1
|
Matsuda A, Plewka J, Rawski M, Mourão A, Zajko W, Siebenmorgen T, Kresik L, Lis K, Jones A, Pachota M, Karim A, Hartman K, Nirwal S, Sonani R, Chykunova Y, Minia I, Mak P, Landthaler M, Nowotny M, Dubin G, Sattler M, Suder P, Popowicz G, Pyrć K, Czarna A. Despite the odds: formation of the SARS-CoV-2 methylation complex. Nucleic Acids Res 2024; 52:6441-6458. [PMID: 38499483 PMCID: PMC11194070 DOI: 10.1093/nar/gkae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.
Collapse
Affiliation(s)
- Alex Matsuda
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Michał Rawski
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - André Mourão
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | - Leanid Kresik
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kinga Lis
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Faculty of Chemical Engineering and Technology, Kraków University of Technology, 31-155 Kraków, Poland
| | - Alisha N Jones
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Magdalena Pachota
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Abdulkarim Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region, Iraq
- Department of Community Health, College of Health Technology, Cihan University-Erbil, 44001 Erbil, Kurdistan Region, Iraq
| | - Kinga Hartman
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ravi Sonani
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Yuliya Chykunova
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Igor Minia
- Laboratory for RNA Biology, Berlin Institute for Medical System Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Markus Landthaler
- Laboratory for RNA Biology, Berlin Institute for Medical System Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Michael Sattler
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Grzegorz M Popowicz
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Czarna
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Wang Q, Miao Z, Xiao X, Zhang X, Yang D, Jiang B, Liu M. Prediction of order parameters based on protein NMR structure ensemble and machine learning. JOURNAL OF BIOMOLECULAR NMR 2024; 78:87-94. [PMID: 38530516 DOI: 10.1007/s10858-024-00435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/31/2024] [Indexed: 03/28/2024]
Abstract
The fast motions of proteins at the picosecond to nanosecond timescale, known as fast dynamics, are closely related to protein conformational entropy and rearrangement, which in turn affect catalysis, ligand binding and protein allosteric effects. The most used NMR approach to study fast protein dynamics is the model free method, which uses order parameter S2 to describe the amplitude of the internal motion of local group. However, to obtain order parameter through NMR experiments is quite complex and lengthy. In this paper, we present a machine learning approach for predicting backbone 1H-15N order parameters based on protein NMR structure ensemble. A random forest model is used to learn the relationship between order parameters and structural features. Our method achieves high accuracy in predicting backbone 1H-15N order parameters for a test dataset of 10 proteins, with a Pearson correlation coefficient of 0.817 and a root-mean-square error of 0.131.
Collapse
Affiliation(s)
- Qianqian Wang
- Wuhan National Laboratory for Optoelectronics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiwei Miao
- Wuhan National Laboratory for Optoelectronics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiongjie Xiao
- Wuhan National Laboratory for Optoelectronics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xu Zhang
- Wuhan National Laboratory for Optoelectronics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Optics Valley Laboratory, Wuhan, 430074, China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bin Jiang
- Wuhan National Laboratory for Optoelectronics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Optics Valley Laboratory, Wuhan, 430074, China.
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Optics Valley Laboratory, Wuhan, 430074, China.
| |
Collapse
|
3
|
Lu B, Liao SM, Liang SJ, Peng LX, Li JX, Liu XH, Huang RB, Zhou GP. The Bifunctional Effects of Lactoferrin (LFcinB11) in Inhibiting Neural Cell Adhesive Molecule (NCAM) Polysialylation and the Release of Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:4641. [PMID: 38731861 PMCID: PMC11083048 DOI: 10.3390/ijms25094641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.
Collapse
Affiliation(s)
- Bo Lu
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Si-Ming Liao
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Shi-Jie Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Li-Xin Peng
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Jian-Xiu Li
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Ri-Bo Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
- Rocky Mount Life Sciences Institute, Rocky Mount, NC 27804, USA
| | - Guo-Ping Zhou
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
- Rocky Mount Life Sciences Institute, Rocky Mount, NC 27804, USA
| |
Collapse
|
4
|
Kawamukai H, Takishita S, Shimizu K, Kohda D, Ishimori K, Saio T. Conformational Distribution of a Multidomain Protein Measured by Single-Pair Small-Angle X-ray Scattering. J Phys Chem Lett 2024; 15:744-750. [PMID: 38221741 PMCID: PMC10823528 DOI: 10.1021/acs.jpclett.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The difficulty in evaluating the conformational distribution of proteins in solution often hinders mechanistic insights. One possible strategy for visualizing conformational distribution is distance distribution measurement by single-pair small-angle X-ray scattering (SAXS), in which the scattering interference from only a specific pair of atoms in the target molecule is extracted. Despite this promising concept, with few applications in synthetic small molecules and DNA, technical difficulties have prevented its application in protein conformational studies. This study used a synthetic tag to fix the lanthanide ion at desired sites on the protein and used single-pair SAXS with contrast matching to evaluate the conformational distribution of the multidomain protein enzyme MurD. These data highlighted the broad conformational and ligand-driven distribution shifts of MurD in solution. This study proposes an important strategy in solution structural biology that targets dynamic proteins, including multidomain and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Honoka Kawamukai
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Shumpei Takishita
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazumi Shimizu
- Faculty
of Education and Integrated Arts and Sciences, Waseda University, Tokyo 169-8050, Japan
| | - Daisuke Kohda
- Division
of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichiro Ishimori
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Tomohide Saio
- Graduate
School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
- Fujii
Memorial Institute of Medical Sciences, Institute of Advanced Medical
Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
5
|
Rossi MA, Pozhidaeva AK, Clerico EM, Petridis C, Gierasch LM. New insights into the structure and function of the complex between the Escherichia coli Hsp70, DnaK, and its nucleotide-exchange factor, GrpE. J Biol Chem 2024; 300:105574. [PMID: 38110031 PMCID: PMC10825016 DOI: 10.1016/j.jbc.2023.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
The 70 kDa heat shock proteins (Hsp70s) play a pivotal role in many cellular functions using allosteric communication between their nucleotide-binding domain (NBD) and substrate-binding domain, mediated by an interdomain linker, to modulate their affinity for protein clients. Critical to modulation of the Hsp70 allosteric cycle, nucleotide-exchange factors (NEFs) act by a conserved mechanism involving binding to the ADP-bound NBD and opening of the nucleotide-binding cleft to accelerate the release of ADP and binding of ATP. The crystal structure of the complex between the NBD of the Escherichia coli Hsp70, DnaK, and its NEF, GrpE, was reported previously, but the GrpE in the complex carried a point mutation (G122D). Both the functional impact of this mutation and its location on the NEF led us to revisit the DnaK NBD/GrpE complex structurally using AlphaFold modeling and validation by solution methods that report on protein conformation and mutagenesis. This work resulted in a new model for the DnaK NBD in complex with GrpE in which subdomain IIB of the NBD rotates more than in the crystal structure, resulting in an open conformation of the nucleotide-binding cleft, which now resembles more closely what is seen in other Hsp/NEF complexes. Moreover, the new model is consistent with the increased ADP off-rate accompanying GrpE binding. Excitingly, our findings point to an interdomain allosteric signal in DnaK triggered by GrpE binding.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alexandra K Pozhidaeva
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Eugenia M Clerico
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Constantine Petridis
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Lila M Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA.
