1
|
Vlasenko YA, To AJ, Fortier T, Evans NM, Lindsay CJ, Palermo PJ, Dieckmann T, Murphy GK. Synthesis and Application of D- and 13C-Labelled tert-Butyl Hoechst Dye. J Labelled Comp Radiopharm 2024; 67:425-430. [PMID: 39441744 DOI: 10.1002/jlcr.4123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Herein, the successful syntheses of D3- and 13C-N-methyl and D9-tert-butyl Hoechst dyes are presented. This includes the preparation of the labelled D3- and 13C-N-methyl piperazines and D9-tert-butylated hydroxytoluene precursors. The tert-butyl Hoechst dye is known to bind a specific RNA aptamer. Spectroscopic NMR studies of the labelled Hoechst dye-aptamer complexes allowed for the unambiguous assignment of chemical shifts, as well as the dynamics of the bound dye.
Collapse
Affiliation(s)
- Yulia A Vlasenko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Avery J To
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Tess Fortier
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Natasha M Evans
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Cole J Lindsay
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Peter J Palermo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Pechlaner M, van Gunsteren WF, Smith LJ, Stankiewicz B, Wirz LN, Hansen N. Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach. J Chem Inf Model 2024; 64:4781-4801. [PMID: 38861396 DOI: 10.1021/acs.jcim.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distribution cannot be measured, it is standard practice to use a particular orientation distribution of the molecule with respect to the magnetic field, in the form of a so-called alignment tensor (AT), to calculate RDC-values for the molecule. Since the same alignment tensor is commonly used to calculate the different RDCs of a molecule, this approach rests on the assumption that the rotational motion of the molecule is decoupled from its internal motions and that the molecule is rigid. The validity of these two assumptions is investigated for a small, simple molecule, using a relatively rigid atomic interaction function or force field and a more flexible one. By simulating the molecule using an orientation-biasing force an anisotropic rotational distribution can be generated, for which RDCs can be obtained. Using these RDCs as target RDCs when applying one of the two approaches of structure refinement based on RDCs, it can be investigated how well the target RDCs are approximated in the RDC restraining and whether the corresponding nonuniform orientation distribution is reproduced. For the relatively rigid version of the molecule, the AT approach reproduces the target RDC-values, although the nonuniform orientation distribution of the angle θab,H between the vector r⃗ab connecting two atoms a and b in the molecule and the vector representing the direction of the magnetic field H⃗ as generated in the orientation-biasing simulation cannot be reproduced in the AT RDC-restraining simulation. For the relatively flexible version of the molecule, the AT approach fails to reproduce both the target RDC values and the nonuniform orientation distribution. For biomolecules with flexible parts, the application of the AT approach is thus not recommended. Instead, a method based on sampling of the rotational and internal degrees of freedom of the molecule should be applied in molecular structure determination or refinement based on measured RDCs.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute for Molecular Physical Science, Swiss Federal Institute of Technology, ETH, CH-8093 Zurich, Switzerland
| | - Wilfred F van Gunsteren
- Institute for Molecular Physical Science, Swiss Federal Institute of Technology, ETH, CH-8093 Zurich, Switzerland
| | - Lorna J Smith
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Bartosz Stankiewicz
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Lukas N Wirz
- Department of Chemistry, University of Helsinki, P.O. Box 55, A.I. Virtasen Aukio 1, FIN-00014 Helsinki, Finland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Cao SM, Wu H, Yuan GH, Pan YH, Zhang J, Liu YX, Li S, Xu YF, Wei MY, Yang L, Chen LL. Altered nucleocytoplasmic export of adenosine-rich circRNAs by PABPC1 contributes to neuronal function. Mol Cell 2024; 84:2304-2319.e8. [PMID: 38838666 DOI: 10.1016/j.molcel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.
Collapse
Affiliation(s)
- Shi-Meng Cao
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Wu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Hua Yuan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yu-Hang Pan
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Xin Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Siqi Li
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Feng Xu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Yuan Wei
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
4
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Nicastro G, Abis G, Klein P, Esteban-Serna S, Gallagher C, Chaves-Arquero B, Cai Y, Figueiredo AM, Martin SR, Patani R, Taylor IA, Ramos A. Direct m6A recognition by IMP1 underlays an alternative model of target selection for non-canonical methyl-readers. Nucleic Acids Res 2023; 51:8774-8786. [PMID: 37377445 PMCID: PMC10484666 DOI: 10.1093/nar/gkad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pierre Klein
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sofia Esteban-Serna
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Christopher Gallagher
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Belen Chaves-Arquero
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Yuyang Cai
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Stephen R Martin
- Structural Biology Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
6
|
Xue Y, Ucieklak K, Gohil S, Niedziela T, Nestor G, Sandström C. Metabolic labeling of hyaluronan: Biosynthesis and quantitative analysis of 13C, 15N-enriched hyaluronan by NMR and MS-based methods. Carbohydr Res 2023; 531:108888. [PMID: 37390793 DOI: 10.1016/j.carres.2023.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Hyaluronan (HA), a member of the GAG family of glycans, has many diverse biological functions that vary a lot depending on the length of the HA chain and its concentration. A better understanding of the structure of different-sized HA at the atomic level is therefore crucial to decipher these biological functions. NMR is a method of choice for conformational studies of biomolecules, but there are limitations due to the low natural abundance of the NMR active nuclei 13C and 15N. We describe here the metabolic labeling of HA using the bacterium Streptococcus equi subsp. Zooepidemicus and the subsequent analysis by NMR and mass spectrometry. The level of 13C and 15N isotope enrichment at each position was determined quantitatively by NMR spectroscopy and was further confirmed by high-resolution mass spectrometry analysis. This study provides a valid methodological approach that can be applied to the quantitative assessment of isotopically labeled glycans and will help improve detection capabilities and facilitate future structure-function relationship analysis of complex glycans.
Collapse
Affiliation(s)
- Yan Xue
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Karolina Ucieklak
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland.
| | - Suresh Gohil
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland.
| | - Gustav Nestor
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
7
|
Aguion PI, Marchanka A, Carlomagno T. Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy. J Struct Biol X 2022; 6:100072. [PMID: 36090770 PMCID: PMC9449856 DOI: 10.1016/j.yjsbx.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Solid-state NMR (ssNMR) has become a well-established technique to study large and insoluble protein assemblies. However, its application to nucleic acid-protein complexes has remained scarce, mainly due to the challenges presented by overlapping nucleic acid signals. In the past decade, several efforts have led to the first structure determination of an RNA molecule by ssNMR. With the establishment of these tools, it has become possible to address the problem of structure determination of nucleic acid-protein complexes by ssNMR. Here we review first and more recent ssNMR methodologies that study nucleic acid-protein interfaces by means of chemical shift and peak intensity perturbations, direct distance measurements and paramagnetic effects. At the end, we review the first structure of an RNA-protein complex that has been determined from ssNMR-derived intermolecular restraints.
