1
|
Mitroshina EV, Marasanova EA, Vedunova MV. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int J Mol Sci 2023; 24:16416. [PMID: 38003611 PMCID: PMC10671093 DOI: 10.3390/ijms242216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the neurobiological underpinnings of depressive disorder constitutes a pressing challenge in the fields of psychiatry and neurobiology. Depression represents one of the most prevalent forms of mental and behavioral disorders globally. Alterations in dimerization capacity can influence the functional characteristics of serotonin receptors and may constitute a contributing factor to the onset of depressive disorders. The objective of this review is to consolidate the current understanding of interactions within the 5-HT receptor family and between 5-HT receptors and members of other receptor families. Furthermore, it aims to elucidate the role of such complexes in depressive disorders and delineate the mechanisms through which antidepressants exert their effects.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Ekaterina A. Marasanova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.A.M.)
- Faculty of Biology and Biotechnology, HSE University, St. Profsoyuznaya, 33, 117418 Moscow, Russia
| |
Collapse
|
2
|
Dietary Zinc Differentially Regulates the Effects of the GPR39 Receptor Agonist, TC-G 1008, in the Maximal Electroshock Seizure Test and Pentylenetetrazole-Kindling Model of Epilepsy. Cells 2023; 12:cells12020264. [PMID: 36672199 PMCID: PMC9856893 DOI: 10.3390/cells12020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The G-protein coupled receptor 39 (GPR39) is gaining increasing attention as a target for future drugs, yet there are gaps in the understanding of its pharmacology. Zinc is an endogenous agonist or an allosteric modulator, while TC-G 1008 is a synthetic, small molecule agonist. Zinc is also a positive allosteric modulator for the activity of TC-G 1008 at GPR39. Activation of GPR39 by TC-G 1008 facilitated the development of epileptogenesis in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy. Congruently, TC-G 1008 decreased the seizure threshold in the maximal electroshock seizure threshold (MEST) test. Here, we investigated the effects of TC-G 1008 under the condition of zinc deficiency. Mice were fed a zinc-adequate diet (ZnA, 50 mg Zn/kg) or a zinc-deficient diet (ZnD, 3 mg Zn/kg) for 4 weeks. Following 4 weeks of dietary zinc restriction, TC-G 1008 was administered as a single dose and the MEST test was performed. Additional groups of mice began the PTZ-kindling model during which TC-G 1008 was administered repeatedly and the diet was continued. TC-G 1008 administered acutely decreased the seizure threshold in the MEST test in mice fed the ZnD diet but not in mice fed the ZnA diet. TC-G 1008 administered chronically increased the maximal seizure severity and the percentage of fully kindled mice in those fed the ZnA diet, but not in mice fed the ZnD diet. Our data showed that the amount of zinc in a diet is a factor contributing to the effects of TC-G 1008 in vivo.
Collapse
|
3
|
Mezhlumyan AG, Tallerova AV, Povarnina PY, Tarasiuk AV, Sazonova NM, Gudasheva TA, Seredenin SB. Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk. Pharmaceuticals (Basel) 2022; 15:ph15030284. [PMID: 35337082 PMCID: PMC8950955 DOI: 10.3390/ph15030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Neurotrophins are considered as an attractive target for the development of antidepressants with a novel mechanism of action. Previously, the dimeric dipeptide mimetics of individual loops of nerve growth factor, NGF (GK-6, loop 1; GK-2, loop 4) and brain-derived neurotrophic factor, BDNF (GSB-214, loop 1; GTS-201, loop 2; GSB-106, loop 4) were designed and synthesized. All the mimetics of NGF and BDNF in vitro after a 5–180 min incubation in a HT-22 cell culture were able to phosphorylate the tropomyosin-related kinase A (TrkA) or B (TrkB) receptors, respectively, but had different post-receptor signaling patterns. In the present study, we conduct comparative research of the antidepressant-like activity of these mimetics at acute and subchronic administration in the forced swim test in mice. Only the dipeptide GSB-106 that in vitro activates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and phospholipase C-gamma (PLCγ) post-receptor pathways exhibited antidepressant-like activity (0.1 and 1.0 mg/kg, ip) at acute administration. At the same time, the inhibition of any one of these signaling pathways completely prevented the antidepressant-like effects of GSB-106 in the forced swim test. All the NGF mimetics were inactive after a single injection regardless of post-receptor in vitro signaling patterns. All the investigated dipeptides, except GTS-201, not activating PI3K/AKT in vitro unlike the other compounds, were active at subchronic administration. The data obtained demonstrate that the low-molecular weight BDNF mimetic GSB-106 that activates all three main post-receptor TrkB signaling pathways is the most promising for the development as an antidepressant.
