1
|
Bevione F, Panero M, Abbate-Daga G, Cossu G, Carta MG, Preti A. Risk of suicide and suicidal behavior in refugees. A meta-review of current systematic reviews and meta-analyses. J Psychiatr Res 2024; 177:287-298. [PMID: 39059026 DOI: 10.1016/j.jpsychires.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Despite the exposure to a wide combination of risk factors, evidence concerning risk of suicide among refugees is mixed. AIMS We aimed to establish more precise estimates of suicide and suicidal behavior in refugees and asylum seekers, investigate the role of somatic and psychiatric comorbidities, and the effectiveness of preventative interventions. METHODS We searched PubMed/Medline, EMBASE, CINAHL, and PsycInfo without time limitations from inception until June 5, 2024. Studies were included if systematic reviews or meta-analyses reporting data on suicide or suicidal behavior in refugees or asylum seekers, or detailing the results of preventive interventions. Quality was assessed using the National Institutes of Health Quality Assessment Tool for Systematic Reviews and Meta-Analyses. RESULTS Out of 49 papers, 10 systematic reviews and meta-analyses were included. Refugees showed significantly higher suicide death rates and suicidal ideation, suicide plan and suicide attempt prevalence compared to people living in the host countries. Refugees who arrived in low-income and lower-middle-income countries displayed lower suicidal ideation, but higher suicide death rates and suicide attempt prevalence compared to refugees who arrived in high-income and upper-middle-income countries. However, no review provided data regarding somatic comorbidity, psychiatric comorbidity, or the effectiveness of treatments, and evidence on specific categories of refugees is scarce. CONCLUSION Refugees have been proven to be at risk for suicide and suicidal behavior. More research is required to identify the targets and procedures of intervention.
Collapse
Affiliation(s)
| | - Matteo Panero
- Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Giulia Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Preti
- Department of Neuroscience, University of Turin, Turin, Italy.
| |
Collapse
|
2
|
Bahram Nejad A, Behzadi A, Ostad Ahmadi Z, Barouni M. Determining the Burden of Suicidal Behaviors Using the DALY Approach: A Case Study in Iran (2018-2021). ADDICTION & HEALTH 2023; 15:185-191. [PMID: 38026727 PMCID: PMC10658101 DOI: 10.34172/ahj.2023.1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/12/2023] [Indexed: 12/01/2023]
Abstract
Background Suicide is a significant and growing concern in health systems worldwide. It is considered a crucial part of the comprehensive mental health action plan in every country. Kerman, one of the largest provinces of Iran with a relatively high population, has witnessed an increasing trend in this phenomenon, especially during the COVID-19 pandemic. Methods This was a cross-sectional study conducted in urban and rural areas of Kerman. Suicide data for 2018-2021 were acquired from the Psychosocial Health and Addiction Prevention Group of the Deputy for Health at Kerman University of Medical Sciences. The burden resulting from suicide during these years was measured using the disability-adjusted life years (DALY) index. Findings During these four years, 23701 suicide attempts were recorded in Kerman, with 59% and 41% of the suicide attempts made by men and women, respectively, and 668 (2.82%) attempts leading to death. The highest rate (68%) was observed in the 15-29 age range and the lowest rate (1.1%) was seen in people older than 60. Poisoning (89.3% of the attempts) was the most common suicide method. The suicide burden in Kerman in 2021 was 4417 according to the DALY index, which is 162.6 per 100000 people; men and women endure 38% and 62% of this burden, respectively. The highest DALY rates were seen in the 15-29 and 30-44 age groups. Conclusion The burden resulting from suicide highlights the necessity of taking immediate measures to prevent this behavior, especially among vulnerable groups.