| |
Collapse
|
6
|
Erba EB, Pastore A. The Complementarity of Nuclear Magnetic Resonance and Native Mass Spectrometry in Probing Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:109-123. [PMID: 38507203 DOI: 10.1007/978-3-031-52193-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nuclear magnetic resonance (NMR) and native mass spectrometry (MS) are mature physicochemical techniques with long histories and important applications. NMR spectroscopy provides detailed information about the structure, dynamics, interactions, and chemical environment of biomolecules. MS is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity, and speed. The two techniques offer unique advantages and provide solid tools for structural biology. In the present review, we discuss their individual merits in the context of their applications to structural studies in biology with specific focus on protein interactions and evaluate their limitations. We provide specific examples in which these techniques can complement each other, providing new information on the same scientific case. We discuss how the field may develop and what challenges are expected in the future. Overall, the combination of NMR and MS plays an increasingly important role in integrative structural biology, assisting scientists in deciphering the three-dimensional structure of composite macromolecular assemblies.
Collapse
|
7
|
Toke O, Batta G. Dynamic Structures of Bioactive Proteins as Determined by Nuclear Magnetic Resonance. Int J Mol Sci 2023; 25:295. [PMID: 38203465 PMCID: PMC10779278 DOI: 10.3390/ijms25010295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
According to "Panta rhei", a phrase by the ancient Greeks, you cannot enter the same river two times [...].
Collapse
Affiliation(s)
- Orsolya Toke
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Joseph D, Griesinger C. Optimal control pulses for the 1.2-GHz (28.2-T) NMR spectrometers. SCIENCE ADVANCES 2023; 9:eadj1133. [PMID: 37948513 PMCID: PMC10637738 DOI: 10.1126/sciadv.adj1133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
The ability to measure nuclear magnetic resonance (NMR) spectra with a large sample volume is crucial for concentration-limited biological samples to attain adequate signal-to-noise (S/N) ratio. The possibility to measure with a 5-mm cryoprobe is currently absent at the 1.2-GHz NMR instruments due to the exceedingly high radio frequency power demands, which is four times compared to 600-MHz instruments. Here, we overcome the high-power demands by designing optimal control (OC) pulses with up to 20 times lower power requirements than currently necessary at a 1.2-GHz spectrometer. We show that multidimensional biomolecular NMR experiments constructed using these OC pulses can bestow improvement in the S/N ratio of up to 26%. With the expected power limitations of a 5-mm cryoprobe, we observe an enhancement in the S/N ratio of more than 240% using our OC sequences. This motivates the development of a cryoprobe with a larger volume than the current 3-mm cryoprobes.
Collapse
Affiliation(s)
- David Joseph
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Niedersachsen D-37077, Germany
| | - Christian Griesinger
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Niedersachsen D-37077, Germany
| |
Collapse
|
9
|
Schneider T, Sawade K, Berner F, Peter C, Kovermann M. Specifying conformational heterogeneity of multi-domain proteins at atomic resolution. Structure 2023; 31:1259-1274.e10. [PMID: 37557171 DOI: 10.1016/j.str.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Sawade
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Graduate School Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Frederic Berner
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
10
|
Grudman S, Fajardo JE, Fiser A. Optimal selection of suitable templates in protein interface prediction. Bioinformatics 2023; 39:btad510. [PMID: 37603727 PMCID: PMC10491951 DOI: 10.1093/bioinformatics/btad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
MOTIVATION Molecular-level classification of protein-protein interfaces can greatly assist in functional characterization and rational drug design. The most accurate protein interface predictions rely on finding homologous proteins with known interfaces since most interfaces are conserved within the same protein family. The accuracy of these template-based prediction approaches depends on the correct choice of suitable templates. Choosing the right templates in the immunoglobulin superfamily (IgSF) is challenging because its members share low sequence identity and display a wide range of alternative binding sites despite structural homology. RESULTS We present a new approach to predict protein interfaces. First, template-specific, informative evolutionary profiles are established using a mutual information-based approach. Next, based on the similarity of residue level conservation scores derived from the evolutionary profiles, a query protein is hierarchically clustered with all available template proteins in its superfamily with known interface definitions. Once clustered, a subset of the most closely related templates is selected, and an interface prediction is made. These initial interface predictions are subsequently refined by extensive docking. This method was benchmarked on 51 IgSF proteins and can predict nontrivial interfaces of IgSF proteins with an average and median F-score of 0.64 and 0.78, respectively. We also provide a way to assess the confidence of the results. The average and median F-scores increase to 0.8 and 0.81, respectively, if 27% of low confidence cases and 17% of medium confidence cases are removed. Lastly, we provide residue level interface predictions, protein complexes, and confidence measurements for singletons in the IgSF. AVAILABILITY AND IMPLEMENTATION Source code is freely available at: https://gitlab.com/fiserlab.org/interdct_with_refinement.
Collapse
Affiliation(s)
- Steven Grudman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - J Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Yagi-Utsumi M, Miura H, Ganser C, Watanabe H, Hiranyakorn M, Satoh T, Uchihashi T, Kato K, Okazaki KI, Aoki K. Molecular Design of FRET Probes Based on Domain Rearrangement of Protein Disulfide Isomerase for Monitoring Intracellular Redox Status. Int J Mol Sci 2023; 24:12865. [PMID: 37629048 PMCID: PMC10454184 DOI: 10.3390/ijms241612865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Haruko Miura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Methanee Hiranyakorn
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Kei-ichi Okazaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
12
|
Enders L, Siklos M, Borggräfe J, Gaussmann S, Koren A, Malik M, Tomek T, Schuster M, Reiniš J, Hahn E, Rukavina A, Reicher A, Casteels T, Bock C, Winter GE, Hannich JT, Sattler M, Kubicek S. Pharmacological perturbation of the phase-separating protein SMNDC1. Nat Commun 2023; 14:4504. [PMID: 37587144 PMCID: PMC10432564 DOI: 10.1038/s41467-023-40124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.
