1
|
Ahmed AO, Kramer S, Hofman N, Flynn J, Hansen M, Martin V, Pillai A, Buckley PF. A Meta-Analysis of Brain-Derived Neurotrophic Factor Effects on Brain Volume in Schizophrenia: Genotype and Serum Levels. Neuropsychobiology 2021; 80:411-424. [PMID: 33706323 PMCID: PMC8619762 DOI: 10.1159/000514126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
AIM The Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene has established pleiotropic effects on schizophrenia incidence and morphologic alterations in the illness. The effects of brain-derived neurotrophic factor (BDNF) on brain volume measurements are however mixed seeming to be less established for most brain regions. The current meta-analytic review examined (1) the association of the Val66Met SNP and brain volume alterations in schizophrenia by comparing Met allele carriers to Val/Val homozygotes and (2) the association of serum BDNF with brain volume measurements. METHOD Studies included in the meta-analyses were identified through an electronic search of PubMed and PsycInfo (via EBSCO) for English language publications from January 2000 through December 2017. Included studies had conducted a genotyping procedure of Val66Met or obtained assays of serum BDNF and obtained brain volume data in patients with psychotic disorders. Nonhuman studies were excluded. RESULTS Study 1 which included 52 comparisons of Met carriers and Val/Val homozygotes found evidence of lower right and left hippocampal volumes among Met allele carriers with schizophrenia. Frontal measurements, while also lower among Met carriers, did not achieve statistical significance. Study 2 which included 7 examinations of the correlation between serum BDNF and brain volume found significant associations between serum BDNF levels and right and left hippocampal volume with lower BDNF corresponding to lower volumes. DISCUSSION The meta-analyses provided evidence of associations between brain volume alterations in schizophrenia and variations on the Val66Met SNP and serum BDNF. Given the limited number of studies, it remains unclear if BDNF effects are global or regionally specific.
Collapse
Affiliation(s)
- Anthony O. Ahmed
- Department of Psychiatry, Weill Cornell Medicine, White Plains, New York, USA,*Anthony O. Ahmed, Department of Psychiatry, Weill Cornell Medicine, 21 Bloomingdale Road, White Plains, NY 10605 (USA),
| | - Samantha Kramer
- Department of Psychology, Long Island University Post, New York, New York, USA
| | - Naama Hofman
- Department of Psychology, St. John's University, New York, New York, USA
| | - John Flynn
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Marie Hansen
- Department of Psychology, Long Island University Brooklyn, New York, New York, USA
| | - Victoria Martin
- Department of Psychology, City University of New York, New York, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, Georgia, USA
| | - Peter F. Buckley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
A Longitudinal Study of Serum Brain-Derived Neurotrophic Factor Levels in First-Episode Schizophrenia. J Clin Psychopharmacol 2020; 39:639-643. [PMID: 31688384 DOI: 10.1097/jcp.0000000000001118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Biomarkers identified for psychosis might allow for early diagnosis, more accurate prognosis, and tailored individualized interventions. Brain-derived neurotrophic factor (BDNF) is suggested to be a likely candidate biomarker for the diagnosis and treatment evaluation in psychosis. The aims of present study were to examine the levels of serum BDNF in both patients with first-episode psychosis (FEP) and in healthy controls for a year, and to investigate the association between BDNF with symptom severity and remission status. METHODS A sample of 31 healthy controls and 29 patients with FEP were included in this study. Diagnoses were ascertained on the Structured Clinical Interview for DSM-IV-TR. Symptom severity was assessed on the Positive and Negative Syndrome Scale. Serum levels of BDNF were measured using enzyme-linked immunosorbent assay method at recruitment and at 3-, 6-, and 12-month time points. RESULTS Serum BDNF levels in both groups did not differ significantly over time. Baseline BDNF levels in patients with FEP did not correlate with symptom severity and neither baseline BDNF level nor its relative change at 3-month predicted remission status at 6- and 12-month follow-up visits. Of note, we observe similar fluctuations in serum BDNF levels in both patients and healthy controls over the 12-month period. CONCLUSIONS Findings from our study did not support a role for serum BDNF as a biomarker for patients with FEP. Because of the polygenic nature of psychosis, we recommend a comprehensive multimarker profile consisting of markers from representative components of mediated neuronal nutrition, neuroimmunology, and neurologic functional deficit to allow for better predictive power.
