1
|
Albrecht U. The circadian system and mood related behavior in mice. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:269-291. [PMID: 37709379 DOI: 10.1016/bs.apcsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Most organisms on earth have evolved an internal clock in order to predict daily recurring events. This clock called circadian clock has a period of about 24 h and allows organisms to organize biochemical and physiological processes over one day. Changes in lighting conditions as they occur naturally over seasons, or man made by jet lag or shift work, advance or delay clock phase in order to synchronize an organism's physiology to the environment. A misalignment of the clock to its environment results in sleep disturbances and mood disorders. Although there are strong associations between the circadian clock and mood disorders such as depression, the underlying molecular mechanisms are not well understood. This review describes the currently known molecular links between circadian clock components and mood related behaviors in mice, which will help to understand the causal links between the clock and mood in humans in the future.
Collapse
Affiliation(s)
- U Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
2
|
Light-dependent effects on mood: Mechanistic insights from animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:71-95. [DOI: 10.1016/bs.pbr.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Olejniczak I, Ripperger JA, Sandrelli F, Schnell A, Mansencal-Strittmatter L, Wendrich K, Hui KY, Brenna A, Ben Fredj N, Albrecht U. Light affects behavioral despair involving the clock gene Period 1. PLoS Genet 2021; 17:e1009625. [PMID: 34237069 PMCID: PMC8266116 DOI: 10.1371/journal.pgen.1009625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
Light at night has strong effects on physiology and behavior of mammals. It affects mood in humans, which is exploited as light therapy, and has been shown to reset the circadian clock in the suprachiasmatic nuclei (SCN). This resetting is paramount to align physiological and biochemical timing to the environmental light-dark cycle. Here we provide evidence that light at zeitgeber time (ZT) 22 affects mood-related behaviors also in mice by activating the clock gene Period1 (Per1) in the lateral habenula (LHb), a brain region known to modulate mood-related behaviors. We show that complete deletion of Per1 in mice led to depressive-like behavior and loss of the beneficial effects of light on this behavior. In contrast, specific deletion of Per1 in the region of the LHb did not affect mood-related behavior, but suppressed the beneficial effects of light. RNA sequence analysis in the mesolimbic dopaminergic system revealed profound changes of gene expression after a light pulse at ZT22. In the nucleus accumbens (NAc), sensory perception of smell and G-protein coupled receptor signaling were affected the most. Interestingly, most of these genes were not affected in Per1 knock-out animals, indicating that induction of Per1 by light serves as a filter for light-mediated gene expression in the brain. Taken together we show that light affects mood-related behavior in mice at least in part via induction of Per1 in the LHb with consequences on mood-related behavior and signaling mechanisms in the mesolimbic dopaminergic system.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | - Anna Schnell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Katrin Wendrich
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ka Yi Hui
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Brenna
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Naila Ben Fredj
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Dimatelis JJ, Mtintsilana A, Naidoo V, Stein DJ, Russell VA. Chronic light exposure alters serotonergic and orexinergic systems in the rat brain and reverses maternal separation-induced increase in orexin receptors in the prefrontal cortex. Metab Brain Dis 2018; 33:433-441. [PMID: 29039077 DOI: 10.1007/s11011-017-0123-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
Abstract
Maternal separation (MS) is a well-established rodent model of depression. Chronic constant light (CCL) treatment during adolescence has been shown to reverse the depression-like behaviour induced by MS. We aimed to further delineate the antidepressant effect of light by investigating the involvement of the dopaminergic, serotonergic and orexinergic systems. MS was used to induce changes in adult male Sprague-Dawley rats, some of whom were also treated with CCL for 3 weeks during adolescence. At P80, rats were decapitated and brain tissue collected for analysis of glutamate- and potassium-stimulated dopamine release in the nucleus accumbens (NAc) using an in vitro superfusion technique. Enzyme-linked immunosorbent assays were employed to measure 5-hydroxytryptamine (5-HT) levels in the hypothalamus and prefrontal cortex (PFC). Western blotting was used to measure orexin receptor 1 (OXR-1) and 2 (OXR-2) in the PFC. MS did not affect 5-HT levels in these rats. However, CCL increased hypothalamic 5-HT and reduced 5-HT levels in the PFC. CCL had opposite effects on OXR levels in the PFC of maternally separated and non-separated rats. MS increased OXR-1 and OXR-2 levels in the PFC, an effect that was normalized by CCL treatment. MS reduced glutamate-stimulated dopamine release in the NAc, an effect that was not reversed by CCL. The present results suggest that CCL treatment affects 5-HT and orexinergic systems in the MS model while not affecting the MS-induced decrease in dopamine release in the NAc. The reversal of changes in the orexinergic system may be of particular relevance to the antidepressant effect of CCL in depression.