Collapse
Affiliation(s)
- Armen G. Mezhlumyan
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Anna V. Tallerova
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Polina Y. Povarnina
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Aleksey V. Tarasiuk
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Nellya M. Sazonova
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
| | - Tatiana A. Gudasheva
- Department of Medicinal Chemistry, V.V. Zakusov Research Institute of Pharmacology, 125315 Moscow, Russia; (A.G.M.); (A.V.T.); (P.Y.P.); (A.V.T.); (N.M.S.)
- Correspondence:
| | - Sergey B. Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Research Institute of Pharmacology, 25315 Moscow, Russia;
| |
Collapse
|
4
|
Cai X, Yao Y, Teng F, Li Y, Wu L, Yan W, Lin N. The role of P2X7 receptor in infection and metabolism: Based on inflammation and immunity. Int Immunopharmacol 2021; 101:108297. [PMID: 34717202 DOI: 10.1016/j.intimp.2021.108297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated receptor belonging to the P2 receptor family. It is distributed in various tissues of the human body and is involved in regulating the physiological functions of tissues and cells to affect the occurrence and development of diseases. Unlike all other P2 receptors, the P2X7 receptor is mainly expressed in immune cells and can be activated not only by extracellular nucleotides but also by non-nucleotide substances which act as positive allosteric modulators. In this review, we comprehensively describe the role of the P2X7 receptor in infection and metabolism based on its role as an important regulator of inflammation and immunity, and briefly introduce the structure and general function of the P2X7 receptor. These provide a clear knowledge framework for the study of the P2X7 receptor in human health. Targeting the P2X7 receptor may be an effective method for the treatment of inflammatory and immune diseases. And its role in microbial infection and metabolism may be the main direction for in-depth research on the P2X7 receptor in the future.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, China
| | - Fei Teng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Linwen Wu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Yan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Siodłak D, Nowak G, Mlyniec K. Interaction between zinc, the GPR39 zinc receptor and the serotonergic system in depression. Brain Res Bull 2021; 170:146-154. [PMID: 33549699 DOI: 10.1016/j.brainresbull.2021.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Zinc signalling has a crucial impact on the proper functioning of the brain. Disturbances within the zincergic system may lead to neuropsychological disorders, including major depression. Studying this disease and designing effective treatment is hampered by its heterogeneous etiology and the diversified nature of the symptoms. Over the years, studies have shown that zinc deficiency and disturbances in the expression profile of the zinc receptor - GPR39 - might be a useful neurobiological indicator of a pathological state. Zinc levels and the zinc receptor are altered by classic antidepressant treatment, which indicates possible reciprocity between the monoaminergic system and zinc signalling. Disruptions in this specific interplay might be a cause of a pathological depressive state, and restoring balance and cooperation between those systems might be key to a successful form of pharmacotherapy. In this review, we aim to describe interactions between the serotonergic and zincergic systems and to highlight their significance in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
- Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL, 30-688, Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL, 30-688, Krakow, Poland; Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL, 30-688, Krakow, Poland.
