1
|
Li L, Lixia D, Gan G, Li J, Yang L, Wu Y, Fang Z, Zhang X. Astrocytic HILPDA promotes lipid droplets generation to drive cognitive dysfunction in mice with sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14758. [PMID: 38757390 PMCID: PMC11099789 DOI: 10.1111/cns.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of PediatricXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Du Lixia
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Guifen Gan
- Department of Critical Care MedicineQinghai University Affiliated HospitalXiningQinghaiChina
| | - Jin Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - You Wu
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Zongping Fang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Critical Care MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
2
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Hooshmandi M, Sharma V, Thörn Perez C, Sood R, Krimbacher K, Wong C, Lister KC, Ureña Guzmán A, Bartley TD, Rocha C, Maussion G, Nadler E, Roque PM, Gantois I, Popic J, Lévesque M, Kaufman RJ, Avoli M, Sanz E, Nader K, Hagerman RJ, Durcan TM, Costa-Mattioli M, Prager-Khoutorsky M, Lacaille JC, Martinez-Cerdeno V, Gibson JR, Huber KM, Sonenberg N, Gkogkas CG, Khoutorsky A. Excitatory neuron-specific suppression of the integrated stress response contributes to autism-related phenotypes in fragile X syndrome. Neuron 2023; 111:3028-3040.e6. [PMID: 37473758 PMCID: PMC10592416 DOI: 10.1016/j.neuron.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Vijendra Sharma
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Carolina Thörn Perez
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Rapita Sood
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Konstanze Krimbacher
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Kevin C Lister
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Alba Ureña Guzmán
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Trevor D Bartley
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, MIND Institute, UC Davis Medical Center, Sacramento, CA, USA
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emma Nadler
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Patricia Margarita Roque
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, QC, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology & Neurosurgery and of Physiology, McGill University, Montréal, QC, Canada
| | - Elisenda Sanz
- Department of Cell Biology, Physiology and Immunology, and Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Karim Nader
- Department of Psychology, Faculty of Science, McGill University, Montréal, QC, Canada
| | - Randi Jenssen Hagerman
- MIND Institute and Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | | | | | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, and Research Group on Neural Signaling and Circuitry, Université de Montréal, Montréal, QC, Canada
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, MIND Institute, UC Davis Medical Center, Sacramento, CA, USA
| | - Jay R Gibson
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, QC, Canada.
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Conte C, Baldi E, Bucherelli C, di Vito R, Petri D, Traina G. Modulation of synapse-related gene expression in the cerebellum and prefrontal cortex of rats subjected to the contextual fear conditioning paradigm. Neurobiol Learn Mem 2023:107776. [PMID: 37236300 DOI: 10.1016/j.nlm.2023.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/22/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The contextual fear conditioning (CFC) paradigm is the most productive approach for understanding the neurobiology of learning and memory as it allows to follow the evolution of memory traces of a conditioned stimulus and a specific context. The formation of long-term memory involves alterations in synaptic efficacy and neural transmission. It is known that the prefrontal cortex (PFC) exerts top-down control over subcortical structures to regulate behavioural responses. Moreover, cerebellar structures are involved in storing conditioned responses. The purpose of this research was to determine if the response to conditioning and stressful challenge is associated with alterations in synapse-related genes mRNA levels in the PFC, cerebellar vermis (V), and hemispheres (H) of young adult male rats. Four groups of Wistar rats were examined: naïve, CFC, shock only (SO), and exploration (EXPL). The behavioural response was evaluated by measuring the total freezing duration. Real-Time PCR was employed to quantify mRNA levels of some genes involved in synaptic plasticity. The results obtained from this study showed alterations in gene expression in different synapse-related genes after exposure to stressful stimuli and positioning to new environment. In conclusion, conditioning behavioural stimuli change the expression profile of molecules involved in neural transmission.