Collapse
Affiliation(s)
- Philipp Innig Aguion
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Teresa Carlomagno
- School of Biosciences/College of Life and Enviromental Sciences, Institute of Cancer and Genomic Sciences/College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Sagae T, Yokogawa M, Sawazaki R, Ishii Y, Hosoda N, Hoshino SI, Imai S, Shimada I, Osawa M. Paip2A inhibits translation by competitively binding to the RNA recognition motifs of PABPC1 and promoting its dissociation from the poly(A) tail. J Biol Chem 2022; 298:101844. [PMID: 35307347 PMCID: PMC9019252 DOI: 10.1016/j.jbc.2022.101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic mRNAs possess a poly(A) tail at their 3′-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1–poly(A) and PABPC1–Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2–RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 μM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 μM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.
Collapse
Affiliation(s)
- Takeru Sagae
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Ryoichi Sawazaki
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Yuichiro Ishii
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Nao Hosoda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Shin-Ichi Hoshino
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Paithankar H, Tarang GS, Parvez F, Marathe A, Joshi M, Chugh J. Inherent conformational plasticity in dsRBDs enables interaction with topologically distinct RNAs. Biophys J 2022; 121:1038-1055. [PMID: 35134335 PMCID: PMC8943759 DOI: 10.1016/j.bpj.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/25/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022] Open
Abstract
Many double-stranded RNA-binding domains (dsRBDs) interact with topologically distinct dsRNAs in biological pathways pivotal to viral replication, cancer causation, neurodegeneration, and so on. We hypothesized that the adaptability of dsRBDs is essential to target different dsRNA substrates. A model dsRBD and a few dsRNAs, slightly different in shape from each other, were used to test the systematic shape dependence of RNA on the dsRBD-binding using nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. NMR-based titrations showed a distinct binding pattern for the dsRBD with the topologically distinct dsRNAs. The line broadening upon RNA binding was observed to cluster in the residues lying in close proximity, thereby suggesting an RNA-induced conformational exchange in the dsRBD. Further, while the intrinsic microsecond dynamics observed in the apo-dsRBD were found to quench upon binding with the dsRNA, the microsecond dynamics got induced at residues spatially proximal to quench sites upon binding with the dsRNA. This apparent relay of conformational exchange suggests the significance of intrinsic dynamics to help adapt the dsRBD to target various dsRNA-shapes. The conformational pool visualized in MD simulations for the apo-dsRBD reported here has also been observed to sample the conformations seen previously for various dsRBDs in apo- and in dsRNA-bound state structures, further suggesting the conformational adaptability of the dsRBDs. These investigations provide a dynamic basis for the substrate promiscuity for dsRBD proteins.
Collapse
Affiliation(s)
- Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Guneet Singh Tarang
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Aniket Marathe
- Bioinformatics Center, Savitrabai Phule Pune University, Pune, Maharashtra, India
| | - Manali Joshi
- Bioinformatics Center, Savitrabai Phule Pune University, Pune, Maharashtra, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India; Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India.
| |
Collapse
|
10
|
Riad M, Hopkins N, Baronti L, Karlsson H, Schlagnitweit J, Petzold K. Mutate-and-chemical-shift-fingerprint (MCSF) to characterize excited states in RNA using NMR spectroscopy. Nat Protoc 2021; 16:5146-5170. [PMID: 34608336 DOI: 10.1038/s41596-021-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
It is important to understand the dynamics and higher energy structures of RNA, called excited states, to achieve better understanding of RNA function. R1ρ relaxation dispersion NMR spectroscopy (RD) determines chemical shift differences between the most stable, ground state and the short-lived, low-populated excited states. We describe a procedure for deducing the excited state structure from these chemical shift differences using the mutate-and-chemical-shift-fingerprint (MCSF) method, which requires ~2-6 weeks and moderate understanding of NMR and RNA structure. We recently applied the MCSF methodology to elucidate the excited state of microRNA 34a targeting the SIRT1 mRNA and use this example to demonstrate the analysis. The protocol comprises the following steps: (i) determination of the secondary structure of the excited state from RD chemical shift data, (ii) design of trapped excited state RNA, (iii) validation of the excited state structure by NMR, and (iv) MCSF analysis comparing the chemical shifts of the trapped excited state with the RD-derived chemical shift differences. MCSF enables observation of the short-lived RNA structures, which can be functionally and structurally characterized by entrapment.
Collapse
Affiliation(s)
- Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Noah Hopkins
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R, Salmon L, Allain FHT, Meier BH, Wiegand T. Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J Phys Chem B 2020; 124:11089-11097. [PMID: 33238710 PMCID: PMC7734624 DOI: 10.1021/acs.jpcb.0c08150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Protein–nucleic
acid interactions are essential in a variety
of biological events ranging from the replication of genomic DNA to
the synthesis of proteins. Noncovalent interactions guide such molecular
recognition events, and protons are often at the center of them, particularly
due to their capability of forming hydrogen bonds to the nucleic acid
phosphate groups. Fast magic-angle spinning experiments (100 kHz)
reduce the proton NMR line width in solid-state NMR of fully protonated
protein–DNA complexes to such an extent that resolved proton
signals from side-chains coordinating the DNA can be detected. We
describe a set of NMR experiments focusing on the detection of protein
side-chains from lysine, arginine, and aromatic amino acids and discuss
the conclusions that can be obtained on their role in DNA coordination.
We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed
with DNA and characterize protein–DNA contacts in the presence
and absence of bound ATP molecules.