Collapse
Affiliation(s)
- Lennart Enders
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Gaussmann
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Monika Malik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tatjana Tomek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jiří Reiniš
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Elisa Hahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andreas Reicher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Währinger Straße 25a, 1090, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Allen J, O’Keefe CA, Grey CP. Quantifying Dissolved Transition Metals in Battery Electrolyte Solutions with NMR Paramagnetic Relaxation Enhancement. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:9509-9521. [PMID: 37255924 PMCID: PMC10226131 DOI: 10.1021/acs.jpcc.3c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Transition metal dissolution is an important contributor to capacity fade in lithium-ion cells. NMR relaxation rates are proportional to the concentration of paramagnetic species, making them suitable to quantify dissolved transition metals in battery electrolytes. In this work, 7Li, 31P, 19F, and 1H longitudinal and transverse relaxation rates were measured to study LiPF6 electrolyte solutions containing Ni2+, Mn2+, Co2+, or Cu2+ salts and Mn dissolved from LiMn2O4. Sensitivities were found to vary by nuclide and by transition metal. 19F (PF6-) and 1H (solvent) measurements were more sensitive than 7Li and 31P measurements due to the higher likelihood that the observed species are in closer proximity to the metal center. Mn2+ induced the greatest relaxation enhancement, yielding a limit of detection of ∼0.005 mM for 19F and 1H measurements. Relaxometric analysis of a sample containing Mn dissolved from LiMn2O4 at ∼20 °C showed good sensitivity and accuracy (suggesting dissolution of Mn2+), but analysis of a sample stored at 60 °C showed that the relaxometric quantification is less accurate for heat-degraded LiPF6 electrolytes. This is attributed to degradation processes causing changes to the metal solvation shell (changing the fractions of PF6-, EC, and EMC coordinated to Mn2+), such that calibration measurements performed with pristine electrolyte solutions are not applicable to degraded solutions-a potential complication for efforts to quantify metal dissolution during operando NMR studies of batteries employing widely-used LiPF6 electrolytes. Ex situ nondestructive quantification of transition metals in lithium-ion battery electrolytes is shown to be possible by NMR relaxometry; further, the method's sensitivity to the metal solvation shell also suggests potential use in assessing the coordination spheres of dissolved transition metals.
Collapse
Affiliation(s)
- Jennifer
P. Allen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Christopher A. O’Keefe
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, U.K.
| |
Collapse
|
14
|
Hiranyakorn M, Yagi-Utsumi M, Yanaka S, Ohtsuka N, Momiyama N, Satoh T, Kato K. Mutational and Environmental Effects on the Dynamic Conformational Distributions of Lys48-Linked Ubiquitin Chains. Int J Mol Sci 2023; 24:ijms24076075. [PMID: 37047047 PMCID: PMC10094362 DOI: 10.3390/ijms24076075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
In multidomain proteins, individual domains connected by flexible linkers are dynamically rearranged upon ligand binding and sensing changes in environmental factors, such as pH and temperature. Here, we characterize dynamic domain rearrangements of Lys48-linked ubiquitin (Ub) chains as models of multidomain proteins in which molecular surfaces mediating intermolecular interactions are involved in intramolecular domain-domain interactions. Using NMR and other biophysical techniques, we characterized dynamic conformational interconversions of diUb between open and closed states regarding solvent exposure of the hydrophobic surfaces of each Ub unit, which serve as binding sites for various Ub-interacting proteins. We found that the hydrophobic Ub-Ub interaction in diUb was reinforced by cysteine substitution of Lys48 of the distal Ub unit because of interaction between the cysteinyl thiol group and the C-terminal segment of the proximal Ub unit. In contrast, the replacement of the isopeptide linker with an artificial ethylenamine linker minimally affected the conformational distributions. Furthermore, we demonstrated that the mutational modification allosterically impacted the exposure of the most distal Ub unit in triUb. Thus, the conformational interconversion of Ub chains offers a unique design framework in Ub-based protein engineering not only for developing biosensing probes but also for allowing new opportunities for the allosteric regulation of multidomain proteins.
Collapse
Affiliation(s)
- Methanee Hiranyakorn
- Department of Functional Molecular Science, School of Physical Science, The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Maho Yagi-Utsumi
- Department of Functional Molecular Science, School of Physical Science, The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Saeko Yanaka
- Department of Functional Molecular Science, School of Physical Science, The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Naoya Ohtsuka
- Department of Functional Molecular Science, School of Physical Science, The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Norie Momiyama
- Department of Functional Molecular Science, School of Physical Science, The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Koichi Kato
- Department of Functional Molecular Science, School of Physical Science, The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
15
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
16
|
Korn SM, Von Ehr J, Dhamotharan K, Tants JN, Abele R, Schlundt A. Insight into the Structural Basis for Dual Nucleic Acid-Recognition by the Scaffold Attachment Factor B2 Protein. Int J Mol Sci 2023; 24:ijms24043286. [PMID: 36834708 PMCID: PMC9958909 DOI: 10.3390/ijms24043286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species.
Collapse
Affiliation(s)
- Sophie M. Korn
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Julian Von Ehr
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
17
|
McKay RT. Metabolomics and NMR. Handb Exp Pharmacol 2023; 277:73-116. [PMID: 36355220 DOI: 10.1007/164_2022_616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this manuscript will be to convince the reader to dive deeper into NMR spectroscopy and prevent the technique from being just another "black-box" in the lab. We will try to concisely highlight interesting topics and supply additional references for further exploration at each stage. The advantages of delving into the technique will be shown. The secondary objective, i.e., avoiding common problems before starting, will hopefully then become clear. Lastly, we will emphasize the spectrometer information needed for manuscript reporting to allow reproduction of results and confirm findings.
Collapse
Affiliation(s)
- Ryan T McKay
- Department Chemistry, College of Natural and Applied Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Ma J, Pathirana C, Liu DQ, Miller SA. NMR spectroscopy as a characterization tool enabling biologics formulation development. J Pharm Biomed Anal 2023; 223:115110. [DOI: 10.1016/j.jpba.2022.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
19
|
Delhommel F, Martínez-Lumbreras S, Sattler M. Combining NMR, SAXS and SANS to characterize the structure and dynamics of protein complexes. Methods Enzymol 2022; 678:263-297. [PMID: 36641211 DOI: 10.1016/bs.mie.2022.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.