Collapse
Affiliation(s)
- J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - A Mtintsilana
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - V Naidoo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - D J Stein
- Department of Psychiatry and Mental Health and MRC Unit on Anxiety & Stress Disorders, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
5
|
Kim S, Kim S, Khalid A, Jeong Y, Jeong B, Lee ST, Jung KH, Chu K, Lee SK, Jeon D. Rhythmical Photic Stimulation at Alpha Frequencies Produces Antidepressant-Like Effects in a Mouse Model of Depression. PLoS One 2016; 11:e0145374. [PMID: 26727023 PMCID: PMC4699699 DOI: 10.1371/journal.pone.0145374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022] Open
Abstract
Current therapies for depression consist primarily of pharmacological agents, including antidepressants, and/or psychiatric counseling, such as psychotherapy. However, light therapy has recently begun to be considered as an effective tool for the treatment of the neuropsychiatric behaviors and symptoms of a variety of brain disorders or diseases, including depression. One methodology employed in light therapy involves flickering photic stimulation within a specific frequency range. The present study investigated whether flickering and flashing photic stimulation with light emitting diodes (LEDs) could improve depression-like behaviors in a corticosterone (CORT)-induced mouse model of depression. Additionally, the effects of the flickering and flashing lights on depressive behavior were compared with those of fluoxetine. Rhythmical flickering photic stimulation at alpha frequencies from 9–11 Hz clearly improved performance on behavioral tasks assessing anxiety, locomotor activity, social interaction, and despair. In contrast, fluoxetine treatment did not strongly improve behavioral performance during the same period compared with flickering photic stimulation. The present findings demonstrated that LED-derived flickering photic stimulation more rapidly improved behavioral outcomes in a CORT-induced mouse model of depression compared with fluoxetine. Thus, the present study suggests that rhythmical photic stimulation at alpha frequencies may aid in the improvement of the quality of life of patients with depression.
Collapse
Affiliation(s)
- Shinheun Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Sangwoo Kim
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
| | - Arshi Khalid
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Soon-Tae Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
| | - Keun-Hwa Jung
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
| | - Kon Chu
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
- * E-mail: (DJ); (KC); (SKL)
| | - Sang Kun Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
- * E-mail: (DJ); (KC); (SKL)
| | - Daejong Jeon
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
- * E-mail: (DJ); (KC); (SKL)
| |
Collapse
|
6
|
Abelaira HM, Réus GZ, Quevedo J. Animal models as tools to study the pathophysiology of depression. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35 Suppl 2:S112-20. [PMID: 24271223 DOI: 10.1590/1516-4446-2013-1098] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The incidence of depressive illness is high worldwide, and the inadequacy of currently available drug treatments contributes to the significant health burden associated with depression. A basic understanding of the underlying disease processes in depression is lacking; therefore, recreating the disease in animal models is not possible. Popular current models of depression creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology. Within this context, this study aims to evaluate animal models of depression and determine which has the best face, construct, and predictive validity. These models differ in the degree to which they produce features that resemble a depressive-like state, and models that include stress exposure are widely used. Paradigms that employ acute or sub-chronic stress exposure include learned helplessness, the forced swimming test, the tail suspension test, maternal deprivation, chronic mild stress, and sleep deprivation, to name but a few, all of which employ relatively short-term exposure to inescapable or uncontrollable stress and can reliably detect antidepressant drug response.
Collapse
Affiliation(s)
- Helena M Abelaira
- Universidade do Extremo Sul Catarinense, Laboratory of Clinical Neurosciences, National Science and Technology Institute for Translational Medicine, Center of Excellence in Applied Neurosciences of Santa Catarina, Graduate Program in Health Sciences, Health Sciences Unit, CriciúmaSC, Brazil
| | | | | |
Collapse
|
7
|
Canbeyli R. Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation. Front Hum Neurosci 2013; 7:428. [PMID: 23908624 PMCID: PMC3727046 DOI: 10.3389/fnhum.2013.00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.