| |
Collapse
|
6
|
Ito T, Hiramatsu Y, Mouri A, Yoshigai T, Takahashi A, Yoshimi A, Mamiya T, Ozaki N, Noda Y. Involvement of PKCβI-SERT activity in stress vulnerability of mice exposed to twice-swim stress. Neurosci Res 2021; 171:83-91. [PMID: 33460682 DOI: 10.1016/j.neures.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022]
Abstract
Stress vulnerability and pathogenic mechanisms in stress-related disorders are strongly associated with the functions of serotonin transporter (SERT). SERT phosphorylation induces a reduction of the serotonin (5-HT, 5-hydroxytryptamine) transport properties, its phosphorylation regulated by protein kinase C (PKC). However, the functional relationship between regulated SERT activity by PKC and stress vulnerability remains unclear. Here, we investigated whether the functional regulation of SERT by PKC was involved in stress vulnerability using mice exposed to twice-swim stress that exhibited the impairment of social behaviors. The mild-swim stress (6 min) given just before the social interaction test did not affect the social behaviors of mice. However, mice exposed to strong-swim stress (15 min) became vulnerable to the mild-swim stress, and subsequent social behaviors were impaired. Chelerythrine, a PKC inhibitor, exacerbated decreased sociality in mice exposed to acute mild-swim stress. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, ameliorated the impairment of social behaviors in mice exposed to twice-swim stress. Phosphorylated PKCβI or SERT and 5-HT levels were decreased in the prefrontal cortex of twice-stressed mice. These decreases were attenuated by PMA. Our findings demonstrate that mice exposed to twice-swim stress developed stress vulnerability, which may be involved in the regulation of SERT phosphorylation and 5-HT levels accompanying PKCβI activity.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Yuka Hiramatsu
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals and Devices, Graduate School of Health Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuya Yoshigai
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Ayaki Takahashi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| |
Collapse
|
7
|
Nakagawasai O, Lin JR, Odaira T, Takahashi K, Nemoto W, Moriguchi S, Yabuki Y, Kobayakawa Y, Fukunaga K, Nakada M, Tan-No K. Scabronine G Methyl Ester Improves Memory-Related Behavior and Enhances Hippocampal Cell Proliferation and Long-Term Potentiation via the BDNF-CREB Pathway in Olfactory Bulbectomized Mice. Front Pharmacol 2020; 11:583291. [PMID: 33281604 PMCID: PMC7689418 DOI: 10.3389/fphar.2020.583291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
A previous study reported that scabronine G methyl ester (SG-ME) potentially enhances the in vitro secretion of neurotrophic factors such as nerve growth factor via the protein kinase C (PKC)-ζ pathway. However, it remains unknown whether SG-ME can improve cognitive dysfunctions in olfactory bulbectomized (OBX) mice. To address this question, we evaluated SG-ME-treated and untreated OBX mice in a passive avoidance test. We also investigated potential effects of SG-ME on several parameters: cell proliferation and cAMP response element-binding protein (CREB) phosphorylation in the hippocampal dentate gyrus by immunohistochemistry, brain-derived neurotrophic factor (BDNF) levels in the hippocampus by Western blotting, p-CREB levels in the hippocampus by MapAnalyzer, and long-term potentiation (LTP) by electrophysiology. On the 14th day after surgery OBX mice showed altered passive avoidance and decreases in both cell proliferation and long-term potentiation in the hippocampus, while these changes were reversed by SG-ME (20 μg/mouse) 24 h after the treatment. The improvement in memory deficits was prevented when SG-ME was co-administeredwith either zeta inhibitory peptide (PKC-ζ inhibitor), anti-BDNF antibody, ANA-12 (TrkB antagonist), U0126 (MEK inhibitor), H-89 (PKA inhibitor), LY294002 (PI3K inhibitor) or KN-93 (CaMKII inhibitor). We found that SG-ME enhanced brain-derived neurotrophic factor and p-CREB levels in the hippocampus while p-CREB was localized in neurons, but not in astrocytes nor microglial cells. These findings revealed the potential of SG-ME in improving memory impairments by enhancing cell proliferation and LTP via activation of the BDNF/CREB signaling pathway in neurons.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jia-Rong Lin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takayo Odaira
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Ohtawara, Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.,Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Kobayakawa
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahisa Nakada
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
8
|
Involvement of protein kinase C beta1-serotonin transporter system dysfunction in emotional behaviors in stressed mice. Neurochem Int 2020; 140:104826. [DOI: 10.1016/j.neuint.2020.104826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
