1
|
Wehrman JJ, Chung CC, Sanders R. Anaesthetics and time perception: A review. Q J Exp Psychol (Hove) 2024; 77:1898-1910. [PMID: 36453756 DOI: 10.1177/17470218221144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Consciousness requires subjective experience in the "now." Establishing "now," however, necessitates temporal processing. In the current article, we review one method of altering consciousness, anaesthetic drug administration, and its effects on perceived duration. We searched PubMed, PsycInfo, and ScienceDirect databases, and article reference sections, for combinations of anaesthetic drugs and time perception tasks, finding a total of 36 articles which met our inclusion criteria. We categorised these articles with regard to whether they altered the felt passage of time, short or long interval timing, or were motor timing tasks. We found that various drugs alter the perceived passage of time; ketamine makes time subjectively slow down while GABAergic drugs make time subjectively speed up. At a short interval there is little established evidence of a shift in time perception, though temporal estimates appear more variable. Similarly, when asked to use time to optimise responses (i.e., in motor timing tasks), various anaesthetic agents make timing more variable. Longer durations are estimated as lasting longer than their objective duration, though there is some variation across articles in this regard. We conclude by proposing further experiments to examine time perception under altered states of consciousness and ask whether it is possible to perceive the passage of time of events which do not necessarily reach the level of conscious perception. The variety of methods used raises the need for more systematic investigations of time perception under anaesthesia. We encourage future investigations into the overlap of consciousness and time perception to advance both fields.
Collapse
Affiliation(s)
| | - Clara C Chung
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
2
|
Alluri RK, Rose GJ, McDowell J, Mukhopadhyay A, Leary CJ, Graham JA, Vasquez-Opazo GA. How auditory neurons count temporal intervals and decode information. Proc Natl Acad Sci U S A 2024; 121:e2404157121. [PMID: 39159380 PMCID: PMC11363261 DOI: 10.1073/pnas.2404157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
The numerical sense of animals includes identifying the numerosity of a sequence of events that occur with specific intervals, e.g., notes in a call or bar of music. Across nervous systems, the temporal patterning of spikes can code these events, but how this information is decoded (counted) remains elusive. In the anuran auditory system, temporal information of this type is decoded in the midbrain, where "interval-counting" neurons spike only after at least a threshold number of sound pulses have occurred with specific timing. We show that this decoding process, i.e., interval counting, arises from integrating phasic, onset-type and offset inhibition with excitation that augments across successive intervals, possibly due to a progressive decrease in "shunting" effects of inhibition. Because these physiological properties are ubiquitous within and across central nervous systems, interval counting may be a general mechanism for decoding diverse information coded/encoded in temporal patterns of spikes, including "bursts," and estimating elapsed time.
Collapse
Affiliation(s)
- Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Jamie McDowell
- Department of Psychology, University of California, Los Angeles, CA90095
| | | | | | - Jalina A. Graham
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | | |
Collapse
|
3
|
Penna M, Araya C, Cañete M. Diversity of temporal response patterns in midbrain auditory neurons of frogs Batrachyla and its relevance for male vocal responses. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:89-103. [PMID: 36136121 DOI: 10.1007/s00359-022-01572-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023]
Abstract
We investigated response selectivities of single auditory neurons in the torus semicircularis of male frogs Batrachyla leptopus (72 neurons) and B. taeniata (57 neurons) to synthetic stimuli of different temporal structures. Series of stimuli in which note and pulse rate, note and pulse structure and call duration varied systematically were presented. Neuronal responses quantified in terms of proportions of units displaying diverse temporal transfer functions are related in different modes with patterns of evoked vocal responses studied previously in these frogs. Correspondences and mismatches occurred between the auditory and vocal domains. The analysis of this evidence together with corresponding information from previous neuronal and behavioral studies in the third species of this genus, B. antartandica, indicates that different modes of preferences for acoustic communication signals can coexist within this anuran group.
Collapse
Affiliation(s)
- Mario Penna
- Program of Physiology and Biophysics, Faculty of Medicine, University of Chile, 8380453, Santiago, Chile.
| | - Cristián Araya
- Program of Physiology and Biophysics, Faculty of Medicine, University of Chile, 8380453, Santiago, Chile
| | - Marcelo Cañete
- Program of Physiology and Biophysics, Faculty of Medicine, University of Chile, 8380453, Santiago, Chile
| |
Collapse
|
4
|
Gupta S, Alluri RK, Rose GJ, Bee MA. Neural basis of acoustic species recognition in a cryptic species complex. J Exp Biol 2021; 224:jeb243405. [PMID: 34796902 PMCID: PMC10658901 DOI: 10.1242/jeb.243405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
Abstract
Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
| | - Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Ospina OE, Lemmon AR, Dye M, Zdyrski C, Holland S, Stribling D, Kortyna ML, Lemmon EM. Neurogenomic divergence during speciation by reinforcement of mating behaviors in chorus frogs (Pseudacris). BMC Genomics 2021; 22:711. [PMID: 34600496 PMCID: PMC8487493 DOI: 10.1186/s12864-021-07995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Species interactions can promote mating behavior divergence, particularly when these interactions are costly due to maladaptive hybridization. Selection against hybridization can indirectly cause evolution of reproductive isolation within species, a process termed cascade reinforcement. This process can drive incipient speciation by generating divergent selection pressures among populations that interact with different species assemblages. Theoretical and empirical studies indicate that divergent selection on gene expression networks has the potential to increase reproductive isolation among populations. After identifying candidate synaptic transmission genes derived from neurophysiological studies in anurans, we test for divergence of gene expression in a system undergoing cascade reinforcement, the Upland Chorus Frog (Pseudacris feriarum). RESULTS Our analyses identified seven candidate synaptic transmission genes that have diverged between ancestral and reinforced populations of P. feriarum, including five that encode synaptic vesicle proteins. Our gene correlation network analyses revealed four genetic modules that have diverged between these populations, two possessing a significant concentration of neurotransmission enrichment terms: one for synaptic membrane components and the other for metabolism of the neurotransmitter nitric oxide. We also ascertained that a greater number of genes have diverged in expression by geography than by sex. Moreover, we found that more genes have diverged within females as compared to males between populations. Conversely, we observed no difference in the number of differentially-expressed genes within the ancestral compared to the reinforced population between the sexes. CONCLUSIONS This work is consistent with the idea that divergent selection on mating behaviors via cascade reinforcement contributed to evolution of gene expression in P. feriarum. Although our study design does not allow us to fully rule out the influence of environment and demography, the fact that more genes diverged in females than males points to a role for cascade reinforcement. Our discoveries of divergent candidate genes and gene networks related to neurotransmission support the idea that neural mechanisms of acoustic mating behaviors have diverged between populations, and agree with previous neurophysiological studies in frogs. Increasing support for this hypothesis, however, will require additional experiments under common garden conditions. Our work points to the importance of future replicated and tissue-specific studies to elucidate the relative contribution of gene expression divergence to the evolution of reproductive isolation during incipient speciation.
Collapse
Affiliation(s)
- Oscar E Ospina
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
- Present address: Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 13131 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL, 32306, USA
| | - Mysia Dye
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
| | - Christopher Zdyrski
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
- Present address: Genetics and Genomics Program, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Sean Holland
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
| | - Daniel Stribling
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
- Present address: Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Michelle L Kortyna
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA
| | - Emily Moriarty Lemmon
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, 50011, Ames, IA, USA.
| |
Collapse
|