1
|
Nasehi M, Hasanvand S, Khakpai F, Zarrindast MR. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice. Acta Neurol Belg 2019; 119:369-377. [PMID: 29767374 DOI: 10.1007/s13760-018-0926-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.
Collapse
|
2
|
Bonnet U, Bingmann D, Speckmann EJ, Wiemann M. Levetiracetam mediates subtle pH-shifts in adult human neocortical pyramidal cells via an inhibition of the bicarbonate-driven neuronal pH-regulation - Implications for excitability and plasticity modulation. Brain Res 2019; 1710:146-156. [PMID: 30590026 DOI: 10.1016/j.brainres.2018.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/24/2018] [Accepted: 12/23/2018] [Indexed: 01/20/2023]
Abstract
The intracellular pH (pHi) of mammalian central neurons is tightly regulated and small pHi-fluctuations can fine-tune inter-/intracellular signaling, excitability, and synaptic plasticity. The research-gap about the pHi-regulation of human brain neurons is addressed here by testing possible influences of the anticonvulsant levetiracetam (LEV). BCECF-AM-loaded neocortical pyramidal cells were fluorometrically investigated in slice-preparations of tissue resected from the middle temporal gyrus of five adults with intractable temporal-lobe epilepsy. Recovery-slope from intracellular acidification following an ammonium prepulse (APP) was used to measure the pHi-regulation. Among twenty pyramidal cells exposed to 50 μM LEV, the resting pHi (7.09 ± 0.14) was lowered in eight (40%) neurons, on average by 0.02 ± 0.011 pH-units. In three (15%) and nine (45%) neurons, a minimal alkaline shift (0.017 ± 0.004 pH-units) and no pHi-shift occurred, respectively. The LEV-induced pHi-shifts were positively correlated with the resting pHi (r = 0.6, p = 0.006, n = 20). In five neurons, which all had responded on LEV with an acidification before, the recovery from APP-acidification was significantly delayed during LEV (p < 0.001). This inhibitory LEV-effect on pHi-regulation i) was similar to that of 200 μM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (n = 2) and ii) did not occur under nominal bicarbonate-free conditions (n = 2). Thus, LEV lowered the pHi of human neocortical pyramidal cells most likely by a weakening of the transmembrane HCO3(-)-mediated acid-extrusion. This might contribute to LEV's anticonvulsive potency. Neurons with more acidic resting pHi-values showed a minimal alkalization upon LEV providing a mechanism for paradoxical proconvulsive LEV-effects rarely observed in epilepsy patients. The significance of these subtle pHi-shifts for cortical excitability and plasticity is discussed.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dieter Bingmann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany; IBE R&D gGmbH, Institute for Lung Health, D-48149 Münster, Germany
| |
Collapse
|
3
|
Bonnet U, Bingmann D, Speckmann EJ, Wiemann M. Aging is associated with a mild acidification in neocortical human neurons in vitro. J Neural Transm (Vienna) 2018; 125:1495-1501. [PMID: 29995171 DOI: 10.1007/s00702-018-1904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
The intracellular pH (pHi) in the cytosol of mammalian central neurons is tightly regulated and small pHi-fluctuations are deemed to modulate inter-/intracellular signaling, excitability, and synaptic plasticity. The resting pHi of young rodent hippocampal pyramidal neurons is known to decrease alongside aging for about 0.1 pH-units. There is no information about the relationship between age and pHi of human central neurons. We addressed this knowledge gap using 26 neocortical slices from 12 patients (1-56-years-old) who had undergone epilepsy surgery. For fluorometric recordings, the slice-neurons were loaded with the pHi-sensitive dye BCECF-AM. We found that the pyramidal cells' resting pHi (n = 26) descended linearly alongside aging (r = - 0.71, p < 0.001). This negative relationship persisted, when the sample was confined to specific brain regions (i.e., middle temporal gyrus, 23 neurons, r = - 0.68, p < 0.001) or pathologies (i.e., hippocampus sclerosis, 8 neurons, r = - 0.78, p = 0.02). Specifically, neurons (n = 9, pHi 7.25 ± 0.12) from young children (1.5 ± 0.46-years-old) were significantly more alkaline than neurons from adults (n = 17, 38.53 ± 12.38 years old, pHi 7.08 ± 0.07, p < 0.001). Although the samples were from patients with different pathologies the results were in line with those from the rodent hippocampal pyramidal neurons. Like a hormetin, the age-related mild pHi-decrease might contribute to neuroprotection, e.g., via limiting excitotoxicity. On the other hand, aging cortical neurons could become more vulnerable to metabolic overstress by a successive pHi-decrease. Certainly, its impact for the dynamics in short and long-term synaptic plasticity and, ultimately, learning and memory provides a challenge for further research.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany. .,Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dieter Bingmann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany.,IBE R&D gGmbH, Institute for Lung Health, 48149, Münster, Germany