Collapse
Affiliation(s)
- Ali Bahram Nejad
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Anahita Behzadi
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Zakeih Ostad Ahmadi
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Barouni
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, Yuan F, Xu M, Wang C, Zhu D, Guo X, Liu Y. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med 2022; 15:e16364. [PMID: 36373384 PMCID: PMC9832822 DOI: 10.15252/emmm.202216364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder with suicide behavior (sMDD) is a server mood disorder, bringing tremendous burden to family and society. Although reduced gamma amino butyric acid (GABA) level has been observed in postmortem tissues of sMDD patients, the molecular mechanism by which GABA levels are altered remains elusive. In this study, we generated induced pluripotent stem cells (iPSC) from five sMDD patients and differentiated the iPSCs to GABAergic interneurons (GINs) and ventral forebrain organoids. sMDD GINs exhibited altered neuronal morphology and increased neural firing, as well as weakened calcium signaling propagation, compared with controls. Transcriptomic sequencing revealed that a decreased expression of serotoninergic receptor 2C (5-HT2C) may cause the defected neuronal activity in sMDD. Furthermore, targeting 5-HT2C receptor, using a small molecule agonist or genetic approach, restored neuronal activity deficits in sMDD GINs. Our findings provide a human cellular model for studying the molecular mechanisms and drug discoveries for sMDD.
Collapse
Affiliation(s)
- Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Luping Shen
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Zhilong Zheng
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina
| | - Kaiheng Fang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Fang Yuan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical UniversityNanjingChina
| | - Dongya Zhu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| | - Xing Guo
- Department of NeurobiologyKey Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingChina,Co‐innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive MedicineSchool of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Teng T, Fan L, Yan W, Li X, Zhang Y, Xiang Y, Jiang Y, Yuan K, Yin B, Shi L, Liu X, Yu Y, Zhou X, Lu L, Xie P. A diathesis-stress rat model induced suicide-implicated endophenotypes and prefrontal cortex abnormalities in the PKA and GABA receptor signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110538. [PMID: 35189256 DOI: 10.1016/j.pnpbp.2022.110538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Suicide is one of the leading causes of death and represents a significant public health problem worldwide; however, the underlying mechanism of suicide remains unclear, and there is no animal model with suicide-implicated endophenotypes for investigating the etiology, course and potential treatment targets of suicide. Thus, we generated a diathesis-stress rat model to simulate suicide-implicated endophenotypes. First, two hundred rats were screened in two rounds of learned helplessness (LH) tests and selected as learned helplessness-sensitive (LHS) rats (n = 37) and learned helplessness-resistant (LHR) rats (n = 39). Then, all LHS rats and half of the rats (randomly selected) in the LHR group were exposed to four weeks of social defeat stress (SDS) (LHS + SDS group, n = 37 and LHR + SDS group, n = 20, respectively). The remainder of the LHR rats were handled as controls (LHR + CON group, n = 19). The LHS + SDS group showed significantly more suicide-implicated endophenotypes than the LHR + CON group, including longer immobile times in the forced swim test (hopelessness), higher scores in the irritability test (irritability), shorter latencies to attack (impulsivity), longer total attack times in the resident-intruder test (aggression), and lower sucrose preference indices (anhedonia). Proteomic analyses revealed that the canonical pathways that were the most common between the LHS + SDS and LHR + CON groups were the PKA and GABA receptor pathways in the prefrontal cortex. A diathesis-stress paradigm would be a useful way to establish a rat model with suicide-implicated endophenotypes, providing novel perspectives for revealing the potential mechanism of suicide.