Collapse
Affiliation(s)
- Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany.
| |
Collapse
|
20
|
Meikle TG, Keizer DW, Separovic F, Yao S. A solution NMR view of Lipidic Cubic Phases: Structure, dynamics, and beyond. BBA ADVANCES 2022; 2:100062. [PMID: 37082598 PMCID: PMC10074910 DOI: 10.1016/j.bbadva.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is well-established nowadays for the elucidation of the 3D structures of proteins and protein complexes, the evaluation of biomolecular dynamics with atomistic resolution across a range of time scales, the screening of drug candidates with site specificity, and for the quantitation of molecular translational diffusion. Lyotropic lipidic cubic phases (LCPs) are lipid bilayer-based materials with a complex geometry, formed via the spontaneous self-assembly of certain lipids in an aqueous environment at specific temperature ranges. LCPs have been successfully applied to the in meso crystallization of membrane proteins for structural studies by X-ray crystallography, and have also shown promising potential for serving as matrices for drug and nutrient delivery/release in vivo. The characterization of the structural and dynamics properties of LCPs is of significant interest for the application of these materials. Here we present a systematic review detailing the characterization of LCPs by solution NMR. Using LCPs formed by monoolein (MO) as an example, various aspects of LCPs readily accessible by solution NMR are covered, including spectral perturbation in the presence of additives, quantification of hydration levels, 13C relaxation-based measurements for studying atom-specific dynamics along the MO hydrocarbon chain, PGSE NMR measurement of translational diffusion and its correlation with release profiles, and the encapsulation of soluble proteins in LCPs. A brief discussion of future perspectives for the characterization of LCPs by solution NMR is also presented.
Collapse
|
21
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
22
|
Yu V, Ronzone E, Lord D, Peti W, Page R. MqsR is a noncanonical microbial RNase toxin that is inhibited by antitoxin MqsA via steric blockage of substrate binding. J Biol Chem 2022; 298:102535. [PMID: 36162504 PMCID: PMC9636575 DOI: 10.1016/j.jbc.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
The MqsRA toxin-antitoxin system is a component of the Escherichia coli stress response. Free MqsR, a ribonuclease, cleaves mRNAs containing a 5′-GC-3′ sequence causing a global shutdown of translation and the cell to enter a state of dormancy. Despite a general understanding of MqsR function, the molecular mechanism(s) by which MqsR binds and cleaves RNA and how one or more of these activities is inhibited by its cognate antitoxin MqsA is still poorly understood. Here, we used NMR spectroscopy coupled with mRNA cleavage assays to identify the molecular mechanism of MqsR substrate recognition and the MqsR residues that are essential for its catalytic activity. We show that MqsR preferentially binds substrates that contain purines in the −2 and −1 position relative to the MqsR consensus cleavage sequence and that two residues of MqsR, Tyr81, and Lys56 are strictly required for mRNA cleavage. We also show that MqsA inhibits MqsR activity by sterically blocking mRNA substrates from binding while leaving the active site fully accessible to mononucleotides. Together, these data identify the residues of MqsR that mediate RNA cleavage and reveal a novel mechanism that regulates MqsR substrate specificity.
Collapse
Affiliation(s)
- Victor Yu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Erik Ronzone
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Dana Lord
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
23
|
Dixon AD, Inoue A, Robson SA, Culhane KJ, Trinidad JC, Sivaramakrishnan S, Bumbak F, Ziarek JJ. Effect of Ligands and Transducers on the Neurotensin Receptor 1 Conformational Ensemble. J Am Chem Soc 2022; 144:10241-10250. [PMID: 35647863 PMCID: PMC9936889 DOI: 10.1021/jacs.2c00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Using a discrete, intracellular 19F nuclear magnetic resonance (NMR) probe on transmembrane helix 6 of the neurotensin receptor 1 (NTS1), we aim to understand how ligands and transducers modulate the receptor's structural ensemble in a solution. For apo NTS1, 19F NMR spectra reveal an ensemble of at least three conformational substates (one inactive and two active-like) in equilibrium that exchange on the millisecond to second timescale. Dynamic NMR experiments reveal that these substates follow a linear three-site exchange process that is both thermodynamically and kinetically remodeled by orthosteric ligands. As previously observed in other G protein-coupled receptors (GPCRs), the full agonist is insufficient to completely stabilize the active-like state. The inactive substate is abolished upon coupling to β-arrestin-1 (βArr1) or the C-terminal helix of Gαq, which comprises ≳60% of the GPCR/G protein interface surface area. Whereas βArr1 exclusively selects for pre-existing active-like substates, the Gαq peptide induces a new substate. Both transducer molecules promote substantial line broadening of active-like states, suggesting contributions from additional microsecond to millisecond exchange processes. Together, our study suggests that (i) the NTS1 allosteric activation mechanism may be alternatively dominated by induced fit or conformational selection depending on the coupled transducer, and (ii) the available static structures do not represent the entire conformational ensemble observed in a solution.
Collapse
Affiliation(s)
- Austin D. Dixon
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578 Miyagi, Japan
| | - Scott A. Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kelly J. Culhane
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States,Present Address: Department of Chemistry, Lawrence University, Appleton, Wisconsin, 54911, United States
| | - Jonathan C. Trinidad
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States,Present Address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua J. Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
24
|
Creutznacher R, Maass T, Dülfer J, Feldmann C, Hartmann V, Lane MS, Knickmann J, Westermann LT, Thiede L, Smith TJ, Uetrecht C, Mallagaray A, Waudby CA, Taube S, Peters T. Distinct dissociation rates of murine and human norovirus P-domain dimers suggest a role of dimer stability in virus-host interactions. Commun Biol 2022; 5:563. [PMID: 35680964 PMCID: PMC9184547 DOI: 10.1038/s42003-022-03497-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Norovirus capsids are icosahedral particles composed of 90 dimers of the major capsid protein VP1. The C-terminus of the VP1 proteins forms a protruding (P)-domain, mediating receptor attachment, and providing a target for neutralizing antibodies. NMR and native mass spectrometry directly detect P-domain monomers in solution for murine (MNV) but not for human norovirus (HuNoV). We report that the binding of glycochenodeoxycholic acid (GCDCA) stabilizes MNV-1 P-domain dimers (P-dimers) and induces long-range NMR chemical shift perturbations (CSPs) within loops involved in antibody and receptor binding, likely reflecting corresponding conformational changes. Global line shape analysis of monomer and dimer cross-peaks in concentration-dependent methyl TROSY NMR spectra yields a dissociation rate constant koff of about 1 s−1 for MNV-1 P-dimers. For structurally closely related HuNoV GII.4 Saga P-dimers a value of about 10−6 s−1 is obtained from ion-exchange chromatography, suggesting essential differences in the role of GCDCA as a cofactor for MNV and HuNoV infection. NMR and native mass spectrometry reveal that the major capsid VP1 protein from murine and human norovirus exhibit distinct behaviors and are differentially regulated by the binding of glycochenodeoxycholic acid.
