICANCE STATEMENT Focal seizures are believed to result from enhanced excitation. Nevertheless, we and others demonstrated that cortical GABAergic networks may initiate focal seizures. Here, we analyzed for the first time the role of different IN subtypes in seizures generated by 4-aminopyridine in the mouse entorhinal cortex slices. We found that in this in vitro focal seizure model, all IN types contribute to seizure initiation and that INs precede firing of principal cells. This evidence is in agreement with the active role of GABAergic networks in seizure generation.
Collapse
Affiliation(s)
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano 20133, Italy
| | - Massimo Mantegazza
- Université Côte d'Azur, 06560 Valbonne-Sophia Antipolis, France
- Institute of Molecular and Cellular Pharmacology, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7275, Laboratoire d'Excellence/Canaux Ioniques d'Intérêt Thérapeutique, 06650 Valbonne-Sophia Antipolis, France
- Institut National de la Santé et de la Recherche Médicale, 06650 Valbonne-Sophia Antipolis, France
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
- Departments of Neurology and Neurosurgery and Physiology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
8
|
Zhang H, Xu L, Xiong J, Li X, Yang Y, Liu Y, Zhang C, Wang Q, Wang J, Wang P, Wu X, Wang X, Zhu X, Guan Y. Role of KCC2 in the Regulation of Brain-Derived Neurotrophic Factor on Ethanol Consumption in Rats. Mol Neurobiol 2023; 60:1040-1049. [PMID: 36401060 DOI: 10.1007/s12035-022-03126-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Alcohol use disorder (AUD) is a common and complex disorder resulting from repetitive alcohol drinking. The mesocorticolimbic dopamine (DA) system, originating from the ventral tegmental area (VTA) in the midbrain, is involved in the rewarding effect of ethanol. The γ-aminobutyric acid (GABA) neurons in VTA appear to be key substrates of acute and chronic ethanol, which regulates DA neurotransmission indirectly in the mesocorticolimbic system. Despite significant research on the relationship between brain-derived neurotrophic factor (BDNF) and reduced alcohol consumption in male rats involving tropomyosin-related kinase B (TrkB), the mechanisms of BDNF-TrkB regulating alcohol behavior remain scarce. K+-Cl- cotransporter 2 (KCC2) plays a crucial role in synaptic function in GABAergic neurons by modulating intracellular chlorine homeostasis. Here, we found that 4-week intermittent alcohol exposure impaired the function of KCC2 in VTA, evidenced by a lower expression level of phosphorylated KCC2 and decreased ratio of phosphorylated KCC2 to total KCC2, especially 72 h after withdrawal from 4-week ethanol exposure in male rats. CLP290 (a KCC2 activator) reduced excessive alcohol consumption after alcohol withdrawal, whereas VU0240551 (a specific KCC2 inhibitor) further enhanced alcohol intake. Importantly, VU0240551 reversed the attenuating effects of BDNF and 7,8-dihydroxyflavone (7,8-DHF) on alcohol consumption after withdrawal. Moreover, intraperitoneal injection of 7,8-DHF upregulated KCC2 expression and phosphorylated KCC2 in VTA 72 h after withdrawal from ethanol exposure in male rats. Collectively, our data indicate that KCC2 may be critical in the regulating action of BDNF-TrkB on ethanol consumption in AUD.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Lulu Xu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Junwei Xiong
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xinxin Li
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yindong Yang
- Department of Neurology, the Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yong Liu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Chunfeng Zhang
- Institute of Vocational and Technical Education, Heilongjiang Agricultural Economy Vocational College, Mudanjiang, 157011, China
| | - Qiyu Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jiajia Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Pengyu Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaobin Wu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xue Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaofeng Zhu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Yanzhong Guan
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
| |
Collapse
|
9
|
Talifu Z, Pan Y, Gong H, Xu X, Zhang C, Yang D, Gao F, Yu Y, Du L, Li J. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol 2022; 13:1045520. [PMID: 36589461 PMCID: PMC9799334 DOI: 10.3389/fphys.2022.1045520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The balance of ion concentrations inside and outside the cell is an essential homeostatic mechanism in neurons and serves as the basis for a variety of physiological activities. In the central nervous system, NKCC1 and KCC2, members of the SLC12 cation-chloride co-transporter (CCC) family, participate in physiological and pathophysiological processes by regulating intracellular and extracellular chloride ion concentrations, which can further regulate the GABAergic system. Over recent years, studies have shown that NKCC1 and KCC2 are essential for the maintenance of Cl- homeostasis in neural cells. NKCC1 transports Cl- into cells while KCC2 transports Cl- out of cells, thereby regulating chloride balance and neuronal excitability. An imbalance of NKCC1 and KCC2 after spinal cord injury will disrupt CI- homeostasis, resulting in the transformation of GABA neurons from an inhibitory state into an excitatory state, which subsequently alters the spinal cord neural network and leads to conditions such as spasticity and neuropathic pain, among others. Meanwhile, studies have shown that KCC2 is also an essential target for motor function reconstruction after spinal cord injury. This review mainly introduces the physiological structure and function of NKCC1 and KCC2 and discusses their pathophysiological roles after spinal cord injury.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China,Chinese Institute of Rehabilitation Science, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China,*Correspondence: Liangjie Du, ; Jianjun Li,
| |
Collapse
|
10
|
Avoli M, de Curtis M, Lévesque M, Librizzi L, Uva L, Wang S. GABAA signaling, focal epileptiform synchronization and epileptogenesis. Front Neural Circuits 2022; 16:984802. [PMID: 36275847 PMCID: PMC9581276 DOI: 10.3389/fncir.2022.984802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Under physiological conditions, neuronal network synchronization leads to different oscillatory EEG patterns that are associated with specific behavioral and cognitive functions. Excessive synchronization can, however, lead to focal or generalized epileptiform activities. It is indeed well established that in both epileptic patients and animal models, focal epileptiform EEG patterns are characterized by interictal and ictal (seizure) discharges. Over the last three decades, employing in vitro and in vivo recording techniques, several experimental studies have firmly identified a paradoxical role of GABAA signaling in generating interictal discharges, and in initiating—and perhaps sustaining—focal seizures. Here, we will review these experiments and we will extend our appraisal to evidence suggesting that GABAA signaling may also contribute to epileptogenesis, i.e., the development of plastic changes in brain excitability that leads to the chronic epileptic condition. Overall, we anticipate that this information should provide the rationale for developing new specific pharmacological treatments for patients presenting with focal epileptic disorders such as mesial temporal lobe epilepsy (MTLE).