Collapse
Affiliation(s)
- Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuemei Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bangmin Yin
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Yin L, Song TH, Wei YY, Zhang LG, Zhou SJ, Yu JJ, Zhang LY, Li HJ, Chen JX. Relationship Between Affective Temperaments and Suicide Risk in Patients With First-Onset Major Depressive Disorder. Front Psychiatry 2022; 13:893195. [PMID: 35747102 PMCID: PMC9211372 DOI: 10.3389/fpsyt.2022.893195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background People may endorse suicidal behavior during a major depressive episode. Affective temperaments may play a role in this risk. We explored the relationship between affective temperaments and suicide and identified some traits that can predict suicide risk in depression. Materials and Methods We analyzed the results of the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Auto-questionnaire (TEMPS-A) in 284 participants recruited from a psychiatric clinic and the community in Beijing and compared the subscale scores (temperaments of cyclothymic, dysthymic, anxious, irritable, and hyperthymic) among major depressive disorders (MDDs) vs. the general population as well as depressive patients with vs. without suicide risk, using Student's test, chi-square test, rank-sum test, and multivariable regression modeling. Results The incidence of suicidal risk in depressive subjects was 47.62% (80/168). Being unmarried (p < 0.001), unemployed (p = 0.007), and temperaments of dysthymic, cyclothymic, anxious, and irritable scores (all p < 0.001) were significantly more prevalent in patients with depression than in the general population. Young age (p < 0.001), female sex (p = 0.037), unmarried (p = 0.001), more severe depression (p < 0.001), and dysthymic, anxious, and cyclothymic temperament (all p < 0.05) were significantly more prevalent in patients with depressive disorder than those without suicide risk. The logistic regression analysis showed that younger age (odds ratio [OR] = 0.937, 95% CI 0.905∼0.970), female sex (OR = 2.606, 95% CI 1.142∼5.948), more severe depression (OR = 1.145, 95% CI 1.063∼1.234), cyclothymic temperament (OR = 1.275, 95% CI 1.102∼1.475), and dysthymic temperament (OR = 1.265, 95% CI 1.037∼1.542) were all independently associated with high suicidal risk in patients with first-onset major depression (p < 0.05). Conclusion Temperament traits differ between the general population and people suffering from MDD. Subjects with MDD who have much more severe depressive symptoms and a cyclothymic or dysthymic temperament were at a high risk of suicide.
Collapse
Affiliation(s)
- Lu Yin
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Tian-He Song
- Department of Psychology, Chengde Medical University, Hebei, China
| | - Yan-Yan Wei
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Li-Gang Zhang
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Shuang-Jiang Zhou
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Jian-Jin Yu
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Li-Ye Zhang
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Hong-Juan Li
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| | - Jing-Xu Chen
- Beijing Hui-Long-Guan Hospital, Peking University Hui-Long-Guan Clinical Medical School, Beijing, China
| |
Collapse
|
6
|
Roy B, Dwivedi Y. Modeling endophenotypes of suicidal behavior in animals. Neurosci Biobehav Rev 2021; 128:819-827. [PMID: 33421543 DOI: 10.1016/j.neubiorev.2020.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/25/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Suicide is a major public health concern. One of the common contributors to the increased risk for suicide is the genetic constitution of individuals, which determines certain endophenotypic traits used as quantifiable measure of neurobiological functions. Therefore, a logical deconstruction of the originating endophenotypes associated with suicidal risk could provide a better understanding of this complex disorder. In this regard, non-human animals can be a useful resource to test endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. In this review, we have focused on the neurobiological abnormalities, primarily genetic and epigenetic abnormalities, associated with suicidal behavior and the scope of their modeling in animals. This can substantially advance the current understanding of suicidal behavior manifested with certain trait-based endophenotypes and may provide an opportunity to test novel hypotheses as well as aid in the development of treatment opportunities and risk assessment.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, 1720 7(th) Avenue South, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, 1720 7(th) Avenue South, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Baharikhoob P, Kolla NJ. Microglial Dysregulation and Suicidality: A Stress-Diathesis Perspective. Front Psychiatry 2020; 11:781. [PMID: 32848946 PMCID: PMC7432264 DOI: 10.3389/fpsyt.2020.00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
According to the stress-diathesis model of suicidal behavior, completed suicide depends on the interaction between psychosocial stressors and a trait-like susceptibility. While there are likely multiple biological processes at play in suicidal behavior, recent findings point to over-activation of microglia, the resident macrophages of the central nervous system, as implicated in stress-induced suicidal behavior. However, it remains unclear how microglial dysregulation can be integrated into a clinical model of suicidal behavior. Therefore, this narrative review aims to (1) examine the findings from human post-mortem and neuroimaging studies that report a relationship between microglial activation and suicidal behavior, and (2) update the clinical model of suicidal behavior to integrate the role of microglia. A systematic search of SCOPUS, PubMed, PsycINFO, and Embase databases revealed evidence of morphological alterations in microglia and increased translocator protein density in the brains of individuals with suicidality, pointing to a positive relationship between microglial dysregulation and suicidal behavior. The studies also suggested several pathological mechanisms leading to suicidal behavior that may involve microglial dysregulation, namely (1) enhanced metabolism of tryptophan to quinolinic acid through the kynurenine pathway and associated serotonin depletion; (2) increased quinolinic acid leading to excessive N-methyl-D-aspartate-signaling, resulting in potential disruption of the blood brain barrier; (3) increased quinolinic acid resulting in higher neurotoxicity, and; (4) elevated interleukin 6 contributing to loss of inhibition of glutamatergic neurons, causing heightened glutamate release and excitotoxicity. Based on these pathways, we reconceptualized the stress-diathesis theory of suicidal behavior to incorporate the role of microglial activity.