Collapse
Affiliation(s)
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pengzhi Wu
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Loic Salmon
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Yadav DK, Zigáčková D, Zlobina M, Klumpler T, Beaumont C, Kubíčková M, Vaňáčová Š, Lukavsky PJ. Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res 2020; 48:2091-2106. [PMID: 31875226 PMCID: PMC7038937 DOI: 10.1093/nar/gkz1163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Staufen1 (STAU1) is a dsRNA binding protein mediating mRNA transport and localization, translational control and STAU1-mediated mRNA decay (SMD). The STAU1 binding site (SBS) within human ADP-ribosylation factor1 (ARF1) 3′UTR binds STAU1 and this downregulates ARF1 cytoplasmic mRNA levels by SMD. However, how STAU1 recognizes specific mRNA targets is still under debate. Our structure of the ARF1 SBS–STAU1 complex uncovers target recognition by STAU1. STAU1 dsRNA binding domain (dsRBD) 4 interacts with two pyrimidines and one purine from the minor groove side via helix α1, the β1–β2 loop anchors the dsRBD at the end of the dsRNA and lysines in helix α2 bind to the phosphodiester backbone from the major groove side. STAU1 dsRBD3 displays the same binding mode with specific recognition of one guanine base. Mutants disrupting minor groove recognition of ARF1 SBS affect in vitro binding and reduce SMD in vivo. Our data thus reveal how STAU1 recognizes minor groove features in dsRNA relevant for target selection.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Dagmar Zigáčková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Maria Zlobina
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Tomáš Klumpler
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Christelle Beaumont
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Monika Kubíčková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Peter J Lukavsky
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
14
|
Site-Specific Spin Labeling of RNA for NMR and EPR Structural Studies. Methods Mol Biol 2020. [PMID: 32006317 DOI: 10.1007/978-1-0716-0278-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Many RNA architectures were discovered to be involved in essential biological pathways acting as catalysts and/or regulators of gene expression, transcription, translation, splicing, or viral infection. The key to understand their diverse biological functions is to investigate their structure and dynamic. Nuclear Magnetic Resonance (NMR) is a powerful method to gain insight into these properties. However, the study of high-molecular-weight RNAs by NMR remains challenging. Advances in biochemical and NMR methods over the recent years allow to overcome the limitation of NMR. In particular, the incorporation of paramagnetic probes, coupled to the measurement of the induced effects on nuclear spins, has become an efficient tool providing long-range distance restraints and information on dynamic in solution. At the same time, the use of spin label enabled the application of Electron Paramagnetic Resonance (EPR) to study biological macromolecules. Combining NMR and EPR is emerging as a new approach to investigate the architecture of biological systems.Here, we describe an efficient protocol to introduce a paramagnetic probe into a RNA at a specific position. This method enables various combinations of isotopic labeling for NMR and is also of interest for EPR studies.
Collapse
|
15
|
Integrative Structural Biology of Protein-RNA Complexes. Structure 2020; 28:6-28. [DOI: 10.1016/j.str.2019.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
16
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
17
|
Leitner A, Dorn G, Allain FHT. Combining Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy for Integrative Structural Biology of Protein-RNA Complexes. Cold Spring Harb Perspect Biol 2019; 11:a032359. [PMID: 31262947 PMCID: PMC6601463 DOI: 10.1101/cshperspect.a032359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deciphering complex RNA-protein interactions on a (near-)atomic level is a hurdle that hinders advancing our understanding of fundamental processes in RNA metabolism and RNA-based gene regulation. To overcome challenges associated with individual structure determination methods, structural information derived from complementary biophysical methods can be combined in integrative structural biology approaches. Here, we review recent advances in such hybrid structural approaches with a focus on combining mass spectrometric analysis of cross-linked protein-RNA complexes and nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Georg Dorn
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites 2019; 9:E123. [PMID: 31252628 PMCID: PMC6680826 DOI: 10.3390/metabo9070123] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raja Roy
- Centre of Biomedical Research, Formerly, Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Uttar Pradesh 226014, India
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - G A Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA
| | - Fatimah Alahmari
- Department of NanoMedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada
| |
Collapse
|
19
|
Thompson RD, Baisden JT, Zhang Q. NMR characterization of RNA small molecule interactions. Methods 2019; 167:66-77. [PMID: 31128236 DOI: 10.1016/j.ymeth.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/25/2023] Open
Abstract
Exciting discoveries of naturally occurring ligand-sensing and disease-linked noncoding RNAs have promoted significant interests in understanding RNA-small molecule interactions. NMR spectroscopy is a powerful tool for characterizing intermolecular interactions. In this review, we describe protocols and approaches for applying NMR spectroscopy to investigate interactions between RNA and small molecules. We review protocols for RNA sample preparation, methods for identifying RNA-binding small molecules, approaches for mapping RNA-small molecule interactions, determining complex structures, and characterizing binding kinetics. We hope this review will provide a guideline to streamline NMR applications in studying RNA-small molecule interactions, facilitating both basic mechanistic understandings of RNA functions and translational efforts in developing RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Rhese D Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
van Emmerik CL, van Ingen H. Unspinning chromatin: Revealing the dynamic nucleosome landscape by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:1-19. [PMID: 30803691 DOI: 10.1016/j.pnmrs.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 05/09/2023]
Abstract
NMR is an essential technique for obtaining information at atomic resolution on the structure, motions and interactions of biomolecules. Here, we review the contribution of NMR to our understanding of the fundamental unit of chromatin: the nucleosome. Nucleosomes compact the genome by wrapping the DNA around a protein core, the histone octamer, thereby protecting genomic integrity. Crucially, the imposed barrier also allows strict regulation of gene expression, DNA replication and DNA repair processes through an intricate system of histone and DNA modifications and a wide range of interactions between nucleosomes and chromatin factors. In this review, we describe how NMR has contributed to deciphering the molecular basis of nucleosome function. Starting from pioneering studies in the 1960s using natural abundance NMR studies, we focus on the progress in sample preparation and NMR methodology that has allowed high-resolution studies on the nucleosome and its subunits. We summarize the results and approaches of state-of-the-art NMR studies on nucleosomal DNA, histone complexes, nucleosomes and nucleosomal arrays. These studies highlight the particular strength of NMR in studying nucleosome dynamics and nucleosome-protein interactions. Finally, we look ahead to exciting new possibilities that will be afforded by on-going developments in solution and solid-state NMR. By increasing both the depth and breadth of nucleosome NMR studies, it will be possible to offer a unique perspective on the dynamic landscape of nucleosomes and its interacting proteins.
Collapse
Affiliation(s)
- Clara L van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Campagne S, Krepl M, Sponer J, Allain FHT. Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein-RNA Complexes. Methods Enzymol 2018; 614:393-422. [PMID: 30611432 DOI: 10.1016/bs.mie.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the RNA binding specificity of protein is of primary interest to decipher their function in the cell. Here, we review the methodology used to solve the structures of protein-RNA complexes using solution-state NMR spectroscopy: from sample preparation to structure calculation procedures. We also describe how molecular dynamics simulations can help providing additional information on the role of key amino acid side chains and of water molecules in protein-RNA recognition.