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
- *Correspondence: Massimo Avoli,
| | - Marco de Curtis
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Siyan Wang
- Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Departments of Neurology and Neurosurgery, Montreal, QC, Canada
| |
Collapse
|
11
|
Wang S, Kfoury C, Marion A, Lévesque M, Avoli M. Modulation of in vitro epileptiform activity by optogenetic stimulation of parvalbumin-positive interneurons. J Neurophysiol 2022; 128:837-846. [PMID: 36043700 DOI: 10.1152/jn.00192.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAA signaling is surprisingly involved in the initiation of epileptiform activity since increased interneuron firing, presumably leading to excessive GABA release, often precedes ictal discharges. Field potential theta (4-12 Hz) oscillations, which are thought to mirror the synchronization of interneuron networks, also lead to ictogenesis. However, the exact role of parvalbumin-positive (PV) interneurons in generating theta oscillations linked to epileptiform discharges remains unexplored. We analyzed here the field responses recorded in the CA3, entorhinal cortex (EC) and dentate gyrus (DG) during 8 Hz optogenetic stimulation of PV-positive interneurons in brain slices obtained from PV-ChR2 mice during 4-aminopyridine (4AP) application. This optogenetic protocol triggered similar field oscillations in both control conditions and during 4AP application. However, in the presence of 4AP, optogenetic stimuli also induced: (i) interictal discharges that were associated in all regions with 8 Hz field oscillations; and (ii) low-voltage fast onset ictal discharges. Interictal and ictal events occurred more frequently during optogenetic activation than during periods of no stimulation. 4AP also increased synchronicity during PV-interneuron activation in all three regions. In opsin-negative mice, optogenetic stimulation did not change the rate of both types of epileptiform activity. Our findings suggest that PV-interneuron recruitment at theta (8 Hz) frequency contributes to epileptiform synchronization in limbic structures in the in vitro 4AP model.
Collapse
Affiliation(s)
- Siyan Wang
- Montreal Neurological Institute and Hospital and Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Cristen Kfoury
- Montreal Neurological Institute and Hospital and Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Alexis Marion
- Montreal Neurological Institute and Hospital and Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute and Hospital and Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Hospital and Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Avoli M, Lévesque M. GABA B Receptors: are they Missing in Action in Focal Epilepsy Research? Curr Neuropharmacol 2022; 20:1704-1716. [PMID: 34429053 PMCID: PMC9881065 DOI: 10.2174/1570159x19666210823102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
GABA, the key inhibitory neurotransmitter in the adult forebrain, activates pre- and postsynaptic receptors that have been categorized as GABAA, which directly open ligand-gated (or receptor-operated) ion-channels, and GABAB, which are metabotropic since they operate through second messengers. Over the last three decades, several studies have addressed the role of GABAB receptors in the pathophysiology of generalized and focal epileptic disorders. Here, we will address their involvement in focal epileptic disorders by mainly reviewing in vitro studies that have shown: (i) how either enhancing or decreasing GABAB receptor function can favour epileptiform synchronization and thus ictogenesis, although with different features; (ii) the surprising ability of GABAB receptor antagonism to disclose ictal-like activity when the excitatory ionotropic transmission is abolished; and (iii) their contribution to controlling seizure-like discharges during repetitive electrical stimuli delivered in limbic structures. In spite of this evidence, the role of GABAB receptor function in focal epileptic disorders has been attracting less interest when compared to the numerous studies that have addressed GABAA receptor signaling. Therefore, the main aim of our mini-review is to revive interest in the function of GABAB receptors in focal epilepsy research.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of; ,Department of Experimental Medicine, Sapienza University of Rome, 00185Rome, Italy,Address correspondence to this author at the Montreal Neurological Institute-Hospital, 3801 University Street, Montréal, Canada, H3A 2B4, QC; Tels: +1 514 998 6790; +39 333 483 1060; E-mail:
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery and of;
| |
Collapse
|
13
|
Lévesque M, Wang S, Etter G, Williams S, Avoli M. Bilateral optogenetic activation of inhibitory cells favors ictogenesis. Neurobiol Dis 2022; 171:105794. [PMID: 35718264 DOI: 10.1016/j.nbd.2022.105794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal refractory epilepsy and is characterized by recurring seizures that are often refractory to medication. Since parvalbumin-positive (PV) interneurons were recently shown to play significant roles in ictogenesis, we established here how bilateral optogenetic stimulation of these interneurons in the hippocampus CA3 regions modulates seizures, interictal spikes and high-frequency oscillations (HFOs; ripples: 80-200 Hz, fast ripples: 250-500 Hz) in the pilocarpine model of MTLE. Bilateral optogenetic stimulation of CA3 PV-positive interneurons at 8 Hz (lasting 30 s, every 2 min) was implemented in PV-ChR2 mice for 8 consecutive days starting on day 7 (n = 8) or on day 13 (n = 6) after pilocarpine-induced status epilepticus (SE). Seizure occurrence was higher in both day 7 and day 13 groups of PV-ChR2 mice during periods of optogenetic stimulation ("ON"), compared to when stimulation was not performed ("OFF") (day 7 group = p < 0.01, day 13 group = p < 0.01). In the PV-ChR2 day 13 group, rates of seizures (p < 0.05), of interictal spikes associated with fast ripples (p < 0.01), and of isolated fast ripples (p < 0.01) during optogenetic stimulations were significantly higher than in the PV-ChR2 day 7 group. Our findings reveal that bilateral activation of PV-interneurons in the hippocampus (leading to a presumptive increase in GABA signaling) favors ictogenesis. These effects may also mirror the neuropathological changes that occur over time after SE in this animal model.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada
| | - Guillaume Etter
- Douglas Mental Health University Institute, McGill University, 6875 Blvd Lasalle, Montréal, H4H 1R3, QC, Canada
| | - Sylvain Williams
- Douglas Mental Health University Institute, McGill University, 6875 Blvd Lasalle, Montréal, H4H 1R3, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, H3A 2B4, QC, Canada.