Collapse
|
25
|
Abstract
Thanks to recent improvements in NMR spectrometer hardware and pulse sequence design, modern 13C NMR has become a useful tool for biomolecular applications. The complete assignment of a protein can be accomplished by using 13C detected multinuclear experiments and it can provide unique information relevant for the study of a variety of different biomolecules including paramagnetic proteins and intrinsically disordered proteins. A wide range of NMR observables can be measured, concurring to the structural and dynamic characterization of a protein in isolation, as part of a larger complex, or even inside a living cell. We present the different properties of 13C with respect to 1H, which provide the rationale for the experiments developed and their application, the technical aspects that need to be faced, and the many experimental variants designed to address different cases. Application areas where these experiments successfully complement proton NMR are also described.
Collapse
Affiliation(s)
- Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
26
|
Meng X, Xiang J, Zheng R, Wu FX, Li M. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1592-1602. [PMID: 33417563 DOI: 10.1109/tcbb.2021.3050102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological functions of a cell are typically carried out through protein complexes. The detection of protein complexes is therefore of great significance for understanding the cellular organizations and protein functions. In the past decades, many computational methods have been proposed to detect protein complexes. However, most of the existing methods just search the local topological information to mine dense subgraphs as protein complexes, ignoring the global topological information. To tackle this issue, we propose the DPCMNE method to detect protein complexes via multi-level network embedding. It can preserve both the local and global topological information of biological networks. First, DPCMNE employs a hierarchical compressing strategy to recursively compress the input protein-protein interaction (PPI) network into multi-level smaller PPI networks. Then, a network embedding method is applied on these smaller PPI networks to learn protein embeddings of different levels of granularity. The embeddings learned from all the compressed PPI networks are concatenated to represent the final protein embeddings of the original input PPI network. Finally, a core-attachment based strategy is adopted to detect protein complexes in the weighted PPI network constructed by the pairwise similarity of protein embeddings. To assess the efficiency of our proposed method, DPCMNE is compared with other eight clustering algorithms on two yeast datasets. The experimental results show that the performance of DPCMNE outperforms those state-of-the-art complex detection methods in terms of F1 and F1+Acc. Furthermore, the results of functional enrichment analysis indicate that protein complexes detected by DPCMNE are more biologically significant in terms of P-score.
Collapse
|
27
|
Bhattacharya S, Palillo A. Structural and dynamic studies of the peptidase domain from Clostridium thermocellum PCAT1. Protein Sci 2022; 31:498-512. [PMID: 34865273 PMCID: PMC8820281 DOI: 10.1002/pro.4248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/03/2023]
Abstract
The export of antimicrobial peptides is mediated by diverse mechanisms in bacterial quorum sensing pathways. One such binary system employed by gram-positive bacteria is the PCAT1 ABC transporter coupled to a cysteine protease. The focus of this study is the N-terminal C39 peptidase (PEP) domain from Clostridium thermocellum PCAT1 that processes its natural substrate CtA by cleaving a conserved -GG- motif to separate the cargo from the leader peptide prior to secretion. In this study, we are primarily interested in elucidating the dynamic and structural determinants of CtA binding and how it is coupled to cleavage efficiency in the PCAT1 PEP domain. To this end, we have characterized CtA interactions with PEP domain and PCAT1 transporter in detergent micelles using solution nuclear magnetic resonance spectroscopy. The bound CtA structure revealed the disordered C-terminal cargo peptide is linked by a sterically hindered cleavage site to a helix docked within a hydrophobic cavity in the PEP domain. The wide range of internal motions detected by amide nitrogen (N15 ) relaxation measurements in the free enzyme and substrate-bound complex suggests the binding site is relatively floppy. This flexibility plays a key role in the structural rearrangement necessary to relax steric inhibition in the bound substrate. In conjunction with previously reported PCAT1 structures, we offer fresh insight into the ATP-mediated association between PEP and transmembrane domains as a putative mechanism to optimize peptide cleavage by regulating the width and flexibility of the enzyme active site.