Collapse
Affiliation(s)
- Sebastien Campagne
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Frederic H-T Allain
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| |
Collapse
|
22
|
Baronti L, Karlsson H, Marušič M, Petzold K. A guide to large-scale RNA sample preparation. Anal Bioanal Chem 2018; 410:3239-3252. [PMID: 29546546 PMCID: PMC5937877 DOI: 10.1007/s00216-018-0943-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
RNA is becoming more important as an increasing number of functions, both regulatory and enzymatic, are being discovered on a daily basis. As the RNA boom has just begun, most techniques are still in development and changes occur frequently. To understand RNA functions, revealing the structure of RNA is of utmost importance, which requires sample preparation. We review the latest methods to produce and purify a variation of RNA molecules for different purposes with the main focus on structural biology and biophysics. We present a guide aimed at identifying the most suitable method for your RNA and your biological question and highlighting the advantages of different methods. Graphical abstract In this review we present different methods for large-scale production and purification of RNAs for structural and biophysical studies.
Collapse
Affiliation(s)
- Lorenzo Baronti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Hampus Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Maja Marušič
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, 17177, Stockholm, Sweden.
| |
Collapse
|
23
|
Kremser J, Strebitzer E, Plangger R, Juen MA, Nußbaumer F, Glasner H, Breuker K, Kreutz C. Chemical synthesis and NMR spectroscopy of long stable isotope labelled RNA. Chem Commun (Camb) 2018; 53:12938-12941. [PMID: 29155431 DOI: 10.1039/c7cc06747j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We showcase the high potential of the 2'-cyanoethoxymethyl (CEM) methodology to synthesize RNAs with naturally occurring modified residues carrying stable isotope (SI) labels for NMR spectroscopic applications. The method was applied to synthesize RNAs with sizes ranging between 60 to 80 nucleotides. The presented approach gives the possibility to selectively modify larger RNAs (>60 nucleotides) with atom-specifically 13C/15N-labelled building blocks. The method harbors the unique potential to address structural as well as dynamic features of these RNAs with NMR spectroscopy but also using other biophysical methods, such as mass spectrometry (MS), or small angle neutron/X-ray scattering (SANS, SAXS).
Collapse
Affiliation(s)
- J Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
N6-methyladenosine (m6A), a ubiquitous RNA modification, is installed by METTL3-METTL14 complex. The structure of the heterodimeric complex between the methyltransferase domains (MTDs) of METTL3 and METTL14 has been previously determined. However, the MTDs alone possess no enzymatic activity. Here we present the solution structure for the zinc finger domain (ZFD) of METTL3, the inclusion of which fulfills the methyltransferase activity of METTL3-METTL14. We show that the ZFD specifically binds to an RNA containing 5′-GGACU-3′ consensus sequence, but does not to one without. The ZFD thus serves as the target recognition domain, a structural feature previously shown for DNA methyltransferases, and cooperates with the MTDs of METTL3-METTL14 for catalysis. However, the interaction between the ZFD and the specific RNA is extremely weak, with the binding affinity at several hundred micromolar under physiological conditions. The ZFD contains two CCCH-type zinc fingers connected by an anti-parallel β-sheet. Mutational analysis and NMR titrations have mapped the functional interface to a contiguous surface. As a division of labor, the RNA-binding interface comprises basic residues from zinc finger 1 and hydrophobic residues from β-sheet and zinc finger 2. Further we show that the linker between the ZFD and MTD of METTL3 is flexible but partially folded, which may permit the cooperation between the two domains during catalysis. Together, the structural characterization of METTL3 ZFD paves the way to elucidate the atomic details of the entire process of RNA m6A modification.
Collapse
|
25
|
Serrano P, Hammond JA, Geralt M, Wüthrich K. Splicing Site Recognition by Synergy of Three Domains in Splicing Factor RBM10. Biochemistry 2018; 57:1563-1567. [PMID: 29450990 DOI: 10.1021/acs.biochem.7b01242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Splicing factor RBM10 and its close homologues RBM5 and RBM6 govern the splicing of oncogenes such as Fas, NUMB, and Bcl-X. The molecular architecture of these proteins includes zinc fingers (ZnFs) and RNA recognition motifs (RRMs). Three of these domains in RBM10 that constitute the RNA binding part of this splicing factor were found to individually bind RNAs with micromolar affinities. It was thus of interest to further investigate the structural basis of the well-documented high-affinity RNA recognition by RMB10. Here, we investigated RNA binding by combinations of two or three of these domains and discovered that a polypeptide containing RRM1, ZnF1, and RRM2 connected by their natural linkers recognizes a specific sequence of the Fas exon 6 mRNA with an affinity of 20 nM. Nuclear magnetic resonance structures of the RBM10 domains RRM1 and ZnF1 and the natural V354del isoform of RRM2 further confirmed that the interactions with RNA are driven by canonical RNA recognition elements. The well-known high-fidelity RNA splice site recognition by RBM10, and probably by RBM5 and RBM6, can thus be largely rationalized by a cooperative binding action of RRM and ZnF domains.
Collapse
Affiliation(s)
- Pedro Serrano
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - John A Hammond
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Michael Geralt
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Kurt Wüthrich
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.,Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
26
|
Masliah G, Maris C, König SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Weiler J, Holla A, Hunziker J, Meisner-Kober N, Schuler B, Jeschke G, Allain FHT. Structural basis of siRNA recognition by TRBP double-stranded RNA binding domains. EMBO J 2018; 37:embj.201797089. [PMID: 29449323 PMCID: PMC5852647 DOI: 10.15252/embj.201797089] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 11/23/2022] Open
Abstract
The accurate cleavage of pre‐micro(mi)RNAs by Dicer and mi/siRNA guide strand selection are important steps in forming the RNA‐induced silencing complex (RISC). The role of Dicer binding partner TRBP in these processes remains poorly understood. Here, we solved the solution structure of the two N‐terminal dsRNA binding domains (dsRBDs) of TRBP in complex with a functionally asymmetric siRNA using NMR, EPR, and single‐molecule spectroscopy. We find that siRNA recognition by the dsRBDs is not sequence‐specific but rather depends on the RNA shape. The two dsRBDs can swap their binding sites, giving rise to two equally populated, pseudo‐symmetrical complexes, showing that TRBP is not a primary sensor of siRNA asymmetry. Using our structure to model a Dicer‐TRBP‐siRNA ternary complex, we show that TRBP's dsRBDs and Dicer's RNase III domains bind a canonical 19 base pair siRNA on opposite sides, supporting a mechanism whereby TRBP influences Dicer‐mediated cleavage accuracy by binding the dsRNA region of the pre‐miRNA during Dicer cleavage.