| |
Collapse
|
14
|
Damanskienė E, Balnytė I, Valančiūtė A, Alonso MM, Stakišaitis D. Different Effects of Valproic Acid on SLC12A2, SLC12A5 and SLC5A8 Gene Expression in Pediatric Glioblastoma Cells as an Approach to Personalised Therapy. Biomedicines 2022; 10:968. [PMID: 35625705 PMCID: PMC9138981 DOI: 10.3390/biomedicines10050968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Valproic acid (VPA) is a histone deacetylase inhibitor with sex-specific immunomodulatory and anticancer effects. This study aimed to investigate the effect of 0.5 and 0.75 mM VPA on NKCC1 (SLC12A2), KCC2 (SLC12A5) and SLC5A8 (SLC5A8) co-transporter gene expressions in pediatric PBT24 (boy's) and SF8628 (girl's) glioblastoma cells. The SLC12A2, SLC12A5 and SLC5A8 RNA expressions were determined by the RT-PCR method. The SLC12A2 and SLC5A8 expressions did not differ between the PBT24 and SF8628 controls. The SLC12A5 expression in the PBT24 control was significantly higher than in the SF8628 control. VPA treatment significantly increased the expression of SLC12A2 in PBT24 but did not affect SF8628 cells. VPA increased the SLC12A5 expression in PBT24 and SF8628 cells. The SLC12A5 expression of the PBT24-treated cells was significantly higher than in corresponding SF8628 groups. Both VPA doses increased the SLC5A8 expression in PBT24 and SF8628 cells, but the expression was significantly higher in the PBT24-treated, compared to the respective SF8628 groups. The SLC5A8 expression in PBT24-treated cells was 10-fold higher than in SF8628 cells. The distinct effects of VPA on the expression of SLC12A2, SLC12A5 and SLC5A8 in PBT24 and SF8628 glioblastoma cells suggest differences in tumor cell biology that may be gender-related.
Collapse
Affiliation(s)
- Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (E.D.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| |
Collapse
|
15
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
16
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
17
|
Sex-specific differences in KCC2 localisation and inhibitory synaptic transmission in the rat hippocampus. Sci Rep 2022; 12:3186. [PMID: 35210456 PMCID: PMC8873453 DOI: 10.1038/s41598-022-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Sexual differentiation of the brain is influenced by testosterone and its metabolites during the perinatal period, when many aspects of brain development, including the maturation of GABAergic transmission, occur. Whether and how testosterone signaling during the perinatal period affects GABAergic transmission is unclear. Here, we analyzed GABAergic circuit functional markers in male, female, testosterone-treated female, and testosterone-insensitive male rats after the first postnatal week and in young adults. In the hippocampus, mRNA levels of proteins associated with GABA signaling were not significantly affected at postnatal day (P) 7 or P40. Conversely, membrane protein levels of KCC2, which are critical for determining inhibition strength, were significantly higher in females compared to males and testosterone-treated females at P7. Further, female and testosterone-insensitive male rats at P7 showed higher levels of the neurotrophin BDNF, which is a powerful regulator of neuronal function, including GABAergic transmission. Finally, spontaneous GABAergic currents in hippocampal CA1 pyramidal cells were more frequent in females and testosterone-insensitive males at P40. Overall, these results show that perinatal testosterone levels modulate GABAergic circuit function, suggesting a critical role of perinatal sex hormones in regulating network excitability in the adult hippocampus.
Collapse
|
18
|
Damanskienė E, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Stakišaitis D. The Different Temozolomide Effects on Tumorigenesis Mechanisms of Pediatric Glioblastoma PBT24 and SF8628 Cell Tumor in CAM Model and on Cells In Vitro. Int J Mol Sci 2022; 23:ijms23042001. [PMID: 35216113 PMCID: PMC8877228 DOI: 10.3390/ijms23042001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
It is necessary to elucidate the individual effects of temozolomide (TMZ) on carcinogenesis and tumor resistance to chemotherapy mechanisms. The study aimed to investigate the TMZ 50 and 100 μM dose effect difference between PBT24 and SF8628 cell line high-grade pediatric glioblastoma (phGBM) xenografts in a chicken chorioallantoic membrane (CAM) model, on PCNA and EZH2 immunohistochemical expression in the tumor and on the expression of NKCC1, KCC2, E- and N-cadherin genes in TMZ-treated and control cell groups in vitro. TMZ at a 100 μg dose reduced the incidence of PBT24 xenograft invasion into the CAM, CAM thickening and the number of blood vessels in the CAM (p < 0.05), but did not affect the SF8628 tumor in the CAM model. The TMZ impact on PBT24 and SF8628 tumor PCNA expression was similarly significantly effective but did not alter EZH2 expression in the studied tumors. The TMZ at 50 μM caused significantly increased RNA expression of the NKCC1 gene in both studied cell types compared with controls (p < 0.05). The expression of the KCC2 gene was increased in PBT24 TMZ-treated cells (p < 0.05), and no TMZ effect was found in SF8628-treated cells. The study supports the suggestion that individual sensitivity to TMZ should be assessed when starting treatment.
Collapse
Affiliation(s)
- Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
- Correspondence: (E.D.); (D.S.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
- Correspondence: (E.D.); (D.S.)
| |
Collapse
|
19
|
Herrmann T, Gerth M, Dittmann R, Pensold D, Ungelenk M, Liebmann L, Hübner CA. Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons. Front Mol Neurosci 2022; 14:807090. [PMID: 35185464 PMCID: PMC8850922 DOI: 10.3389/fnmol.2021.807090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2. In vivo, PV-IN-specific KCC2 knockout mice display a reduced seizure threshold and develop spontaneous sometimes fatal seizures. We further found a time dependent loss of PV-INs, which was preceded by an up-regulation of pro-apoptotic genes upon disruption of KCC2.