Collapse
|
3
|
Harari JH, Díaz-Caneja CM, Janssen J, Martínez K, Arias B, Arango C. The association between gene variants and longitudinal structural brain changes in psychosis: a systematic review of longitudinal neuroimaging genetics studies. NPJ SCHIZOPHRENIA 2017; 3:40. [PMID: 29093492 PMCID: PMC5665946 DOI: 10.1038/s41537-017-0036-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/18/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
Evidence suggests that genetic variation might influence structural brain alterations in psychotic disorders. Longitudinal genetic neuroimaging (G-NI) studies are designed to assess the association between genetic variants, disease progression and brain changes. There is a paucity of reviews of longitudinal G-NI studies in psychotic disorders. A systematic search of PubMed from inception until November 2016 was conducted to identify longitudinal G-NI studies examining the link between Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI)-based brain measurements and specific gene variants (SNPs, microsatellites, haplotypes) in patients with psychosis. Eleven studies examined seven genes: BDNF, COMT, NRG1, DISC1, CNR1, GAD1, and G72. Eight of these studies reported at least one association between a specific gene variant and longitudinal structural brain changes. Genetic variants associated with longitudinal brain volume or cortical thickness loss included a 4-marker haplotype in G72, a microsatellite and a SNP in NRG1, and individual SNPs in DISC1, CNR1, BDNF, COMT and GAD1. Associations between genotype and progressive brain changes were most frequently observed in frontal regions, with five studies reporting significant interactions. Effect sizes for significant associations were generally of small or intermediate magnitude (Cohen’s d < 0.8). Only two genes (BDNF and NRG1) were assessed in more than one study, with great heterogeneity of the results. Replication studies and studies exploring additional genetic variants identified by large-scale genetic analysis are warranted to further ascertain the role of genetic variants in longitudinal brain changes in psychosis.
Collapse
Affiliation(s)
- Julia H Harari
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.,University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kenia Martínez
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Bárbara Arias
- Zoology and Biological Anthropology Unit. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. IBUB., Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. .,CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain.
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
4
|
Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. J Psychiatr Res 2014; 59:14-21. [PMID: 25246365 DOI: 10.1016/j.jpsychires.2014.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/16/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Here we investigated a two hit gene environment model in relation to functional genomic factors (BDNF mRNA), and volume of hippocampal subfields in schizophrenia spectrum and bipolar disorders, focusing on both an environmental (childhood trauma) and genetic risk factor (BDNF val66met). METHOD A total of 323 patients with a broad DSM-IV schizophrenia spectrum disorder or bipolar disorder were consecutively recruited. A history of childhood trauma was obtained using the Childhood Trauma Questionnaire. BDNF DNA and RNA were analyzed using standardized procedures. A subsample of n = 108 underwent MRI scanning, and the FreeSurfer was used to obtain measures of hippocampal subfield. All MRI data were corrected for age and gender, with post-hoc analysis correcting for ICV. RESULTS A history of childhood trauma or being a met carrier of the BDNF val66met was associated with significantly reduced BDNF mRNA level. Additive effects were observed between a history of childhood trauma and BDNF val66met, in the direction of met carriers with high levels of childhood trauma having the lowest BDNF mRNA levels. Lastly, met carriers reporting high levels of childhood trauma (specifically sexual or physical abuse) had significantly reduced hippocampal subfield volumes CA2/3 and CA4 dentate gyrus. CONCLUSION The current findings demonstrate that the reduced BDNF mRNA levels found in psychosis may be associated with both a history of childhood trauma and BDNF val66met variants. Further, our study supports a two hit model including a history of childhood trauma as well as genetic vulnerability (met carriers of the BDNF val66met) behind reduced volume of hippocampal subfields in psychosis. This was specifically found for areas important for neurogenesis, the CA2/3 and the CA4 DG.
Collapse
|