Collapse
Affiliation(s)
- Paria Baharikhoob
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada
| | - Nathan J Kolla
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH) Research Imaging Centre and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Waypoint Centre for Mental Health Care, Waypoint Research Institute, Penetanguishene, ON, Canada
| |
Collapse
|
8
|
|
9
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|
10
|
Levey DF, Polimanti R, Cheng Z, Zhou H, Nuñez YZ, Jain S, He F, Sun X, Ursano RJ, Kessler RC, Smoller JW, Stein MB, Kranzler HR, Gelernter J. Genetic associations with suicide attempt severity and genetic overlap with major depression. Transl Psychiatry 2019; 9:22. [PMID: 30655502 PMCID: PMC6336846 DOI: 10.1038/s41398-018-0340-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/13/2018] [Indexed: 11/09/2022] Open
Abstract
In 2015, ~800,000 people died by suicide worldwide. For every death by suicide there are as many as 25 suicide attempts, which can result in serious injury even when not fatal. Despite this large impact on morbidity and mortality, the genetic influences on suicide attempt are poorly understood. We performed a genome-wide association study (GWAS) of severity of suicide attempts to investigate genetic influences. A discovery GWAS was performed in Yale-Penn sample cohorts of European Americans (EAs, n = 2,439) and African Americans (AAs, n = 3,881). We found one genome-wide significant (GWS) signal in EAs near the gene LDHB (rs1677091, p = 1.07 × 10-8) and three GWS associations in AAs: ARNTL2 on chromosome 12 (rs683813, p = 2.07 × 10-8), FAH on chromosome 15 (rs72740082, p = 2.36 × 10-8), and on chromosome 18 (rs11876255, p = 4.61 × 10-8) in the Yale-Penn discovery sample. We conducted a limited replication analysis in the completely independent Army-STARRS cohorts. rs1677091 replicated in Latinos (LAT, p = 6.52 × 10-3). A variant in LD with FAH rs72740082 (rs72740088; r2 = 0.68) was replicated in AAs (STARRS AA p = 5.23 × 10-3; AA meta, 1.51 × 10-9). When combined for a trans-population meta-analysis, the final sample size included n = 20,153 individuals. Finally, we found significant genetic overlap with major depressive disorder (MDD) using polygenic risk scores from a large GWAS (r2 = 0.007, p = 6.42 × 10-5). To our knowledge, this is the first GWAS of suicide attempt severity. We identified GWS associations near genes involved in anaerobic energy production (LDHB), circadian clock regulation (ARNTL2), and catabolism of tyrosine (FAH). These findings provide evidence of genetic risk factors for suicide attempt severity, providing new information regarding the molecular mechanisms involved.