Collapse
Affiliation(s)
| | - Anthony Palillo
- Laboratory of Membrane Biology and Biophysics, The Rockefeller UniversityNew YorkNew YorkUSA,Joan and Sanford I Weill Medical College of Cornell UniversityNew YorkNew YorkUSA
| |
Collapse
|
28
|
Hou XN, Tochio H. Characterizing conformational ensembles of multi-domain proteins using anisotropic paramagnetic NMR restraints. Biophys Rev 2022; 14:55-66. [PMID: 35340613 PMCID: PMC8921464 DOI: 10.1007/s12551-021-00916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
It has been over two decades since paramagnetic NMR started to form part of the essential techniques for structural analysis of proteins under physiological conditions. Paramagnetic NMR has significantly expanded our understanding of the inherent flexibility of proteins, in particular, those that are formed by combinations of two or more domains. Here, we present a brief overview of techniques to characterize conformational ensembles of such multi-domain proteins using paramagnetic NMR restraints produced through anisotropic metals, with a focus on the basics of anisotropic paramagnetic effects, the general procedures of conformational ensemble reconstruction, and some representative reweighting approaches.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
29
|
Li GW, Wang XJ, Lei X, Liu N, Wu ZQ. Self-assembly of Helical Polymers and Oligomers to Create Liquid Crystalline Alignment for Anisotropic NMR Parameters. Macromol Rapid Commun 2022; 43:e2100898. [PMID: 35076973 DOI: 10.1002/marc.202100898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Indexed: 11/07/2022]
Abstract
The measurement of anisotropic residual dipolar couplings (RDCs) parameters for the structure elucidation of organic molecules relies on suitable alignment media. Employment of self-assembled liquid crystalline systems to create anisotropic alignment can be an effective way to realize aligned samples and acquire RDCs. This Mini-review highlights the recent advances on amino acid-based helical polymers and supramolecular oligomers forming rigid, rod-like structures that aggregate into ordered liquid crystalline phases, including amino acid-based helical polyisocyanides, polyacetylenes, polypeptides, and oligopeptides assembled alignment media. The methodology for the determination of anisotropic liquid crystals was briefly discussed, and a summary of recent research progress in the enantiodifferentiation of helical polymers aligned media was followed. In addition, the self-assembled mechanism of oligopeptides and their RDCs structural analysis were also described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
30
|
Chiliveri SC, Robertson AJ, Shen Y, Torchia DA, Bax A. Advances in NMR Spectroscopy of Weakly Aligned Biomolecular Systems. Chem Rev 2021; 122:9307-9330. [PMID: 34766756 DOI: 10.1021/acs.chemrev.1c00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The measurement and application of residual dipolar couplings (RDCs) in solution NMR studies of biological macromolecules has become well established over the past quarter of a century. Numerous methods for generating the requisite anisotropic orientational molecular distribution have been demonstrated, each with its specific strengths and weaknesses. In parallel, an enormous number of pulse schemes have been introduced to measure the many different types of RDCs, ranging from the most widely measured backbone amide 15N-1H RDCs, to 1H-1H RDCs and couplings between low-γ nuclei. Applications of RDCs range from structure validation and refinement to the determination of relative domain orientations, the measurement of backbone and domain motions, and de novo structure determination. Nevertheless, it appears that the power of the RDC methodology remains underutilized. This review aims to highlight the practical aspects of sample preparation and RDC measurement while describing some of the most straightforward applications that take advantage of the exceptionally precise information contained in such data. Some emphasis will be placed on more recent developments that enable the accurate measurement of RDCs in larger systems, which is key to the ongoing shift in focus of biological NMR spectroscopy from structure determination toward gaining improved understanding of how molecular flexibility drives protein function.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Angus J Robertson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dennis A Torchia
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
31
|
Xu J, Namanja A, Chan SL, Son C, Petros AM, Sun C, Radziejewski C, Ihnat PM. Insights into the Conformation and Self-Association of a Concentrated Monoclonal Antibody using Isothermal Chemical Denaturation and Nuclear Magnetic Resonance. J Pharm Sci 2021; 110:3819-3828. [PMID: 34506864 DOI: 10.1016/j.xphs.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
The purpose of this investigation was to highlight the utility of nuclear magnetic resonance (NMR) as a multi-attribute method for the characterization of therapeutic antibodies. In this case study, we compared results from isothermal chemical denaturation (ICD) and NMR with standard methods to relate conformational states of a model monoclonal antibody (mAb1) with protein-protein interactions (PPI) that lead to self - association in concentrated solutions. The increase in aggregation rate and relative viscosity for mAb1 was found to be both concentration and pH dependent. The free energy of unfolding (∆G⁰) from ICD and thermal analysis in dilute solutions indicated that although the native state predominated between pH 4 - pH 7, it was disrupted at the CH2 and unfolded noncooperatively under acidic conditions. One-dimensional (1D) 1H NMR and two-dimensional (2D) 13C-1H NMR performed, in concentrated solutions, confirmed that PPI between pH 4-7 occurred while mAb1 was in the native state. NMR corroborated that mAb1 maintained a dominant native state at formulation-relevant conditions at the tested pH range, had increased global molecular tumbling dynamics at lower pH and confirmed increased PPI at higher pH conditions. This report aligns and compares typical characterization of an IgG1 with assessment of structure by NMR and provided a more precise assessment and deeper insight into the conformation of an IgG1 in concentrated solutions.
Collapse
Affiliation(s)
- Jianwen Xu
- Drug Product Development Biologic Preformulation, Abbvie Bioresearch Center, Worcester, MA 01605, United States
| | - Andrew Namanja
- Protein & Assay Sciences, Drug Discovery Science & Technology, Abbvie Inc, Waukegan, IL 60031, United States
| | - Siew Leong Chan
- Analytical Sciences, Takeda Pharmaceuticals, Westborough, MA 01581, United States; Protein Analytics, Abbvie Bioresearch Center, Worcester, MA 01605, United States
| | - Chelsea Son
- Drug Product Development Biologic Preformulation, Abbvie Bioresearch Center, Worcester, MA 01605, United States; Process Analytics, Amgen Inc., Cambridge, MA 02141, United States
| | - Andrew M Petros
- Protein & Assay Sciences, Drug Discovery Science & Technology, Abbvie Inc, Waukegan, IL 60031, United States
| | - Chaohong Sun
- Protein & Assay Sciences, Drug Discovery Science & Technology, Abbvie Inc, Waukegan, IL 60031, United States
| | - Czeslaw Radziejewski
- Protein Analytics, Abbvie Bioresearch Center, Worcester, MA 01605, United States
| | - Peter M Ihnat
- Drug Product Development Biologic Preformulation, Abbvie Bioresearch Center, Worcester, MA 01605, United States; Protein Biochemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, United States.
| |
Collapse
|
32
|
Molecular insights on CALX-CBD12 interdomain dynamics from MD simulations, RDCs, and SAXS. Biophys J 2021; 120:3664-3675. [PMID: 34310942 DOI: 10.1016/j.bpj.2021.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs' allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.
Collapse
|
33
|
Shinobu A, Kobayashi C, Matsunaga Y, Sugita Y. Coarse-Grained Modeling of Multiple Pathways in Conformational Transitions of Multi-Domain Proteins. J Chem Inf Model 2021; 61:2427-2443. [PMID: 33956432 DOI: 10.1021/acs.jcim.1c00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale conformational transitions in multi-domain proteins are often essential for their functions. To investigate the transitions, it is necessary to explore multiple potential pathways, which involve different intermediate structures. Here, we present a multi-basin (MB) coarse-grained (CG) structure-based Go̅ model for describing transitions in proteins with more than two moving domains. This model is an extension of our dual-basin Go̅ model in which system-dependent parameters are determined systematically using the multistate Bennett acceptance ratio method. In the MB Go̅ model for multi-domain proteins, we assume that intermediate structures may have partial inter-domain native contacts. This approach allows us to search multiple transition pathways that involve distinct intermediate structures using the CG molecular dynamics (MD) simulations. We apply this scheme to an enzyme, adenylate kinase (AdK), which has three major domains and can move along two different pathways. Using the optimized mixing parameters for each pathway, AdK shows frequent transitions between the Open, Closed, and the intermediate basins and samples a wide variety of conformations within each basin. The explored multiple transition pathways could be compared with experimental data and examined in more detail by atomistic MD simulations.