Collapse
Affiliation(s)
- Gregoire Masliah
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Christophe Maris
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | | | - Anna L Malinowska
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Julie Mabille
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jan Weiler
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andrea Holla
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Juerg Hunziker
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Benjamin Schuler
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Vušurović J, Schneeberger E, Breuker K. Interactions of Protonated Guanidine and Guanidine Derivatives with Multiply Deprotonated RNA Probed by Electrospray Ionization and Collisionally Activated Dissociation. ChemistryOpen 2017; 6:739-750. [PMID: 29226062 PMCID: PMC5715244 DOI: 10.1002/open.201700143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Indexed: 11/25/2022] Open
Abstract
Interactions of ribonucleic acid (RNA) with guanidine and guanidine derivatives are important features in RNA-protein and RNA-drug binding. Here we have investigated noncovalently bound complexes of an 8-nucleotide RNA and six different ligands, all of which have a guanidinium moiety, by using electrospray ionization (ESI) and collisionally activated dissociation (CAD) mass spectrometry (MS). The order of complex stability correlated almost linearly with the number of ligand atoms that can potentially be involved in hydrogen-bond or salt-bridge interactions with the RNA, but not with the proton affinity of the ligands. However, ligand dissociation of the complex ions in CAD was generally accompanied by proton transfer from ligand to RNA, which indicated conversion of salt-bridge into hydrogen-bond interactions. The relative stabilities and dissociation pathways of [RNA+m L-n H] n- complexes with different stoichiometries (m=1-5) and net charge (n= 2-5) revealed both specific and unspecific ligand binding to the RNA.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Eva‐Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
28
|
Wiegand T, Liao WC, Ong TC, Däpp A, Cadalbert R, Copéret C, Böckmann A, Meier BH. Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2017; 69:157-164. [PMID: 29119516 DOI: 10.1007/s10858-017-0144-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31P-13C polarization-transfer experiments followed by the recording of a 2D 13C-13C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and Applied Biosciences - Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Ta Chung Ong
- Department of Chemistry and Applied Biosciences - Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexander Däpp
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Christophe Copéret
- Department of Chemistry and Applied Biosciences - Inorganic Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France.
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
29
|
Nußbaumer F, Juen MA, Gasser C, Kremser J, Müller T, Tollinger M, Kreutz C. Synthesis and incorporation of 13C-labeled DNA building blocks to probe structural dynamics of DNA by NMR. Nucleic Acids Res 2017; 45:9178-9192. [PMID: 28911104 PMCID: PMC5587810 DOI: 10.1093/nar/gkx592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
We report the synthesis of atom-specifically 13C-modified building blocks that can be incorporated into DNA via solid phase synthesis to facilitate investigations on structural and dynamic features via NMR spectroscopy. In detail, 6-13C-modified pyrimidine and 8-13C purine DNA phosphoramidites were synthesized and incorporated into a polypurine tract DNA/RNA hybrid duplex to showcase the facile resonance assignment using site-specific labeling. We also addressed micro- to millisecond dynamics in the mini-cTAR DNA. This DNA is involved in the HIV replication cycle and our data points toward an exchange process in the lower stem of the hairpin that is up-regulated in the presence of the HIV-1 nucleocapsid protein 7. As another example, we picked a G-quadruplex that was earlier shown to exist in two folds. Using site-specific 8-13C-2'deoxyguanosine labeling we were able to verify the slow exchange between the two forms on the chemical shift time scale. In a real-time NMR experiment the re-equilibration of the fold distribution after a T-jump could be monitored yielding a rate of 0.012 min-1. Finally, we used 13C-ZZ-exchange spectroscopy to characterize the kinetics between two stacked X-conformers of a Holliday junction mimic. At 25°C, the refolding process was found to occur at a forward rate constant of 3.1 s-1 and with a backward rate constant of 10.6 s-1.
Collapse
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Müller
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Leopold-Franzens-University of Innsbruck, and Center for Molecular Biosciences Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
30
|
Krepl M, Blatter M, Cléry A, Damberger FF, Allain FH, Sponer J. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res 2017; 45:8046-8063. [PMID: 28505313 PMCID: PMC5737849 DOI: 10.1093/nar/gkx418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
Abstract
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Markus Blatter
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Present address: Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel CH-4002, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Fred F. Damberger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Frédéric H.T. Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
31
|
Hartlmüller C, Günther JC, Wolter AC, Wöhnert J, Sattler M, Madl T. RNA structure refinement using NMR solvent accessibility data. Sci Rep 2017; 7:5393. [PMID: 28710477 PMCID: PMC5511288 DOI: 10.1038/s41598-017-05821-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
NMR spectroscopy is a powerful technique to study ribonucleic acids (RNAs) which are key players in a plethora of cellular processes. Although the NMR toolbox for structural studies of RNAs expanded during the last decades, they often remain challenging. Here, we show that solvent paramagnetic relaxation enhancements (sPRE) induced by the soluble, paramagnetic compound Gd(DTPA-BMA) provide a quantitative measure for RNA solvent accessibility and encode distance-to-surface information that correlates well with RNA structure and improves accuracy and convergence of RNA structure determination. Moreover, we show that sPRE data can be easily obtained for RNAs with any isotope labeling scheme and is advantageous regarding sample preparation, stability and recovery. sPRE data show a large dynamic range and reflect the global fold of the RNA suggesting that they are well suited to identify interaction surfaces, to score structural models and as restraints in RNA structure determination.
Collapse
Affiliation(s)
- Christoph Hartlmüller
- Center for Integrated Protein Science Munich, Department Chemie, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764, Neuherberg, Germany
| | - Johannes C Günther
- Center for Integrated Protein Science Munich, Department Chemie, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764, Neuherberg, Germany
| | - Antje C Wolter
- Institut für Molekulare Biowissenschaften and Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M, Germany
| | - Jens Wöhnert
- Institut für Molekulare Biowissenschaften and Zentrum für Biomolekulare Magnetische Resonanz (BMRZ), Goethe-Universität Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M, Germany
| | - Michael Sattler
- Center for Integrated Protein Science Munich, Department Chemie, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764, Neuherberg, Germany
| | - Tobias Madl
- Center for Integrated Protein Science Munich, Department Chemie, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764, Neuherberg, Germany.