Collapse
Affiliation(s)
- Daniel F. Levey
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Renato Polimanti
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Zhongshan Cheng
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Hang Zhou
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Yaira Z. Nuñez
- 0000000419368710grid.47100.32Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT USA
| | - Sonia Jain
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Feng He
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Xiaoying Sun
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA
| | - Robert J. Ursano
- 0000 0001 0421 5525grid.265436.0Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Ronald C. Kessler
- 000000041936754Xgrid.38142.3cDepartment of Health Care Policy, Harvard Medical School, Boston, MA USA
| | - Jordan W. Smoller
- 000000041936754Xgrid.38142.3cDepartment of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Murray B. Stein
- 0000 0001 2107 4242grid.266100.3Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA USA ,0000 0001 2107 4242grid.266100.3Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,0000 0004 0419 2708grid.410371.0VA San Diego Healthcare System, San Diego, CA USA
| | - Henry R. Kranzler
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA ,0000 0004 0420 350Xgrid.410355.6Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. .,Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Beyond the Search for Suigiston: How Evolution Offers Oxygen for Suicidology. EVOLUTIONARY PSYCHOLOGY 2019. [DOI: 10.1007/978-3-030-25466-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
De Berardis D, Fornaro M, Valchera A, Cavuto M, Perna G, Di Nicola M, Serafini G, Carano A, Pompili M, Vellante F, Orsolini L, Fiengo A, Ventriglio A, Yong-Ku K, Martinotti G, Di Giannantonio M, Tomasetti C. Eradicating Suicide at Its Roots: Preclinical Bases and Clinical Evidence of the Efficacy of Ketamine in the Treatment of Suicidal Behaviors. Int J Mol Sci 2018; 19:E2888. [PMID: 30249029 PMCID: PMC6213585 DOI: 10.3390/ijms19102888] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the continuous advancement in neurosciences as well as in the knowledge of human behaviors pathophysiology, currently suicide represents a puzzling challenge. The World Health Organization (WHO) has established that one million people die by suicide every year, with the impressive daily rate of a suicide every 40 s. The weightiest concern about suicidal behavior is how difficult it is for healthcare professionals to predict. However, recent evidence in genomic studies has pointed out the essential role that genetics could play in influencing person's suicide risk. Combining genomic and clinical risk assessment approaches, some studies have identified a number of biomarkers for suicidal ideation, which are involved in neural connectivity, neural activity, mood, as well as in immune and inflammatory response, such as the mammalian target of rapamycin (mTOR) signaling. This interesting discovery provides the neurobiological bases for the use of drugs that impact these specific signaling pathways in the treatment of suicidality, such as ketamine. Ketamine, an N-methyl-d-aspartate glutamate (NMDA) antagonist agent, has recently hit the headlines because of its rapid antidepressant and concurrent anti-suicidal action. Here we review the preclinical and clinical evidence that lay the foundations of the efficacy of ketamine in the treatment of suicidal ideation in mood disorders, thereby also approaching the essential question of the understanding of neurobiological processes of suicide and the potential therapeutics.
Collapse
Affiliation(s)
- Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, "G. Mazzini" Hospital, p.zza Italia 1, 64100 Teramo, Italy.
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Villa S. Giuseppe Hospital, Hermanas Hospitalarias, 63100 Ascoli Piceno, Italy.
| | - Marilde Cavuto
- Department of Theory, Analysis and Composition, Music Conservatory "L. Canepa", 07100 Sassari, Italy.
| | - Giampaolo Perna
- Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences, Villa San Benedetto Menni, Albese con Cassano, 22032 Como, Italy.
- Department of Psychiatry and Neuropsychology, University of Maastricht, 6221 Maastricht, The Netherlands.
- Department of Psychiatry and Behavioral Sciences, Leonard Miller School of Medicine, University of Miami, Coral Gables, FL 33114, USA.
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Catholic University of Sacred Heart, 00118 Rome, Italy.
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy.
| | - Alessandro Carano
- NHS, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital "Madonna Del Soccorso", A.S.U.R. 12, 63074 San Benedetto del Tronto, Italy.