Collapse
|
20
|
Kovács Z, Skatchkov SN, Veh RW, Szabó Z, Németh K, Szabó PT, Kardos J, Héja L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front Cell Neurosci 2022; 15:787319. [PMID: 35069115 PMCID: PMC8770812 DOI: 10.3389/fncel.2021.787319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central Del Caribe, Bayamon, PR, United States
- Department of Biochemistry, Universidad Central Del Caribe, Bayamon, PR, United States
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Pál T. Szabó
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
21
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Lim WM, Chin EWM, Tang BL, Chen T, Goh ELK. WNK3 Maintains the GABAergic Inhibitory Tone, Synaptic Excitation and Neuronal Excitability via Regulation of KCC2 Cotransporter in Mature Neurons. Front Mol Neurosci 2021; 14:762142. [PMID: 34858138 PMCID: PMC8631424 DOI: 10.3389/fnmol.2021.762142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The activation of chloride (Cl−)permeable gamma (γ)-aminobutyric acid type A(GABAA) receptors induces synaptic inhibition in mature and excitation in immature neurons. This developmental “switch” in GABA function controlled by its polarity depends on the postnatal decrease in intraneuronal Cl− concentration mediated by KCC2, a member of cation-chloride cotransporters (CCCs). The serine-threonine kinase WNK3 (With No Lysine [K]), is a potent regulator of all CCCs and is expressed in neurons. Here, we characterized the functions of WNK3 and its role in GABAergic signaling in cultured embryonic day 18 (E18) hippocampal neurons. We observed a decrease in WNK3 expression as neurons mature. Knocking down of WNK3 significantly hyperpolarized EGABA in mature neurons (DIV13–15) but had no effect on immature neurons (DIV6–8). This hyperpolarized EGABA in WNK3-deficient neurons was not due to the total expression of NKCC1 and KCC2, that remained unchanged. However, there was a reduction in phosphorylated KCC2 at the membrane, suggesting an increase in KCC2 chloride export activity. Furthermore, hyperpolarized EGABA observed in WNK3-deficient neurons can be reversed by the KCC2 inhibitor, VU024055, thus indicating that WNK3 acts through KCC2 to influence EGABA. Notably, WNK3 knockdown resulted in morphological changes in mature but not immature neurons. Electrophysiological characterization of WNK3-deficient mature neurons revealed reduced capacitances but increased intrinsic excitability and synaptic excitation. Hence, our study demonstrates that WNK3 maintains the “adult” GABAergic inhibitory tone in neurons and plays a role in the morphological development of neurons and excitability.
Collapse
Affiliation(s)
- Wee Meng Lim
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bor Luen Tang
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tingting Chen
- School of Pharmacy, Nantong University, Nantong, China
| | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Liu DC, Lee KY, Lizarazo S, Cook JK, Tsai NP. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model. Neurobiol Dis 2021; 158:105450. [PMID: 34303799 DOI: 10.1016/j.nbd.2021.105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 01/29/2023] Open
Abstract
Imbalanced neuronal excitability homeostasis is commonly observed in patients with fragile X syndrome (FXS) and the animal model of FXS, the Fmr1 KO. While alterations of neuronal intrinsic excitability and synaptic activity at the steady state in FXS have been suggested to contribute to such a deficit and ultimately the increased susceptibility to seizures in FXS, it remains largely unclear whether and how the homeostatic response of neuronal excitability following extrinsic challenges is disrupted in FXS. Our previous work has shown that the acute response following induction of endoplasmic reticulum (ER) stress can reduce neural activity and seizure susceptibility. Because many signaling pathways associated with ER stress response are mediated by Fmr1, we asked whether acute ER stress-induced reduction of neural activity and seizure susceptibility are altered in FXS. Our results first revealed that acute ER stress can trigger a protein synthesis-dependent prevention of neural network synchronization in vitro and a reduction of susceptibility to kainic acid-induced seizures in vivo in wild-type but not in Fmr1 KO mice. Mechanistically, we found that acute ER stress-induced activation of murine double minute-2 (Mdm2), ubiquitination of p53, and the subsequent transient protein synthesis are all impaired in Fmr1 KO neurons. Employing a p53 inhibitor, Pifithrin-α, to mimic p53 inactivation, we were able to blunt the increase in neural network synchronization and reduce the seizure susceptibility in Fmr1 KO mice following ER stress induction. In summary, our data revealed a novel cellular defect in Fmr1 KO mice and suggest that an impaired response to common extrinsic challenges may contribute to imbalanced neuronal excitability homeostasis in FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessie K Cook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
Dubanet O, Ferreira Gomes Da Silva A, Frick A, Hirase H, Beyeler A, Leinekugel X. Probing the polarity of spontaneous perisomatic GABAergic synaptic transmission in the mouse CA3 circuit in vivo. Cell Rep 2021; 36:109381. [PMID: 34260906 DOI: 10.1016/j.celrep.2021.109381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/18/2020] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
The hypothesis that reversed, excitatory GABA may be involved in various brain pathologies, including epileptogenesis, is appealing but controversial because of the technical difficulty of probing endogenous GABAergic synaptic function in vivo. We overcome this challenge by non-invasive extracellular recording of neuronal firing responses to optogenetically evoked and spontaneously occurring inhibitory perisomatic GABAergic field potentials, generated by individual parvalbumin interneurons on their target pyramidal cells. Our direct probing of GABAergic transmission suggests a rather anecdotal participation of excitatory GABA in two specific models of epileptogenesis in the mouse CA3 circuit in vivo, even though this does not preclude its expression in other brain areas or pathological conditions. Our approach allows the detection of distinct alterations of inhibition during spontaneous activity in vivo, with high sensitivity. It represents a promising tool for the investigation of excitatory GABA in different pathological conditions that may affect the hippocampal circuit.
Collapse
Affiliation(s)
- Olivier Dubanet
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Arnaldo Ferreira Gomes Da Silva
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France; INMED, INSERM, Aix Marseille Univ, France
| | - Andreas Frick
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Hajime Hirase
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Beyeler
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Xavier Leinekugel
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France; INMED, INSERM, Aix Marseille Univ, France.
| |
Collapse
|
25
|
Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021; 44:378-392. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
KCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging. Thus, KCC2 has emerged as one of the most important molecules that shape the overall neuronal phenotype.