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.
| |
Collapse
|
32
|
Beusch I, Barraud P, Moursy A, Cléry A, Allain FHT. Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. eLife 2017. [PMID: 28650318 PMCID: PMC5503513 DOI: 10.7554/elife.25736] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HnRNP A1 regulates many alternative splicing events by the recognition of splicing silencer elements. Here, we provide the solution structures of its two RNA recognition motifs (RRMs) in complex with short RNA. In addition, we show by NMR that both RRMs of hnRNP A1 can bind simultaneously to a single bipartite motif of the human intronic splicing silencer ISS-N1, which controls survival of motor neuron exon 7 splicing. RRM2 binds to the upstream motif and RRM1 to the downstream motif. Combining the insights from the structure with in cell splicing assays we show that the architecture and organization of the two RRMs is essential to hnRNP A1 function. The disruption of the inter-RRM interaction or the loss of RNA binding capacity of either RRM impairs splicing repression by hnRNP A1. Furthermore, both binding sites within the ISS-N1 are important for splicing repression and their contributions are cumulative rather than synergistic. DOI:http://dx.doi.org/10.7554/eLife.25736.001
Collapse
Affiliation(s)
- Irene Beusch
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Pierre Barraud
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.,Laboratoire de cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire d'expression génétique microbienne, UMR 8261, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de biologie physico-chimique, Paris, France
| | - Ahmed Moursy
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Frédéric Hai-Trieu Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 2017; 628:42-56. [PMID: 28600200 DOI: 10.1016/j.abb.2017.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate the structure and dynamics of RNA, because many biologically important RNAs have conformationally flexible structures, which makes them difficult to crystallize. Functional, independently folded RNA domains, range in size between simple stem-loops of as few as 10-20 nucleotides, to 50-70 nucleotides, the size of tRNA and many small ribozymes, to a few hundred nucleotides, the size of more complex RNA enzymes and of the functional domains of non-coding transcripts. In this review, we discuss new methods for sample preparation, assignment strategies and structure determination for independently folded RNA domains of up to 100 kDa in molecular weight.
Collapse
|
34
|
Schubert M. Insights into Carbohydrate Recognition by 3D Structure Determination of Protein–Carbohydrate Complexes Using NMR. NMR IN GLYCOSCIENCE AND GLYCOTECHNOLOGY 2017:101-122. [DOI: 10.1039/9781782623946-00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This chapter provides an overview of protein–carbohydrate complex structures determined with NMR spectroscopy and deposited in the Protein Data Bank (PDB). These 14 structures include protein–carbohydrate interactions ranging from nanomolar to millimolar affinities. Two complexes are discussed in detail, one representing a tightly bound complex and one a weak but specific interaction. This review illustrates that NMR spectroscopy is a competitive method for three-dimensional structure determination of protein–carbohydrate complexes, especially in the case of weak interactions. The number of biological functions in which protein–carbohydrate interactions are involved is steadily growing. Essential functions of the immune system such as the distinction between self and non-self, or the resolution of inflammation, involve critical protein–carbohydrate recognition events. It is therefore expected that by providing atomic details, NMR spectroscopy can make a significant contribution in the near future to unexplored pathways of the immune system and of many other biological processes.
Collapse
Affiliation(s)
- Mario Schubert
- Department of Molecular Biology, University of Salzburg 5020 Salzburg Austria
| |
Collapse
|
35
|
Dorn G, Leitner A, Boudet J, Campagne S, von Schroetter C, Moursy A, Aebersold R, Allain FHT. Structural modeling of protein-RNA complexes using crosslinking of segmentally isotope-labeled RNA and MS/MS. Nat Methods 2017; 14:487-490. [PMID: 28346450 PMCID: PMC5505470 DOI: 10.1038/nmeth.4235] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/22/2017] [Indexed: 11/09/2022]
Abstract
Ribonucleoproteins (RNPs) are key regulators of cellular function. We established an efficient approach that combines segmental isotope labeling of RNA with photo-crosslinking and tandem mass spectrometry to localize protein-RNA interactions simultaneously at amino acid and nucleotide resolution. The approach was tested on Polypyrimidine Tract Binding Protein 1 and U1 small nuclear RNP and the results support integrative atomic-scale structural modeling thus providing mechanistic insights into RNP regulated processes.
Collapse
Affiliation(s)
- G Dorn
- Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - A Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - J Boudet
- Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - S Campagne
- Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - C von Schroetter
- Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - A Moursy
- Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - R Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich, Zürich, Switzerland
| | - F H-T Allain
- Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
36
|
Cléry A, Sohier TJM, Welte T, Langer A, Allain FHT. switchSENSE: A new technology to study protein-RNA interactions. Methods 2017; 118-119:137-145. [PMID: 28286323 DOI: 10.1016/j.ymeth.2017.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Characterization of RNA-binding protein interactions with RNA became inevitable to properly understand the cellular mechanisms involved in gene expression regulation. Structural investigations bring information at the atomic level on these interactions and complementary methods such as Isothermal Titration Calorimetry (ITC) and Surface Plasmon Resonance (SPR) are commonly used to quantify the affinity of these RNA-protein complexes and evaluate the effect of mutations affecting these interactions. The switchSENSE technology has recently been developed and already successfully used to investigate protein interactions with different types of binding partners (DNA, protein/peptide or even small molecules). In this study, we show that this method is also well suited to study RNA binding proteins (RBPs). We could successfully investigate the binding to RNA of three different RBPs (Fox-1, SRSF1 and Tra2-β1) and obtained KD values very close to the ones determined previously by SPR or ITC for these complexes. These results show that the switchSENSE technology can be used as an alternative method to study protein-RNA interactions with KD values in the low micromolar (10-6) to nanomolar (10-7-10-9) and probably picomolar (10-10-10-12) range. The absence of labelling requirement for the analyte molecules and the use of very low amounts of protein and RNA molecules make the switchSENSE approach very attractive compared to other methods. Finally, we discuss about the potential of this approach in obtaining more sophisticated information such as structural conformational changes upon RBP binding to RNA.