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, 00118 Rome, Italy.
| | - Federica Vellante
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, College Lane Campus, University of Hertfordshire, Hatfield SG141LZ, UK.
| | - Annastasia Fiengo
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASUR Marche AV5, Mental Health Unit, 63100 Ascoli Piceno, Italy.
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy.
| | - Kim Yong-Ku
- Department of Psychiatry, Korea University College of Medicine, Seoul 08826, Korea.
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Science, Chair of Psychiatry, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Carmine Tomasetti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience, Reproductive Science and Odontostomatology, School of Medicine 'Federico II' Naples, 80121 Naples, Italy.
| |
Collapse
|
13
|
Gould TD, Georgiou P, Brenner LA, Brundin L, Can A, Courtet P, Donaldson ZR, Dwivedi Y, Guillaume S, Gottesman II, Kanekar S, Lowry CA, Renshaw PF, Rujescu D, Smith EG, Turecki G, Zanos P, Zarate CA, Zunszain PA, Postolache TT. Animal models to improve our understanding and treatment of suicidal behavior. Transl Psychiatry 2017; 7:e1092. [PMID: 28398339 PMCID: PMC5416692 DOI: 10.1038/tp.2017.50] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.
Collapse
Affiliation(s)
- T D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L A Brenner
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - A Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychology, Notre Dame of Maryland University, Baltimore, MD, USA
| | - P Courtet
- Department of Emergency Psychiatry and Post Acute Care, CHU Montpellier, Montpellier, France
- Université Montpellier, Inserm U1061, Montpellier, France
| | - Z R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology, University of Colorado, Boulder, Boulder, CO, USA
- Department of Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Y Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Guillaume
- Department of Emergency Psychiatry and Post Acute Care, CHU Montpellier, Montpellier, France
- Université Montpellier, Inserm U1061, Montpellier, France
| | - I I Gottesman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - S Kanekar
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - C A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - P F Renshaw
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - D Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - E G Smith
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - G Turecki
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - P Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - P A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - T T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- VISN 5 Mental Illness Research Education and Clinical Center, Baltimore MD, USA
| |
Collapse
|
14
|
Abstract
The prediction of suicidal behavior is a complex task. To fine-tune targeted preventative interventions, predictive analytics (i.e. forecasting future risk of suicide) is more important than exploratory data analysis (pattern recognition, e.g. detection of seasonality in suicide time series). This study sets out to investigate the accuracy of forecasting models of suicide for men and women. A total of 101 499 male suicides and of 39 681 female suicides - occurred in Italy from 1969 to 2003 - were investigated. In order to apply the forecasting model and test its accuracy, the time series were split into a training set (1969 to 1996; 336 months) and a test set (1997 to 2003; 84 months). The main outcome was the accuracy of forecasting models on the monthly number of suicides. These measures of accuracy were used: mean absolute error; root mean squared error; mean absolute percentage error; mean absolute scaled error. In both male and female suicides a change in the trend pattern was observed, with an increase from 1969 onwards to reach a maximum around 1990 and decrease thereafter. The variances attributable to the seasonal and trend components were, respectively, 24% and 64% in male suicides, and 28% and 41% in female ones. Both annual and seasonal historical trends of monthly data contributed to forecast future trends of suicide with a margin of error around 10%. The finding is clearer in male than in female time series of suicide. The main conclusion of the study is that models taking seasonality into account seem to be able to derive information on deviation from the mean when this occurs as a zenith, but they fail to reproduce it when it occurs as a nadir. Preventative efforts should concentrate on the factors that influence the occurrence of increases above the main trend in both seasonal and cyclic patterns of suicides.