Collapse
Affiliation(s)
- Resit Canbeyli
- Psychobiology Laboratory, Department of Psychology, Bogazici University , Istanbul , Turkey
| |
Collapse
|
8
|
Chronic Exposure to Light Reverses the Effect of Maternal Separation on Proteins in the Prefrontal Cortex. J Mol Neurosci 2013; 51:835-43. [DOI: 10.1007/s12031-013-0071-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
9
|
Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav 2013; 118:227-39. [PMID: 23685235 DOI: 10.1016/j.physbeh.2013.05.012] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/31/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
The forced swim test (FST) is a behavioral test in rodents which was developed in 1978 by Porsolt and colleagues as a model for predicting the clinical efficacy of antidepressant drugs. A modified version of the FST added the classification of active behaviors into swimming and climbing, in order to facilitate the differentiation between serotonergic and noradrenergic classes of antidepressant drugs. The FST is now widely used in basic research and the pharmaceutical screening of potential antidepressant treatments. It is also one of the most commonly used tests to assess depressive-like behavior in animal models. Despite the simplicity and sensitivity of the FST procedure, important differences even in baseline immobility rates have been reported between different groups, which complicate the comparison of results across studies. In spite of several methodological papers and reviews published on the FST, the need still exists for clarification of factors which can influence the procedure. While most recent reviews have focused on antidepressant effects observed with the FST, this one considers the methodological aspects of the procedure, aiming to summarize issues beyond antidepressant action in the FST. The previously published literature is analyzed for factors which are known to influence animal behavior in the FST. These include biological factors, such as strain, age, body weight, gender and individual differences between animals; influence of preconditioning before the FST: handling, social isolation or enriched environment, food manipulations, various kinds of stress, endocrine manipulations and surgery; schedule and routes of treatment, dosage and type of the drugs as well as experimental design and laboratory environmental effects. Consideration of these factors in planning experiments may result in more consistent FST results.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT84108, USA.
| | | | | | | |
Collapse
|
10
|
Dimatelis J, Stein D, Russell V. Behavioral changes after maternal separation are reversed by chronic constant light treatment. Brain Res 2012; 1480:61-71. [DOI: 10.1016/j.brainres.2012.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 12/11/2022]
|
11
|
Beckley EH, Scibelli AC, Finn DA. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability. Psychoneuroendocrinology 2011; 36:824-33. [PMID: 21163582 PMCID: PMC3081939 DOI: 10.1016/j.psyneuen.2010.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 10/02/2010] [Accepted: 11/11/2010] [Indexed: 12/28/2022]
Abstract
Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone's GABA(A) receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression.
Collapse
Affiliation(s)
- Ethan H. Beckley
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Angela C. Scibelli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, Portland Veterans Affairs Medical Center, Portland, OR 97239
| |
Collapse
|
12
|
Canbeyli R. Sensorimotor modulation of mood and depression: An integrative review. Behav Brain Res 2010; 207:249-64. [DOI: 10.1016/j.bbr.2009.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/29/2009] [Accepted: 11/02/2009] [Indexed: 02/05/2023]
|
13
|
İyilikci O, Aydin E, Canbeyli R. Blue but not red light stimulation in the dark has antidepressant effect in behavioral despair. Behav Brain Res 2009; 203:65-8. [DOI: 10.1016/j.bbr.2009.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 12/25/2022]
|
14
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:260-77. [PMID: 19390324 DOI: 10.1097/med.0b013e32832c937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Pezuk P, Aydin E, Aksoy A, Canbeyli R. Effects of BNST lesions in female rats on forced swimming and navigational learning. Brain Res 2008; 1228:199-207. [PMID: 18619949 DOI: 10.1016/j.brainres.2008.06.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 12/15/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) in the forebrain shows sexual dimorphism in its neuroanatomical connectivity and neurochemical characteristics. The structure is involved in many behavioral and motivational phenomena particularly related to coping with stress. Female rats differ from males in responding to stressful situations such as forced swimming and navigational learning in the water maze. It was previously shown that bilateral damage to the BNST in male Wistar rats aggravated depression as measured by forced swim tests, but did not impair navigational learning in the water maze. The present study extended the findings to female rats demonstrating that bilateral electrolytic lesions of the BNST increased immobility and decreased climbing compared to sham-operated controls, but failed to affect performance in the water maze. Additionally, lesions did not alter behavior in the open field and the elevated plus-maze tests suggesting not only that the modulation of depression by BNST lesions is specific, but also providing support for the view that the BNST may not necessarily be critically involved in anxiety.
Collapse
Affiliation(s)
- Pinar Pezuk
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | | | | | |
Collapse
|