Collapse
Affiliation(s)
- Antoine Cléry
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Thibault J M Sohier
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Thomas Welte
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152 Martinsried, Germany
| | - Andreas Langer
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152 Martinsried, Germany
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
37
|
Pérez-Cano L, Romero-Durana M, Fernández-Recio J. Structural and energy determinants in protein-RNA docking. Methods 2016; 118-119:163-170. [PMID: 27816523 DOI: 10.1016/j.ymeth.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/02/2023] Open
Abstract
Deciphering the structural and energetic determinants of protein-RNA interactions harbors the potential to understand key cell processes at molecular level, such as gene expression and regulation. With this purpose, computational methods like docking aim to complement current biophysical and structural biology efforts. However, the few reported docking algorithms for protein-RNA interactions show limited predictive success rates, mainly due to incomplete sampling of the conformational space of both the protein and the RNA molecules, as well as to the difficulties of the scoring function in identifying the correct docking models. Here, we have tested the predictive value of a variety of knowledge-based and energetic scoring functions on a recently published protein-RNA docking benchmark and developed a scoring function able to efficiently discriminate docking decoys. We first performed docking calculations with the bound conformation, which allowed us to analyze the problem in optimal conditions. We found that geometry-based terms and electrostatics were the most important scoring terms, while binding propensities and desolvation were much less relevant for the scoring of protein-RNA models. This is in contrast with what we observed for protein-protein docking. The results also showed an interesting dependence of the predictive rates on the flexibility of the protein molecule, which arises from the observed higher positive charge of flexible interfaces and provides hints for future development of more efficient protein-RNA docking methods.
Collapse
Affiliation(s)
- Laura Pérez-Cano
- Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona 29, Barcelona 08034, Spain; Center for Neurobehavioral Genetics and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Miguel Romero-Durana
- Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona 29, Barcelona 08034, Spain
| | - Juan Fernández-Recio
- Joint BSC-CRG-IRB Research Program in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona 29, Barcelona 08034, Spain.
| |
Collapse
|
38
|
Yadav DK, Lukavsky PJ. NMR solution structure determination of large RNA-protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:57-81. [PMID: 27888840 DOI: 10.1016/j.pnmrs.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the past 20years, NMR spectroscopy became a key tool for structural studies of RNA-protein interactions. Here, we review the progress being made in NMR structure determination of large ribonucleoprotein assemblies. We discuss approaches for the design of RNA-protein complexes for NMR structural studies, established and emerging isotope and segmental labeling schemes suitable for large RNPs and how to gain distance restraints from NOEs, PREs and EPR and orientational information from RDCs and SAXS/SANS in such systems. The new combination of NMR measurements with MD simulations and its potential will also be discussed. Application and combination of these various methods for structure determination of large RNPs will be illustrated with three large RNA-protein complexes (>40kDa) and other interesting complexes determined in the past six and a half years.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Peter J Lukavsky
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
39
|
Le MT, Brown RE, Simon AE, Dayie TK. In vivo, large-scale preparation of uniformly (15)N- and site-specifically (13)C-labeled homogeneous, recombinant RNA for NMR studies. Methods Enzymol 2016; 565:495-535. [PMID: 26577743 DOI: 10.1016/bs.mie.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Knowledge of how ribonucleic acid (RNA) structures fold to form intricate, three-dimensional structures has provided fundamental insights into understanding the biological functions of RNA. Nuclear magnetic resonance (NMR) spectroscopy is a particularly useful high-resolution technique to investigate the dynamic structure of RNA. Effective study of RNA by NMR requires enrichment with isotopes of (13)C or (15)N or both. Here, we present a method to produce milligram quantities of uniformly (15)N- and site-specifically (13)C-labeled RNAs using wild-type K12 and mutant tktA Escherichia coli in combination with a tRNA-scaffold approach. The method includes a double selection protocol to obtain an E. coli clone with consistently high expression of the recombinant tRNA-scaffold. We also present protocols for the purification of the tRNA-scaffold from a total cellular RNA extract and the excision of the RNA of interest from the tRNA-scaffold using DNAzymes. Finally, we showcase NMR applications to demonstrate the benefit of using in vivo site-specifically (13)C-labeled RNA.
Collapse
Affiliation(s)
- My T Le
- Department of Chemistry and Biochemistry,Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Rachel E Brown
- Department of Chemistry and Biochemistry, Department of Cellular Biology and Molecular Genetics, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Anne E Simon
- Department of Chemistry and Biochemistry, Department of Cellular Biology and Molecular Genetics, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry,Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
40
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
41
|
Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc Natl Acad Sci U S A 2016; 113:E4170-9. [PMID: 27357658 DOI: 10.1073/pnas.1602214113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Siglec-8 is a human immune-inhibitory receptor that, when engaged by specific self-glycans, triggers eosinophil apoptosis and inhibits mast cell degranulation, providing an endogenous mechanism to down-regulate immune responses of these central inflammatory effector cells. Here we used solution NMR spectroscopy to dissect the fine specificity of Siglec-8 toward different sialylated and sulfated carbohydrate ligands and determined the structure of the Siglec-8 lectin domain in complex with its prime glycan target 6'-sulfo sialyl Lewis(x) A canonical motif for sialic acid recognition, extended by a secondary motif formed by unique loop regions, recognizing 6-O-sulfated galactose dictates tight specificity distinct from other Siglec family members and any other endogenous glycan recognition receptors. Structure-guided mutagenesis revealed key contacts of both interfaces to be equally essential for binding. Our work provides critical structural and mechanistic insights into how Siglec-8 selectively recognizes its glycan target, rationalizes the functional impact of site-specific glycan sulfation in modulating this lectin-glycan interaction, and will enable the rational design of Siglec-8-targeted agonists to treat eosinophil- and mast cell-related allergic and inflammatory diseases, such as asthma.
Collapse
|
42
|
Li R, Zhu H, Luo Y. Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures. Int J Mol Sci 2016; 17:ijms17050702. [PMID: 27196897 PMCID: PMC4881525 DOI: 10.3390/ijms17050702] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023] Open
Abstract
Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However, since lncRNA are high molecular weight molecules, which makes their crystallization difficult, obtaining information about their structure is extremely challenging, and the structures of only several lncRNAs have been determined so far. Here, we review the structure-function relationships of the widely studied lncRNAs found in the animal and plant kingdoms, focusing on the principles and applications of both in vitro and in vivo technologies for the study of RNA structures, including dimethyl sulfate-sequencing (DMS-seq), selective 2'-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq), parallel analysis of RNA structure (PARS), and fragmentation sequencing (FragSeq). The aim of this review is to provide a better understanding of lncRNA biological functions by studying them at the structural level.