Collapse
Affiliation(s)
- Mari A Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland; Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jean Christophe Poncer
- INSERM, UMRS 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
26
|
Lévesque M, Avoli M. The subiculum and its role in focal epileptic disorders. Rev Neurosci 2020; 32:249-273. [PMID: 33661586 DOI: 10.1515/revneuro-2020-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 01/07/2023]
Abstract
The subicular complex (hereafter referred as subiculum), which is reciprocally connected with the hippocampus and rhinal cortices, exerts a major control on hippocampal outputs. Over the last three decades, several studies have revealed that the subiculum plays a pivotal role in learning and memory but also in pathological conditions such as mesial temporal lobe epilepsy (MTLE). Indeed, subicular networks actively contribute to seizure generation and this structure is relatively spared from the cell loss encountered in this focal epileptic disorder. In this review, we will address: (i) the functional properties of subicular principal cells under normal and pathological conditions; (ii) the subiculum role in sustaining seizures in in vivo models of MTLE and in in vitro models of epileptiform synchronization; (iii) its presumptive role in human MTLE; and (iv) evidence underscoring the relationship between subiculum and antiepileptic drug effects. The studies reviewed here reinforce the view that the subiculum represents a limbic area with relevant, as yet unexplored, roles in focal epilepsy.
Collapse
Affiliation(s)
- Maxime Lévesque
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, H3A 2B4Québec, Canada
| | - Massimo Avoli
- Departments of Neurology, Neurosurgery, and Physiology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, H3A 2B4Québec, Canada
| |
Collapse
|
27
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
28
|
Reh R, Williams LJ, Todd RM, Ward LM. Warped rhythms: Epileptic activity during critical periods disrupts the development of neural networks for human communication. Behav Brain Res 2020; 399:113016. [PMID: 33212087 DOI: 10.1016/j.bbr.2020.113016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022]
Abstract
It is well established that temporal lobe epilepsy-the most common and well-studied form of epilepsy-can impair communication by disrupting social-emotional and language functions. In pediatric epilepsy, where seizures co-occur with the development of critical brain networks, age of onset matters: The earlier in life seizures begin, the worse the disruption in network establishment, resulting in academic hardship and social isolation. Yet, little is known about the processes by which epileptic activity disrupts developing human brain networks. Here we take a synthetic perspective-reviewing a range of research spanning studies on molecular and oscillatory processes to those on the development of large-scale functional networks-in support of a novel model of how such networks can be disrupted by epilepsy. We seek to bridge the gap between research on molecular processes, on the development of human brain circuitry, and on clinical outcomes to propose a model of how epileptic activity disrupts brain development.
Collapse
Affiliation(s)
- Rebecca Reh
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada
| | - Lynne J Williams
- BC Children's Hospital MRI Research Facility, 4480 Oak Street, Vancouver, BC V6H 0B3, Canada
| | - Rebecca M Todd
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada; University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Lawrence M Ward
- University of British Columbia, Department of Psychology, 2136 West Mall, Vancouver BC V6T 1Z4, Canada; University of British Columbia, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
29
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
30
|
Drug development in targeting ion channels for brain edema. Acta Pharmacol Sin 2020; 41:1272-1288. [PMID: 32855530 PMCID: PMC7609292 DOI: 10.1038/s41401-020-00503-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
31
|
Granados-Rojas L, Jerónimo-Cruz K, Juárez-Zepeda TE, Tapia-Rodríguez M, Tovar AR, Rodríguez-Jurado R, Carmona-Aparicio L, Cárdenas-Rodríguez N, Coballase-Urrutia E, Ruíz-García M, Durán P. Ketogenic Diet Provided During Three Months Increases KCC2 Expression but Not NKCC1 in the Rat Dentate Gyrus. Front Neurosci 2020; 14:673. [PMID: 32733191 PMCID: PMC7358437 DOI: 10.3389/fnins.2020.00673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diet, a high fat and low carbohydrate diet, has been used as a non-pharmacological treatment in refractory epilepsy since 1920. In recent years, it has demonstrated to be effective in the treatment of numerous neurological and non-neurological diseases. Some neurological and neuropsychiatric disorders are known to be caused by gamma-aminobutyric acid (GABA)-mediated neurotransmission dysfunction. The strength and polarity of GABA-mediated neurotransmission are determined by the intracellular chloride concentration, which in turn is regulated by cation-chloride cotransporters NKCC1 and KCC2. Currently, it is unknown if the effect of ketogenic diet is due to the modulation of these cotransporters. Thus, we analyzed the effect of a ketogenic diet on the cation-chloride cotransporters expression in the dentate gyrus. We estimated the total number of NKCC1 immunoreactive (NKCC1-IR) neuronal and glial cells by stereology and determined KCC2 labeling intensity by densitometry in the molecular and granule layers as well as in the hilus of dentate gyrus of rats fed with normal or ketogenic diet for 3 months. The results indicated that ketogenic diet provided during 3 months increased KCC2 expression, but not NKCC1 in the dentate gyrus of the rat. The significant increase of KCC2 expression could explain, at least in part, the beneficial effect of ketogenic diet in the diseases where the GABAergic system is altered by increasing its inhibitory efficiency.
Collapse
Affiliation(s)
| | - Karina Jerónimo-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | - Matilde Ruíz-García
- Servicio de Neurología, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Pilar Durán
- Laboratorio de Biología Animal Experimental, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
32
|
Akita T, Fukuda A. Intracellular Cl - dysregulation causing and caused by pathogenic neuronal activity. Pflugers Arch 2020; 472:977-987. [PMID: 32300887 DOI: 10.1007/s00424-020-02375-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
The intracellular Cl- concentration ([Cl-]i) is tightly regulated in brain neurons for stabilizing brain performance. The [Cl-]i in mature neurons is determined by the balance between the rate of Cl- extrusion mainly mediated by the neuron-specific type 2 K+-Cl- cotransporter (KCC2) and the rate of Cl- entry through various Cl- channels including GABAA receptors during neuronal activity. Disturbance of the balance causes instability of brain circuit performance and may lead to epileptic seizures. In the first part of this review, we discuss how genetic alterations in KCC2 in humans cause infantile migrating focal seizures, based on our previous report and others. Depolarization of the membrane potential increases the driving force for Cl- entry into neurons. Thus, the duration of action potential spike generation and the frequency of excitatory synaptic inputs are the crucial factors for determining the total amount of Cl- entry and the equilibrium [Cl-]i in neurons. Moreover, there is also a significant interdependence between the neuronal activity and the KCC2 expression. In the second part, we discuss plausible mechanisms by which excessive neuronal activity due to excitotoxic brain insults or other epilepsy-associated gene mutations may cause the Cl- imbalance in neurons and lead to epileptic discharges over the brain, using the schematic "unifying foci" model based on literature.