Collapse
Affiliation(s)
- Ai Shinobu
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021; 402:1337-1355. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.
Collapse
Affiliation(s)
- Georg Künze
- Center for Structural Biology, Vanderbilt University, 465 21st Ave S, 5140 MRB3, Nashville, TN37240, USA.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN37235, USA.,Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, D-04103Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
35
|
Kellner R, Malempré R, Vandenameele J, Brans A, Hennen AF, Rochus N, Di Paolo A, Vandevenne M, Matagne A. Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:473-490. [PMID: 33611612 DOI: 10.1007/s00249-021-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Among various factors, the direct environment (e.g. pH, buffer components, salts, additives, etc.…) is known to have a crucial effect on both the stability and activity of proteins. In particular, proper buffer and pH conditions can improve their stability and function significantly during purification, storage and handling, which is highly relevant for both academic and industrial applications. It can also promote data reproducibility, support the interpretation of experimental results and, finally, contribute to our general understanding of the biophysical properties of proteins. In this study, we have developed a high throughput screen of 158 different buffers/pH conditions in which we evaluated: (i) the protein stability, using differential scanning fluorimetry and (ii) the protein function, using either enzymatic assays or binding activity measurements, both in an automated manner. The modular setup of the screen allows for easy implementation of other characterization methods and parameters, as well as additional test conditions. The buffer/pH screen was validated with five different proteins used as models, i.e. two active-site serine β-lactamases, two metallo-β-lactamases (one of which is only active as a tetramer) and a single-domain dromedary antibody fragment (VHH or nanobody). The formulation screen allowed automated and fast determination of optimum buffer and pH profiles for the tested proteins. Besides the determination of the optimum buffer and pH, the collection of pH profiles of many different proteins may also allow to delineate general concepts to understand and predict the relationship between pH and protein properties.
Collapse
Affiliation(s)
- Ruth Kellner
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Romain Malempré
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Alain Brans
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | | | - Noémie Rochus
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium
| | - Alexandre Di Paolo
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium.,Xpress Biologics SA, Accessia Pharma Site, Avenue du Parc Industriel, 89, 4041, Milmort, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium.
| |
Collapse
|
36
|
Crawley-Snowdon H, Yang JC, Zaccai NR, Davis LJ, Wartosch L, Herman EK, Bright NA, Swarbrick JS, Collins BM, Jackson LP, Seaman MNJ, Luzio JP, Dacks JB, Neuhaus D, Owen DJ. Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nat Commun 2020; 11:5031. [PMID: 33024112 PMCID: PMC7539009 DOI: 10.1038/s41467-020-18773-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
VARP and TBC1D5 are accessory/regulatory proteins of retromer-mediated retrograde trafficking from endosomes. Using an NMR/X-ray approach, we determined the structure of the complex between retromer subunit VPS29 and a 12 residue, four-cysteine/Zn++ microdomain, which we term a Zn-fingernail, two of which are present in VARP. Mutations that abolish VPS29:VARP binding inhibit trafficking from endosomes to the cell surface. We show that VARP and TBC1D5 bind the same site on VPS29 and can compete for binding VPS29 in vivo. The relative disposition of VPS29s in hetero-hexameric, membrane-attached, retromer arches indicates that VARP will prefer binding to assembled retromer coats through simultaneous binding of two VPS29s. The TBC1D5:VPS29 interaction is over one billion years old but the Zn-fingernail appears only in VARP homologues in the lineage directly giving rise to animals at which point the retromer/VARP/TBC1D5 regulatory network became fully established.
Collapse
Affiliation(s)
- Harriet Crawley-Snowdon
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Nathan R Zaccai
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Luther J Davis
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lena Wartosch
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3
| | | | - James S Swarbrick
- Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, 4072, Australia
| | - Lauren P Jackson
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - J Paul Luzio
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3.
| | - David Neuhaus
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK.
| | - David J Owen
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
37
|
Zheng J, Tang CH, Sun W. Heteroprotein complex coacervation: Focus on experimental strategies to investigate structure formation as a function of intrinsic and external physicochemical parameters for food applications. Adv Colloid Interface Sci 2020; 284:102268. [PMID: 32977143 DOI: 10.1016/j.cis.2020.102268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Proteins are important components of foods, because they are one of the essential food groups, they have many functional properties that are very useful for modifying the physicochemical and textural properties of processed foods and possess many biological activities that are beneficial to human health. The process of heteroprotein complex coacervation (HPCC) combines two or more proteins through long-range coulombic interaction and specific short-range forces, creating a liquid-liquid colloid, with highly concentrated protein in the droplet phase and much more diluted-protein in the bulk phase. Coacervates possess novel, modifiable, physicochemical characteristics, and often exhibit the combined biological activities of the protein components, which makes them applicable to formulated foods and encapsulation carriers. This review discusses research progress in the field of HPCC in three parts: (1) the basic and innovative experimental methods and simulation tools for understanding the physicochemical behavior of these heteroprotein supramolecular architectures; (2) the influence of environmental factors (pH, mixing ratio, salts, temperature, and formation time) and intrinsic factors (protein modifications, metal-binding, charge anisotropy, and polypeptide designs) on HPCC; (3) the potential applications of HPCC materials, such as encapsulation of nutraceuticals, nanogels, emulsion stabilization, and protein separation. The wide diversity of possible combinations of proteins with different properties, endows HPCC materials with great potential for development into highly-innovation functional food ingredients.
Collapse
Affiliation(s)
- Jiabao Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chuan-He Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
38
|
NMR Characterization of Conformational Interconversions of Lys48-Linked Ubiquitin Chains. Int J Mol Sci 2020; 21:ijms21155351. [PMID: 32731397 PMCID: PMC7432494 DOI: 10.3390/ijms21155351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
Ubiquitin (Ub) molecules can be enzymatically connected through a specific isopeptide linkage, thereby mediating various cellular processes by binding to Ub-interacting proteins through their hydrophobic surfaces. The Lys48-linked Ub chains, which serve as tags for proteasomal degradation, undergo conformational interconversions between open and closed states, in which the hydrophobic surfaces are exposed and shielded, respectively. Here, we provide a quantitative view of such dynamic processes of Lys48-linked triUb and tetraUb in solution. The native and cyclic forms of Ub chains are prepared with isotope labeling by in vitro enzymatic reactions. Our comparative NMR analyses using monomeric Ub and cyclic diUb as reference molecules enabled the quantification of populations of the open and closed states for each Ub unit of the native Ub chains. The data indicate that the most distal Ub unit in the Ub chains is the most apt to expose its hydrophobic surface, suggesting its preferential involvement in interactions with the Ub-recognizing proteins. We also demonstrate that a mutational modification of the distal end of the Ub chain can remotely affect the solvent exposure of the hydrophobic surfaces of the other Ub units, suggesting that Ub chains could be unique design frameworks for the creation of allosterically controllable multidomain proteins.