Collapse
Affiliation(s)
- Rui Li
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongliang Zhu
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yunbo Luo
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
43
|
Abstract
Knowledge of RNA secondary structure is often sufficient to identify relationships between the structure of RNA and processing pathways, and the design of therapeutics. Nuclear magnetic resonance (NMR) can identify types of nucleotide base pairs and the sequence, thus limiting possible secondary structures. Because NMR experiments, like chemical mapping, are performed in solution, not in single crystals, experiments can be initiated as soon as the biomolecule is expressed and purified. This chapter summarizes NMR methods that permit rapid identification of RNA secondary structure, information that can be used as supplements to chemical mapping, and/or as preliminary steps required for 3D structure determination. The primary aim is to provide guidelines to enable a researcher with minimal knowledge of NMR to quickly extract secondary structure information from basic datasets. Instrumental and sample considerations that can maximize data quality are discussed along with some details for optimal data acquisition and processing parameters. Approaches for identifying base pair types in both unlabeled and isotopically labeled RNA are covered. Common problems, such as missing signals and overlaps, and approaches to address them are considered. Programs under development for merging NMR data with structure prediction algorithms are briefly discussed.
Collapse
Affiliation(s)
- Scott D Kennedy
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
|
45
|
Duss O, Diarra Dit Konté N, Allain FHT. Cut and paste RNA for nuclear magnetic resonance, paramagnetic resonance enhancement, and electron paramagnetic resonance structural studies. Methods Enzymol 2015; 565:537-62. [PMID: 26577744 DOI: 10.1016/bs.mie.2015.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA is a crucial regulator involved in most molecular processes of life. Understanding its function at the molecular level requires high-resolution structural information. However, the dynamic nature of RNA complicates structure determination because crystallization is often not possible or can result in crystal-packing artifacts resulting in nonnative structures. To study RNA and its complexes in solution, we described an approach in which large multi-domain RNA or protein-RNA complex structures can be determined at high resolution from isolated domains determined by nuclear magnetic resonance (NMR) spectroscopy, and then constructing the entire macromolecular structure using electron paramagnetic resonance (EPR) long-range distance constraints. Every step in this structure determination approach requires different types of isotope or spin-labeled RNAs. Here, we present a simple modular RNA cut and paste approach including protocols to generate (1) small isotopically labeled RNAs (<10 nucleotides) for NMR structural studies, which cannot be obtained by standard protocols, (2) large segmentally isotope and/or spin-labeled RNAs for diamagnetic NMR and paramagnetic relaxation enhancement NMR, and (3) large spin-labeled RNAs for pulse EPR spectroscopy.
Collapse
Affiliation(s)
- Olivier Duss
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| | | | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
46
|
Nelissen FHT, Goossens EPM, Tessari M, Heus HA. Enzymatic preparation of multimilligram amounts of pure single-stranded DNA samples for material and analytical sciences. Anal Biochem 2015; 475:68-73. [PMID: 25637680 DOI: 10.1016/j.ab.2015.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 12/15/2022]
Abstract
We present a method for high-yield production of multimilligram amounts of pure single-stranded DNA employing rolling circle amplification (RCA) and processing by restriction enzymes. Pure and homogeneous samples are produced with minimal handling time, reagents, and waste products. The RCA method is more than twice as efficient in dNTP incorporation than conventional polymerase chain reaction in producing end product. The validity and utility of the method are demonstrated in the production of a uniformly (13)C/(15)N-labeled 38-nt cocaine aptamer DNA used in nanosensing devices.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Elles P M Goossens
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Marco Tessari
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Hans A Heus
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
47
|
Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods Enzymol 2015; 558:279-331. [DOI: 10.1016/bs.mie.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Cieniková Z, Damberger FF, Hall J, Allain FHT, Maris C. Structural and mechanistic insights into poly(uridine) tract recognition by the hnRNP C RNA recognition motif. J Am Chem Soc 2014; 136:14536-44. [PMID: 25216038 DOI: 10.1021/ja507690d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HnRNP C is a ubiquitous RNA regulatory factor and the principal constituent of the nuclear hnRNP core particle. The protein contains one amino-terminal RNA recognition motif (RRM) known to bind uridine (U)-rich sequences. This work provides a molecular and mechanistic understanding of this interaction. We solved the solution structures of the RRM in complex with poly(U) oligomers of five and seven nucleotides. The five binding pockets of RRM recognize uridines with an unusual 5'-to-3' gradient of base selectivity. The target recognition is therefore strongly sensitive to base clustering, explaining the preference for contiguous uridine tracts. Using a novel approach integrating the structurally derived recognition consensus of the RRM with a thermodynamic description of its multi-register binding, we modeled the saturation of cellular uridine tracts by this protein. The binding pattern is remarkably consistent with the experimentally observed transcriptome-wide cross-link distribution of the full-length hnRNP C on short uridine tracts. This result re-establishes the RRM as the primary RNA-binding domain of the hnRNP C tetramer and provides a proof of concept for interpreting high-throughput interaction data using structural approaches.
Collapse
Affiliation(s)
- Zuzana Cieniková
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich , 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
50
|
Duss O, Yulikov M, Jeschke G, Allain FHT. EPR-aided approach for solution structure determination of large RNAs or protein-RNA complexes. Nat Commun 2014; 5:3669. [PMID: 24828280 DOI: 10.1038/ncomms4669] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022] Open
Abstract
High-resolution structural information on RNA and its functionally important complexes with proteins is dramatically underrepresented compared with proteins but is urgently needed for understanding cellular processes at the molecular and atomic level. Here we present an EPR-based protocol to help solving large RNA and protein-RNA complex structures in solution by providing long-range distance constraints between rigid fragments. Using enzymatic ligation of smaller RNA fragments, large doubly spin-labelled RNAs can be obtained permitting the acquisition of long distance distributions (>80 Å) within a large protein-RNA complex. Using a simple and fast calculation in torsion angle space of the spin-label distributions with the program CYANA, we can derive simple distance constraints between the spin labels and use them together with short-range distance restraints derived from NMR to determine the structure of a 70 kDa protein-RNA complex composed of three subcomplexes.
Collapse
Affiliation(s)
- Olivier Duss
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| | - Maxim Yulikov
- Institute for Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Gunnar Jeschke
- Institute for Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
| | - Frédéric H-T Allain
- Institute for Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|