Collapse
Affiliation(s)
- Antonio Preti
- a Center for Liaison Psychiatry and Psychosomatics, University Hospital, University of Cagliari , Cagliari , Italy
| | | |
Collapse
|
15
|
Kalshetti PB, Alluri R, Mohan V, Thakurdesai PA. Effects of 4-hydroxyisoleucine from Fenugreek Seeds on Depression-like Behavior in Socially Isolated Olfactory Bulbectomized Rats. Pharmacogn Mag 2016; 11:S388-96. [PMID: 26929572 PMCID: PMC4745208 DOI: 10.4103/0973-1296.168980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Context: Antidepressant-like effects of (2S, 3R, 4S)-4-hydroxyisoleucine (4-HI), a major amino acid from fenugreek seeds, has been reported in the animal model of acute depression. Aims: To evaluate effects of subacute administration of 4-HI in animal model of stress-induced depression namely socially isolated olfactory bulbectomized rats. Materials and Methods: Bilateral olfactory bulbectomy (OBX) were induced in 30 Sprague-Dawley rats. After recovery period of 14 days, rats were randomized into five groups of 6 rats each and stressed with social isolation (individual housing). The rats were orally treated with either vehicle (OBX-Iso), positive control, fluoxetine (30 mg/kg) or 4-HI (10, 30, 100 mg/kg) once a day from day 14 onward. Separate group of rats with social isolation but without OBX (Sham-Iso) was also maintained. The behavioral depression and anxiety related parameters using open field test (OFT), sucrose intake test, novelty suppressed feeding (NSF) and forced swim test (FST), and neurochemical estimation (brain monoamines viz., serotonin and nor-adrenaline, serotonin turnover, and serum cortisol) were performed. Statistical Analysis Used: Data was analyzed by either two-way ANOVA (OFT and FST) or one-way ANOVA (sucrose intake test, NSF, and neurochemical estimation) followed by Dunnett's multiple comparisons test. Differences were considered significant at P < 0.05. Results: The significant and dose-dependent protection from behavioral and neurochemical changes were observed in 4-HI co-administrated OBX-Iso rats. Conclusion: 4-HI demonstrated the antidepressant and antianxiety effects in socially isolated stress-induced OBX rats with possible involvement of multiple stress relieving mechanisms. HIGHLIGHTS OF PAPER In this study, the subacute pretreatment of 4-HI showed strong and dose-dependent prevention of isolation stress related behavioral and neurochemical responses in olfactory bulbectomized rats. The prevention of hyperactive HPA axis in OBX-Iso stress-induced rats can be envisaged as probable mechanism of antidepressant and antianxiety effects of 4-HI. SUMMARY Effect of 4-hydroxyisoleucine (4-HI) in olfactory bulbectomized and socially isolated (Iso) rats was evaluated 4-HI showed significant and dose-dependent antidepressant effects during novelty suppressed feeding (NSF) and forced swim test (FST) 4-HI showed significant and dose-dependent antianxiety effects during OFT (open field test) and sucrose intake test 4-HI showed protection from OBX-Iso stress-induced brain monoamines, serotonin turnover, and serum cortisol level elevation.
Abbreviations used: SSRI: Selective Serotonin Reuptake Inhibitor; 4-HI: (2S, 3R, 4S)-4-hydroxyisoleucine; OBX: Olfactory bulbectomy; CPCSEA: Committee for the Purpose of Control and Supervision of Experiments on Animals; OFT: Open Field Test; NSF: Novelty Suppressed Feeding; FST: Forced Swimming Test; 5HT: 5-Hydroxytryptamine; 5-HIAA: 5-Hydroxyindoleacetic Acid; NA: Nor-adrenaline; and HPA: Hypothalamic-Pituitary Adrenal.