| |
Collapse
|
4
|
Bonnet U, Bingmann D, Speckmann EJ, Wiemann M. Small intraneuronal acidification via short-chain monocarboxylates: First evidence of an inhibitory action on over-excited human neocortical neurons. Life Sci 2018; 204:65-70. [PMID: 29730171 DOI: 10.1016/j.lfs.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
AIMS In cortical mammalian neurons, small fluctuations of intracellular pH (pHi) play a crucial role for inter- and intracellular signaling as well as for cellular and synaptic plasticity. Yet, there have been no respective data about humans. Thus, we investigated the interrelation of pHi and excitability of human cortical neurons. MATERIALS AND METHODS Intracellular electrophysiological and pH-recordings were made in neurons in slices taken from brain tissue resected from the middle temporal gyrus of two male children (26 months and 35 months old) who suffered from pharmacotherapy-resistant temporal lobe epilepsy. To excite the tissue (n = 13), we used the 0-Mg2+/high-K+-in vitro epilepsy model producing robust epileptiform discharges (ED). To evoke an intracellular acidification (n = 12), we used the well-established propionate-model and applied 10 mM propionate to the bath solutions. In addition, we recorded the effects of other strongly related short-chain monocarboxylates (l-lactate (10 mM) and the ketone body DL-β-hydroxybutyrate (10 mM)) on ED and pHi. KEY FINDINGS The ED-frequency was reversibly reduced by propionate (n = 5), l-lactate (n = 5), or DL-β-hydroxybutyrate (n = 3), while the durations of EDs and their after-depolarizations increased. In parallel experiments, all three short-chain monocarboxylates (each n = 4) lowered the pHi of the neurons (n = 12) by 0.05-0.07 pH units which was temporally related to the reported changes in bioelectric activity. SIGNIFICANCE A mild drop of the intraneuronal pH was associated with the control of even over-excited human neocortical tissue. This is identical with prior observations in non-human mammalian cortical neurons. Possible implications for neuroplasticity and the treatment of neuropsychiatric disorders are discussed.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dieter Bingmann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany; IBE R&D gGmbH, Institute for Lung Health, D-48149 Münster, Germany
| |
Collapse
|
5
|
Nasehi M, Morteza-zadeh P, Khakpai F, Zarrindast MR. Additive effect of harmane and muscimol for memory consolidation impairment in inhibitory avoidance task. Neuroscience 2016; 339:287-295. [DOI: 10.1016/j.neuroscience.2016.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022]
|
6
|
Nasehi M, Meskarian M, Khakpai F, Zarrindast MR. Harmaline-induced amnesia: Possible role of the amygdala dopaminergic system. Neuroscience 2015; 312:1-9. [PMID: 26556066 DOI: 10.1016/j.neuroscience.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
Abstract
In this study, we examined the effect of bilateral intra-basolateral amygdala (intra-BLA) microinjections of dopamine receptor agents on amnesia induced by a β-carboline alkaloid, harmaline in mice. We used a step-down method to assess memory and then, hole-board method to assess exploratory behaviors. The results showed that pre-training intra-BLA injections of dopamine D1 receptor antagonist and agonist (SCH23390 (0.5μg/mouse) and SKF38393 (0.5μg/mouse), respectively) impaired memory acquisition. In contrast, pre-training intra-BLA injections of dopamine D2 receptor antagonist and agonist (sulpiride and quinpirole, respectively) have no significant effect on memory acquisition. Pre-training intra-peritoneal (i.p.) injection of harmaline (1mg/kg) decreased memory acquisition. However, co-administration of SCH 23390 (0.01μg/mouse) with different doses of harmaline did not alter amnesia. Conversely, pre-training intra-BLA injection of SKF38393 (0.1μg/mouse), sulpiride (0.25μg/mouse) or quinpirole (0.1μg/mouse) reversed harmaline (1mg/kg, i.p.)-induced amnesia. Furthermore, all above doses of drugs had no effect on locomotor activity. In conclusion, the dopamine D1 and D2 receptors of the BLA may be involved in the impairment of memory acquisition induced by harmaline.