Collapse
Affiliation(s)
- Tenpei Akita
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| |
Collapse
|
33
|
Duy PQ, He M, He Z, Kahle KT. Preclinical insights into therapeutic targeting of KCC2 for disorders of neuronal hyperexcitability. Expert Opin Ther Targets 2020; 24:629-637. [PMID: 32336175 DOI: 10.1080/14728222.2020.1762174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Epilepsy is a common neurological disorder of neuronal hyperexcitability that begets recurrent and unprovoked seizures. The lack of a truly satisfactory pharmacotherapy for epilepsy highlights the clinical urgency for the discovery of new drug targets. To that end, targeting the electroneutral K+/Cl- cotransporter KCC2 has emerged as a novel therapeutic strategy for the treatment of epilepsy. AREAS COVERED We summarize the roles of KCC2 in the maintenance of synaptic inhibition and the evidence linking KCC2 dysfunction to epileptogenesis. We also discuss preclinical proof-of-principle studies that demonstrate that augmentation of KCC2 function can reduce seizure activity. Moreover, potential strategies to modulate KCC2 activity for therapeutic benefit are highlighted. EXPERT OPINION Although KCC2 is a promising drug target, questions remain before clinical translation. It is unclear whether increasing KCC2 activity can reverse epileptogenesis, the ultimate curative goal for epilepsy therapy that extends beyond seizure reduction. Furthermore, the potential adverse effects associated with increased KCC2 function have not been studied. Continued investigations into the neurobiology of KCC2 will help to translate promising preclinical insights into viable therapeutic avenues that leverage fundamental properties of KCC2 to treat medically intractable epilepsy and other disorders of failed synaptic inhibition with attendant neuronal hyperexcitability.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine , New Haven, CT, USA
| | - Miao He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Department of Genetics, Yale University School of Medicine , New Haven, CT, USA.,Departments of Pediatrics and Cellular & Molecular Physiology, Yale University School of Medicine , New Haven, CT, USA.,Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale University , New Haven, CT, USA.,Yale Stem Cell Center, Yale School of Medicine , New Haven, CT, USA
| |
Collapse
|
34
|
Chen LY, Lévesque M, Avoli M. KCC2 antagonism and gabaergic synchronization in the entorhinal cortex in the absence of ionotropic glutamatergic receptor signalling. Neuropharmacology 2020; 167:107982. [PMID: 32014449 DOI: 10.1016/j.neuropharm.2020.107982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
γ-Aminobutyric acid (GABA), which is released by interneurons, plays an active role in generating interictal epileptiform spikes during blockade of ionotropic glutamatergic signalling, but it remains unclear whether and how the K+-Cl- cotransporter 2 (KCC2) influences these paroxysmal events. Therefore, we employed tetrode recordings in the in vitro rat entorhinal cortex (EC) to analyze the effects of the KCC2 antagonist VU0463271 on 4-aminopyridine (4AP)-induced interictal spikes that were pharmacologically isolated by applying ionotropic glutamatergic receptor antagonists. After the addition of VU0463271, these interictal spikes continued to occur at similar rates as in control (i.e., during application of 4AP with ionotropic glutamatergic receptor antagonists) but were smaller and shorter. Despite the absence of ionotropic glutamatergic receptor signalling, both interneurons and principal cells increased their firing during interictal spikes. Moreover, we found that KCC2 antagonism increased interneuron firing but decreased principal cell firing during the interictal spike rising phase; in contrast, during the falling phase, interneuron firing decreased in the presence of VU0463271 while no change was observed in principal cell firing. Overall, our results show that KCC2 antagonism enhances interneuron excitability at the onset of interictal spikes generated by the EC neuronal networks during blockade of ionotropic glutamatergic transmission but disrupts later neuronal recruitment.
Collapse
Affiliation(s)
- Li-Yuan Chen
- Montreal Neurological Institute and Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, 3801 University Street, Montreal, H3A 2B4, QC, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute and Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, 3801 University Street, Montreal, H3A 2B4, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, 3801 University Street, Montreal, H3A 2B4, QC, Canada.
| |
Collapse
|
35
|
Mi TW, Sun XW, Wang ZM, Wang YY, He XC, Liu C, Zhang SF, Du HZ, Liu CM, Teng ZQ. Loss of MicroRNA-137 Impairs the Homeostasis of Potassium in Neurons via KCC2. Exp Neurobiol 2020; 29:138-149. [PMID: 32408404 PMCID: PMC7237267 DOI: 10.5607/en19072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropsychiatric disorders are the leading cause of mental and intellectual disabilities worldwide. Current therapies against neuropsychiatric disorders are very limited, and very little is known about the onset and development of these diseases, and their most effective treatments. MIR137 has been previously identified as a risk gene for the etiology of schizophrenia, bipolar disorder, and autism spectrum disorder. Here we generated a forebrain-specific MIR137 knockout mouse model, and provided evidence that loss of miR-137 resulted in impaired homeostasis of potassium in mouse hippocampal neurons. KCC2, a potassium-chloride co-transporter, was a direct downstream target of miR-137. The KCC2 specific antagonist VU0240551 could balance the current of potassium in miR-137 knockout neurons, and knockdown of KCC2 could ameliorate anxiety-like behavior in MIR137 cKO mice. These data suggest that KCC2 antagonists or knockdown might be beneficial to neuropsychiatric disorders due to the deficiency of miR-137.