Collapse
|
39
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
40
|
Softley CA, Bostock MJ, Popowicz GM, Sattler M. Paramagnetic NMR in drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:287-309. [PMID: 32524233 PMCID: PMC7311382 DOI: 10.1007/s10858-020-00322-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 05/05/2023]
Abstract
The presence of an unpaired electron in paramagnetic molecules generates significant effects in NMR spectra, which can be exploited to provide restraints complementary to those used in standard structure-calculation protocols. NMR already occupies a central position in drug discovery for its use in fragment screening, structural biology and validation of ligand-target interactions. Paramagnetic restraints provide unique opportunities, for example, for more sensitive screening to identify weaker-binding fragments. A key application of paramagnetic NMR in drug discovery, however, is to provide new structural restraints in cases where crystallography proves intractable. This is particularly important at early stages in drug-discovery programs where crystal structures of weakly-binding fragments are difficult to obtain and crystallization artefacts are probable, but structural information about ligand poses is crucial to guide medicinal chemistry. Numerous applications show the value of paramagnetic restraints to filter computational docking poses and to generate interaction models. Paramagnetic relaxation enhancements (PREs) generate a distance-dependent effect, while pseudo-contact shift (PCS) restraints provide both distance and angular information. Here, we review strategies for introducing paramagnetic centers and discuss examples that illustrate the utility of paramagnetic restraints in drug discovery. Combined with standard approaches, such as chemical shift perturbation and NOE-derived distance information, paramagnetic NMR promises a valuable source of information for many challenging drug-discovery programs.
Collapse
Affiliation(s)
- Charlotte A Softley
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
41
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
42
|
Conformational Dynamics from Ambiguous Zinc Coordination in the RanBP2-Type Zinc Finger of RBM5. J Mol Biol 2020; 432:4127-4138. [PMID: 32450081 DOI: 10.1016/j.jmb.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.
Collapse
|
43
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
44
|
Probing Surfaces in Dynamic Protein Interactions. J Mol Biol 2020; 432:2949-2972. [DOI: 10.1016/j.jmb.2020.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
|
45
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
46
|
Integrative Structural Biology of Protein-RNA Complexes. Structure 2020; 28:6-28. [DOI: 10.1016/j.str.2019.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
47
|
Joss D, Winter F, Häussinger D. A novel, rationally designed lanthanoid chelating tag delivers large paramagnetic structural restraints for biomolecular NMR. Chem Commun (Camb) 2020; 56:12861-12864. [DOI: 10.1039/d0cc04337k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, rationally designed lanthanoid chelating tag enables fast ligation to biomacromolecules and delivers long-range structural restraints by NMR.
Collapse
Affiliation(s)
- Daniel Joss
- Department of Chemistry
- University of Basel
- Basel 4056
- Switzerland
| | - Florine Winter
- Department of Chemistry
- University of Basel
- Basel 4056
- Switzerland
| | | |
Collapse
|
48
|
Sala D, Cerofolini L, Fragai M, Giachetti A, Luchinat C, Rosato A. A protocol to automatically calculate homo-oligomeric protein structures through the integration of evolutionary constraints and NMR ambiguous contacts. Comput Struct Biotechnol J 2019; 18:114-124. [PMID: 31969972 PMCID: PMC6961069 DOI: 10.1016/j.csbj.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Protein assemblies are involved in many important biological processes. Solid-state NMR (SSNMR) spectroscopy is a technique suitable for the structural characterization of samples with high molecular weight and thus can be applied to such assemblies. A significant bottleneck in terms of both effort and time required is the manual identification of unambiguous intermolecular contacts. This is particularly challenging for homo-oligomeric complexes, where simple uniform labeling may not be effective. We tackled this challenge by exploiting coevolution analysis to extract information on homo-oligomeric interfaces from NMR-derived ambiguous contacts. After removing the evolutionary couplings (ECs) that are already satisfied by the 3D structure of the monomer, the predicted ECs are matched with the automatically generated list of experimental contacts. This approach provides a selection of potential interface residues that is used directly in monomer-monomer docking calculations. We validated the protocol on tetrameric L-asparaginase II and dimeric Sod1.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
49
|
Zhao L, Zhao Q, Shan Y, Fang F, Zhang W, Zhao B, Li X, Liang Z, Zhang L, Zhang Y. Smart Cutter: An Efficient Strategy for Increasing the Coverage of Chemical Cross-Linking Analysis. Anal Chem 2019; 92:1097-1105. [DOI: 10.1021/acs.analchem.9b04161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Fei Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
50
|
Molecular recognition of ubiquitin and Lys63-linked diubiquitin by STAM2 UIM-SH3 dual domain: the effect of its linker length and flexibility. Sci Rep 2019; 9:14645. [PMID: 31601934 PMCID: PMC6787221 DOI: 10.1038/s41598-019-51182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Multidomain proteins represent a broad spectrum of the protein landscape and are involved in various interactions. They could be considered as modular building blocks assembled in distinct fashion and connected by linkers of varying lengths and sequences. Due to their intrinsic flexibility, these linkers provide proteins a subtle way to modulate interactions and explore a wide range of conformational space. In the present study, we are seeking to understand the effect of the flexibility and dynamics of the linker involved in the STAM2 UIM-SH3 dual domain protein with respect to molecular recognition. We have engineered several constructs of UIM-SH3 with different length linkers or domain deletion. By means of SAXS and NMR experiments, we have shown that the modification of the linker modifies the flexibility and the dynamics of UIM-SH3. Indeed, the global tumbling of both the UIM and SH3 domain is different but not independent from each other while the length of the linker has an impact on the ps-ns time scale dynamics of the respective domains. Finally, the modification of the flexibility and dynamics of the linker has a drastic effect on the interaction of UIM-SH3 with Lys63-linked diubiquitin with a roughly eight-time weaker dissociation constant.
Collapse
|