Collapse
Affiliation(s)
- M Nasehi
- Cognitive and Neruroscience Research Center, CNRC, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - M Meskarian
- Department of Biology, Faculty of Basic Sciences, Northern Branch, Islamic Azad University, Tehran, Iran
| | - F Khakpai
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - M-R Zarrindast
- Cognitive and Neruroscience Research Center, CNRC, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
7
|
Hu YB, Dammer EB, Ren RJ, Wang G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 2015; 4:18. [PMID: 26448863 PMCID: PMC4596472 DOI: 10.1186/s40035-015-0041-1] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
The endosomal-lysosomal system is made up of a set of intracellular membranous compartments that dynamically interconvert, which is comprised of early endosomes, recycling endosomes, late endosomes, and the lysosome. In addition, autophagosomes execute autophagy, which delivers intracellular contents to the lysosome. Maturation of endosomes and/or autophagosomes into a lysosome creates an unique acidic environment within the cell for proteolysis and recycling of unneeded cellular components into usable amino acids and other biomolecular building blocks. In the endocytic pathway, gradual maturation of endosomes into a lysosome and acidification of the late endosome are accompanied by vesicle trafficking, protein sorting and targeted degradation of some sorted cargo. Two opposing sorting systems are operating in these processes: the endosomal sorting complex required for transport (ESCRT) supports targeted degradation and the retromer supports retrograde retrieval of certain cargo. The endosomal-lysosomal system is emerging as a central player in a host of neurodegenerative diseases, demonstrating potential roles which are likely to be revealed in pathogenesis and for viable therapeutic strategies. Here we focus on the physiological process of endosomal-lysosomal maturation, acidification and sorting systems along the endocytic pathway, and further discuss relationships between abnormalities in the endosomal-lysosomal system and neurodegenerative diseases, especially Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Yong-Bo Hu
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
8
|
The effect of CA1 dopaminergic system in harmaline-induced amnesia. Neuroscience 2015; 285:47-59. [DOI: 10.1016/j.neuroscience.2014.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
|
9
|
Nasehi M, Jamshidi-Mehr M, Khakpai F, Zarrindast MR. Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol Biochem Behav 2014; 125:70-77. [DOI: 10.1016/j.pbb.2014.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/25/2014] [Accepted: 08/24/2014] [Indexed: 01/18/2023]
|
10
|
Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia. Neurosci Lett 2013; 556:5-9. [DOI: 10.1016/j.neulet.2013.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/21/2013] [Accepted: 09/27/2013] [Indexed: 11/21/2022]
|
11
|
Louis ED, Pellegrino KM, Factor-Litvak P, Rios E, Jiang W, Henchcliffe C, Zheng W. Cancer and blood concentrations of the comutagen harmane in essential tremor. Mov Disord 2009; 23:1747-51. [PMID: 18709680 DOI: 10.1002/mds.22084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood concentrations of harmane, a tremor-producing neurotoxin, are elevated in essential tremor (ET). Harmane is also a comutagen. Using a case-control design, we compared the prevalence of cancer in ET cases vs. controls, and determined whether blood harmane concentrations are elevated among ET cases with cancer. 66/267 (24.7%) ET cases vs. 55/331 (16.6%) controls had cancer (adjusted OR 1.52, 95% CI 1.01-2.30, P = 0.04). Among specific cancer types, colon cancer was more prevalent in ET cases than controls (2.6% vs. 0.6%, P = 0.04). Log blood harmane concentration was higher in ET cases vs. controls (P = 0.02) and in participants with vs. without cancer (P = 0.02). Log blood harmane concentration was highest in ET cases with cancer when compared with other groups (P = 0.009). These links between cancer and ET and between high blood harmane and cancer in ET deserve further study.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | |
Collapse
|