Collapse
Affiliation(s)
- Ting-Wei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Meng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Feng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
37
|
Lévesque M, Ragsdale D, Avoli M. Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Curr Neuropharmacol 2020; 17:830-842. [PMID: 30479217 PMCID: PMC7052840 DOI: 10.2174/1570159x17666181127124803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
The synchronized activity of neuronal networks under physiological conditions is mirrored by specific oscillatory patterns of the EEG that are associated with different behavioral states and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity characterized by interictal and ictal discharges in epileptic patients and animal models. This review focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in the generation of epileptiform synchronization. For each mechanism, we discuss the actions of antiepileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated currents to prevent seizures in epileptic patients. These findings provide insights into the mechanisms of seizure initiation and maintenance, thus leading to the development of specific pharmacological treatments for focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - David Ragsdale
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada.,Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada.,Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
38
|
Weston M. KCC2 Much Chloride Might Not Be the Only Problem. Epilepsy Curr 2019; 20:43-44. [PMID: 31826658 PMCID: PMC7020531 DOI: 10.1177/1535759719890333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
KCC2 Regulates Neuronal Excitability and Hippocampal Activity via Interaction With Task-3 Channels Goutierre M, Al Awabdh S, Donneger F, et al. Cell Rep. 2019;28(1):91-103.e7. doi:10.1016/j.celrep.2019.06.001. PMID: 31269453. KCC2 regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in numerous neurological and psychiatric disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents is depolarized in KCC2 knockdown neurons, this shift is compensated by depolarization of the resting membrane potential. This reflects downregulation of leak potassium currents. We show KCC2 interacts with TASK-3 (KCNK9) channels and is required for their membrane expression. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis, which could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling which perturb network activity, thus offering additional targets for therapeutic intervention.
Collapse
|
39
|
de Curtis M, Uva L, Lévesque M, Biella G, Avoli M. Piriform cortex ictogenicity in vitro. Exp Neurol 2019; 321:113014. [DOI: 10.1016/j.expneurol.2019.113014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/05/2023]
|
40
|
Chen LY, Lévesque M, Avoli M. KCC2 antagonism increases neuronal network excitability but disrupts ictogenesis in vitro. J Neurophysiol 2019; 122:1163-1173. [PMID: 31339790 DOI: 10.1152/jn.00266.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The potassium-chloride cotransporter 2 (KCC2) plays a role in epileptiform synchronization, but it remains unclear how it influences such a process. Here, we used tetrode recordings in the in vitro rat entorhinal cortex (EC) to analyze the effects of the KCC2 antagonist VU0463271 on 4-aminopyridine (4AP)-induced ictal and interictal activity. During 4AP application, ictal events were associated with significant increases in interneurons and principal cells activities. VU0463271 application transformed ictal discharges to shorter ictal-like events that were not accompanied by significant increases in interneuron or principal cell firing. Interictal events persisted during VU0463271 application at an accelerated frequency of occurrence with significant increases in interneuron and principal cell activity. Further analysis revealed that interneuron and principal cell firing rate during 4AP-induced interictal events were increased after VU0463271 application without changes in synchronicity. Overall, our results demonstrate that in the EC, KCC2 antagonism enhances both interneuron and principal cell excitability, while paradoxically decreasing the ability of neuronal networks to generate structured ictal events.NEW & NOTEWORTHY We are the first to use tetrode recordings in the entorhinal cortex to demonstrate that antagonizing potassium-chloride cotransporter 2 (KCC2) function abolishes ictal discharges and the associated, dynamic changes in single-unit firing in the in vitro 4-aminopyrine model of epileptiform synchronization. Interictal discharges were, however, shorter and more frequent during KCC2 antagonism, while the associated single-unit activity increased, suggesting augmented neuronal excitability. Our findings highlight the complex role of KCC2 in disease pathology.
Collapse
Affiliation(s)
- Li-Yuan Chen
- Montreal Neurological Hospital and Institute, Departments of Neurology and Neurosurgery, and of Physiology, McGill University, Montreal, Canada
| | - Maxime Lévesque
- Montreal Neurological Hospital and Institute, Departments of Neurology and Neurosurgery, and of Physiology, McGill University, Montreal, Canada
| | - Massimo Avoli
- Montreal Neurological Hospital and Institute, Departments of Neurology and Neurosurgery, and of Physiology, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
42
|
Goutierre M, Al Awabdh S, Donneger F, François E, Gomez-Dominguez D, Irinopoulou T, Menendez de la Prida L, Poncer JC. KCC2 Regulates Neuronal Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep 2019; 28:91-103.e7. [PMID: 31269453 DOI: 10.1016/j.celrep.2019.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022] Open
Abstract
KCC2 regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in numerous neurological and psychiatric disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents is depolarized in KCC2 knockdown neurons, this shift is compensated by depolarization of the resting membrane potential. This reflects downregulation of leak potassium currents. We show KCC2 interacts with Task-3 (KCNK9) channels and is required for their membrane expression. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis, which could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling that perturb network activity thus offering additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Emeline François
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Daniel Gomez-Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain
| | - Theano Irinopoulou
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | | | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
43
|
de Curtis M, Librizzi L, Uva L, Gnatkovsky V. GABAA receptor-mediated networks during focal seizure onset and progression in vitro. Neurobiol Dis 2019; 125:190-197. [DOI: 10.1016/j.nbd.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023] Open
|
44
|
Côme E, Marques X, Poncer JC, Lévi S. KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology 2019; 169:107571. [PMID: 30871970 DOI: 10.1016/j.neuropharm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023]
Abstract
Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters (CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are primarily extruding and importing chloride in neurons, respectively. Several neurological and psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the development of pathological activities. CCC activity is determined mainly by their level of expression in the plasma membrane. Furthermore, CCCs undergo "diffusion-trapping" in the membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational modifications i.e. phosphorylation/dephosphorylation of key serine and threonine residues. This represents probably the most rapid cellular mechanism for adapting CCC function to changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring Cl- homeostasis and inhibition under pathological conditions. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Xavier Marques
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
45
|
Amakhin DV, Soboleva EB, Ergina JL, Malkin SL, Chizhov AV, Zaitsev AV. Seizure-Induced Potentiation of AMPA Receptor-Mediated Synaptic Transmission in the Entorhinal Cortex. Front Cell Neurosci 2018; 12:486. [PMID: 30618633 PMCID: PMC6297849 DOI: 10.3389/fncel.2018.00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/29/2018] [Indexed: 11/22/2022] Open
Abstract
Excessive excitation is considered one of the key mechanisms underlying epileptic seizures. We investigated changes in the evoked postsynaptic responses of medial entorhinal cortex (ERC) pyramidal neurons by seizure-like events (SLEs), using the modified 4-aminopyridine (4-AP) model of epileptiform activity. Rat brain slices were perfused with pro-epileptic solution contained 4-AP and elevated potassium and reduced magnesium concentration. We demonstrated that 15-min robust epileptiform activity in slices leads to an increase in the amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated component of the evoked response, as well as an increase in the polysynaptic γ-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) receptor-mediated components. The increase in AMPA-mediated postsynaptic conductance depends on NMDA receptor activation. It persists for at least 15 min after the cessation of SLEs and is partly attributed to the inclusion of calcium-permeable AMPA receptors in the postsynaptic membrane. The mathematical modeling of the evoked responses using the conductance-based refractory density (CBRD) approach indicated that such augmentation of the AMPA receptor function and depolarization by GABA receptors results in prolonged firing that explains the increase in polysynaptic components, which contribute to overall network excitability. Taken together, our data suggest that AMPA receptor enhancement could be a critical determinant of sustained status epilepticus (SE).