Collapse
Affiliation(s)
- Carmela Conte
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Romana, 06126, Perugia, Italy.
| | - Elisabetta Baldi
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Viale G.B. Morgagni, 63, 50134, Firenze, Italy.
| | - Corrado Bucherelli
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Viale G.B. Morgagni, 63, 50134, Firenze, Italy.
| | - Raffaella di Vito
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Romana, 06126, Perugia, Italy.
| | - Davide Petri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, via San Zeno 37, 56123 Pisa, Italy.
| | - Giovanna Traina
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via Romana, 06126, Perugia, Italy.
| |
Collapse
|
5
|
Patil S, Chalkiadaki K, Mergiya TF, Krimbacher K, Amorim IS, Akerkar S, Gkogkas CG, Bramham CR. eIF4E phosphorylation recruits β-catenin to mRNA cap and promotes Wnt pathway translation in dentate gyrus LTP maintenance. iScience 2023; 26:106649. [PMID: 37250335 PMCID: PMC10214474 DOI: 10.1016/j.isci.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, β-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.
Collapse
Affiliation(s)
- Sudarshan Patil
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Tadiwos F. Mergiya
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Konstanze Krimbacher
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Inês S. Amorim
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Shreeram Akerkar
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Clive R. Bramham
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Chalkiadaki K, Hooshmandi M, Lach G, Statoulla E, Simbriger K, Amorim IS, Kouloulia S, Zafeiri M, Pothos P, Bonneil É, Gantois I, Popic J, Kim SH, Wong C, Cao R, Komiyama NH, Atlasi Y, Jafarnejad SM, Khoutorsky A, Gkogkas CG. Mnk1/2 kinases regulate memory and autism-related behaviours via Syngap1. Brain 2023; 146:2175-2190. [PMID: 36315645 PMCID: PMC10411928 DOI: 10.1093/brain/awac398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
MAPK interacting protein kinases 1 and 2 (Mnk1/2) regulate a plethora of functions, presumably via phosphorylation of their best characterized substrate, eukaryotic translation initiation factor 4E (eIF4E) on Ser209. Here, we show that, whereas deletion of Mnk1/2 (Mnk double knockout) impairs synaptic plasticity and memory in mice, ablation of phospho-eIF4E (Ser209) does not affect these processes, suggesting that Mnk1/2 possess additional downstream effectors in the brain. Translational profiling revealed only a small overlap between the Mnk1/2- and phospho-eIF4E(Ser209)-regulated translatome. We identified the synaptic Ras GTPase activating protein 1 (Syngap1), encoded by a syndromic autism gene, as a downstream target of Mnk1 because Syngap1 immunoprecipitated with Mnk1 and showed reduced phosphorylation (S788) in Mnk double knockout mice. Knockdown of Syngap1 reversed memory deficits in Mnk double knockout mice and pharmacological inhibition of Mnks rescued autism-related phenotypes in Syngap1+/- mice. Thus, Syngap1 is a downstream effector of Mnk1, and the Mnks-Syngap1 axis regulates memory formation and autism-related behaviours.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Mehdi Hooshmandi
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal H3A 0G1, Canada
| | - Gilliard Lach
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elpida Statoulla
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Konstanze Simbriger
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ines S Amorim
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Kouloulia
- Centre for Discovery Brain Sciences and The Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maria Zafeiri
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Panagiotis Pothos
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centreville, Montréal H3C 3J7, Canada
| | - Ilse Gantois
- Goodman Cancer Institute and Biochemistry Department, McGill University, Montréal H3A 1A3, Canada
| | - Jelena Popic
- Goodman Cancer Institute and Biochemistry Department, McGill University, Montréal H3A 1A3, Canada
| | - Sung-Hoon Kim
- Goodman Cancer Institute and Biochemistry Department, McGill University, Montréal H3A 1A3, Canada
| | - Calvin Wong
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal H3A 0G1, Canada
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Noboru H Komiyama
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montréal H3A 0G1, Canada
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
7
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|