Collapse
Affiliation(s)
- Padmaja B Kalshetti
- Department of Pharmacology, MAEER'S Maharashtra Institute of Pharmacy, Pune, Maharashtra, India
| | - Ramesh Alluri
- Department of Pharmacology, Vishnu Institute of Pharmaceutical Education and Research, Medak, Andhra Pradesh, India
| | - Vishwaraman Mohan
- Department of Scientific Affairs, Indus Biotech Private Limited, Pune, Maharashtra, India
| | | |
Collapse
|
16
|
Ketamine and suicidal ideation in depression: Jumping the gun? Pharmacol Res 2015; 99:23-35. [DOI: 10.1016/j.phrs.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
|
17
|
Hyperlocomotor activity and stress vulnerability during adulthood induced by social isolation after early weaning are prevented by voluntary running exercise before normal weaning period. Behav Brain Res 2014; 264:197-206. [PMID: 24534713 DOI: 10.1016/j.bbr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/20/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
In rodents, the disruption of social-rearing conditions before normal weaning induces emotional behavioral abnormalities, such as anxiety, motor activity dysregulation, and stress vulnerability. The beneficial effects of exercise after normal weaning on emotional regulation have been well documented. However, effects of exercise before normal weaning on emotion have not been reported. We examined whether voluntary wheel running (R) during social isolation after early weaning (early weaning/isolation; EI) from postnatal day (PD) 14-30 could prevent EI-induced emotional behavioral abnormalities in Sprague-Dawley rats. Compared with control rats reared with their dam and siblings until PD30, rats performed R during EI (EI+R) and EI rats demonstrated greater locomotion and lower grooming activity in the open-field test (OFT) during the juvenile period. Juvenile EI ± R rats showed greater learned helplessness (LH) after exposure to inescapable stress (IS; electric foot shock) than IS-exposed control and EI rats. In contrast, EI rats showed increased locomotion in the OFT and LH after exposure to IS compared with control rats during adulthood; this was not observed in EI ± R rats. Both EI and EI ± R rats exhibited greater rearing activity in the OFT than controls during adulthood. EI did not increase anxiety in the OFT and elevated plus-maze. These results suggested that R during EI until normal weaning prevented some of the EI-induced behavioral abnormalities, including hyperlocomotor activity and greater LH, during adulthood but not in the juvenile period.
Collapse
|
18
|
Serotonergic modulation of suicidal behaviour: integrating preclinical data with clinical practice and psychotherapy. Exp Brain Res 2013; 230:605-24. [DOI: 10.1007/s00221-013-3669-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
|
19
|
Courtet P, Gottesman II, Jollant F, Gould TD. The neuroscience of suicidal behaviors: what can we expect from endophenotype strategies? Transl Psychiatry 2011; 1. [PMID: 21761009 PMCID: PMC3134241 DOI: 10.1038/tp.2011.6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vulnerability to suicidal behavior (SB) is likely mediated by an underlying genetic predisposition interacting with environmental and probable epigenetic factors throughout the lifespan to modify the function of neuronal circuits, thus rendering an individual more likely to engage in a suicidal act. Improving our understanding of the neuroscience underlying SBs, both attempts and completions, at all developmental stages is crucial for more effective preventive treatments and for better identification of vulnerable individuals. Recent studies have characterized SB using an endophenotype strategy, which aims to identify quantitative measures that reflect genetically influenced stable changes in brain function. In addition to aiding in the functional characterization of susceptibility genes, endophenotypic research strategies may have a wider impact in determining vulnerability to SB, as well as the translation of human findings to animal models, and vice versa. Endophenotypes associated with vulnerability to SB include impulsive/aggressive personality traits and disadvantageous decision making. Deficits in realistic risk evaluation represent key processes in vulnerability to SB. Serotonin dysfunction, indicated by neuroendocrine responses and neuroimaging, is also strongly implicated as a potential endophenotype and is linked with impulsive aggression and disadvantageous decision making. Specific endophenotypes may represent heritable markers for the identification of vulnerable patients and may be relevant targets for successful suicide prevention and treatments.
Collapse
Affiliation(s)
- P Courtet
- Department of Emergency Psychiatry, CHRU Montpellier, Inserm U1061, University of Montpellier I, Montpellier, France
| | - I I Gottesman
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA,Department Psychology, University of Minnesota, Minneapolis, MN, USA
| | - F Jollant
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - T D Gould
- Departments of Psychiatry, and Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, and Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Room 934D MSTF, 685 West Baltimore Street, Baltimore, MD 21201, USA. E-mail:
| |
Collapse
|