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sergey L Malkin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anton V Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia.,Ioffe Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
46
|
Brandt C, Seja P, Töllner K, Römermann K, Hampel P, Kalesse M, Kipper A, Feit PW, Lykke K, Toft-Bertelsen TL, Paavilainen P, Spoljaric I, Puskarjov M, MacAulay N, Kaila K, Löscher W. Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy. Neuropharmacology 2018; 143:186-204. [DOI: 10.1016/j.neuropharm.2018.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/30/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
|
47
|
The role of convergent ion channel pathways in microglial phenotypes: a systematic review of the implications for neurological and psychiatric disorders. Transl Psychiatry 2018; 8:259. [PMID: 30498192 PMCID: PMC6265266 DOI: 10.1038/s41398-018-0318-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Increases in the activated state of microglia, the main neuroimmune cells, are widely reported in the brains of patients with neurological and psychiatric disorders. Microglia transform from the resting to the activated state by sensing their environment, aided by a variety of ion channels. To examine the effect of ion channels on microglial phenotypes, we conducted a systematic review of immunohistochemical analyses of these neuroimmune cells in animal models following administration of ion channel antagonists, compared to control conditions. A systematic search of the PubMed and Web of Science electronic databases using the PRISMA and WHO methodologies for systematic reviews yielded 15 original peer-reviewed studies. The majority (13 out of 15) of these studies reported a decrease in microglial activated state after ion signaling pharmacological blockade. The studies provide evidence that acute administration of ion channel antagonists leads to a reduction in microglial activation in rodent brains in the models for epilepsy, Parkinson's disease, inflammation, pain, ischemia, and brain and spinal cord injury. Future research should explore microglial-specific druggable targets for neurological and psychiatric disorders. The investigation of acute and chronic administration of ion channel antagonists in microglial phenotypes in primates and the development of microglia-like cells derived from human stem cells could be valuable sources in this direction.
Collapse
|
48
|
Weiss SA, Staba R, Bragin A, Moxon K, Sperling M, Avoli M, Engel J. "Interneurons and principal cell firing in human limbic areas at focal seizure onset". Neurobiol Dis 2018; 124:183-188. [PMID: 30471414 DOI: 10.1016/j.nbd.2018.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shennan A Weiss
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Richard Staba
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anatol Bragin
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Moxon
- Dept. of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Michael Sperling
- Depts. of Neurology and Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Massimo Avoli
- Montreal Neurological Institute, Depts. of Neurology & Neurosurgery and of Physiology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jerome Engel
- Dept. of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurobiology, Dept. of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Awad PN, Amegandjin CA, Szczurkowska J, Carriço JN, Fernandes do Nascimento AS, Baho E, Chattopadhyaya B, Cancedda L, Carmant L, Di Cristo G. KCC2 Regulates Dendritic Spine Formation in a Brain-Region Specific and BDNF Dependent Manner. Cereb Cortex 2018; 28:4049-4062. [PMID: 30169756 PMCID: PMC6188549 DOI: 10.1093/cercor/bhy198] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023] Open
Abstract
KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.
Collapse
Affiliation(s)
- Patricia Nora Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Clara Akofa Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Joanna Szczurkowska
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Laura Cancedda
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
- Telethon Dulbecco Institute, Italy
| | - Lionel Carmant
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
50
|
Lévesque M, Avoli M. Carbachol-Induced theta-like oscillations in the rodent brain limbic system: Underlying mechanisms and significance. Neurosci Biobehav Rev 2018; 95:406-420. [PMID: 30381251 DOI: 10.1016/j.neubiorev.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
Theta oscillations (4-12 Hz) represent one of the most prominent physiological oscillatory activity in the mammalian EEG. They are observed in several areas of the hippocampus and in parahippocampal structures. Theta oscillations play important roles in modulating synaptic plasticity during memory and learning; moreover, they are dependent on septal cholinergic inputs. Theta oscillations can be reproduced in vitro in several regions of the temporal lobe in the absence of the septum by employing the cholinergic agonist carbachol (CCh). Here, we review the mechanisms underlying CCh-induced theta oscillations. We address: (i) the ability of temporal lobe neuronal networks to oscillate independently at theta frequency during CCh treatment; (ii) the contribution of intrinsic ionic currents; (iii) the participation of principal cells and interneurons; and (iv) their pharmacological profiles. We also discuss the similarities between CCh-induced theta oscillations and physiological type II theta activity, as well as their roles in synaptic plasticity. Finally, we consider experimental evidence pointing to the contribution of spontaneous and CCh-induced theta activity to epileptiform synchronization.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, PQ, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, 3801 University Street, Montréal, PQ, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|