|
9
|
In silico, in vitro and in vivo studies indicate resveratrol analogue as a potential alternative for neuroinflammatory disorders. Life Sci 2020; 249:117538. [DOI: 10.1016/j.lfs.2020.117538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
|
10
|
Pagliusi M, Bonet I, Brandão A, Magalhães S, Tambeli C, Parada C, Sartori C. Therapeutic and Preventive Effect of Voluntary Running Wheel Exercise on Social Defeat Stress (SDS)-induced Depressive-like Behavior and Chronic Pain in Mice. Neuroscience 2020; 428:165-177. [DOI: 10.1016/j.neuroscience.2019.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023]
|
11
|
Moretti M, Werle I, da Rosa PB, Neis VB, Platt N, Souza SV, Rodrigues ALS. A single coadministration of subeffective doses of ascorbic acid and ketamine reverses the depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol Biochem Behav 2019; 187:172800. [DOI: 10.1016/j.pbb.2019.172800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/22/2023]
|
12
|
The antidepressant-like effect of guanosine is dependent on GSK-3β inhibition and activation of MAPK/ERK and Nrf2/heme oxygenase-1 signaling pathways. Purinergic Signal 2019; 15:491-504. [PMID: 31768875 DOI: 10.1007/s11302-019-09681-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although guanosine is an endogenous nucleoside that displays antidepressant-like properties in several animal models, the mechanism underlying its antidepressant-like effects is not well characterized. The present study aimed at investigating the involvement of ERK/GSK-3β and Nrf2/HO-1 signaling pathways in the antidepressant-like effect of guanosine in the mouse tail suspension test (TST). The immobility time in the TST was taken as an indicative of antidepressant-like responses and the locomotor activity was assessed in the open-field test. Biochemical analyses were performed by Western blotting in the hippocampus and prefrontal cortex (PFC). The combined treatment with sub-effective doses of guanosine (0.01 mg/kg, p.o.) and lithium chloride (a non-selective GSK-3β inhibitor, 10 mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01 μg/site, i.c.v.) produced a synergistic antidepressant-like effect in the TST. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) was completely prevented by the treatment with MEK1/2 inhibitors U0126 (5 μg/site, i.c.v.), PD98059 (5 μg/site, i.c.v.), or zinc protoporphyrin IX (ZnPP) (HO-1 inhibitor, 10 μg/site, i.c.v). Guanosine administration (0.05 mg/kg, p.o.) increased the immunocontent of β-catenin in the nuclear fraction and Nrf2 in the cytosolic fraction in the hippocampus and PFC. The immunocontent of HO-1 was also increased in the hippocampus and PFC. Altogether, the results provide evidence that the antidepressant-like effect of guanosine in the TST involves the inhibition of GSK-3β, as well as activation of MAPK/ERK and Nrf2/HO-1 signaling pathways, highlighting the relevance of these molecular targets for antidepressant responses.
Collapse
|
13
|
Huang Y, Xu D, Xiang H, Yan S, Sun F, Wei Z. Rapid antidepressant actions of imipramine potentiated by zinc through PKA-dependented regulation of mTOR and CREB signaling. Biochem Biophys Res Commun 2019; 518:337-343. [PMID: 31420165 DOI: 10.1016/j.bbrc.2019.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
The slow onset of traditional antidepressants has become an urgent clinical issue, researchers are constantly exploring new antidepressants with prompt action. Previous studies have found that zinc levels were decreased in serum and brain of depressed patients or animal models. Zinc treatment can improve depressive symptoms and enhance the antidepressant effects of monoamine antidepressants. However, its mechanism of action is still unclear. This present study aims to investigate whether the zinc can enhance the rapid action of traditional antidepressant imipramine and to explore the potential mechanisms of action through the rapid antidepressant targets CREB (cAMP-response element binding protein) and mTOR (mammalian target of the rapamycin). Drug treatment included intraperitoneal injection of imipramine or zinc alone and imipramine plus zinc. Zinc had a rapid enhanced antidepressive effect on the imipramine and achieved a rapid antidepressant effect similar to ketamine. Combination of zinc with imipramine rapidly enhanced the phosphorylation of mTOR Ser2448 and CREB Ser133, and increased the expression of mTOR and CREB, which were dependent on the activation of PKA. In conclusion, combination therapy with zinc and monoamine antidepressants may overcome the problem of slow-onset action of traditional antidepressants in clinical uses.
Collapse
Affiliation(s)
- Yeqing Huang
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, 510080, China
| | - Danhong Xu
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, 510080, China
| | - Haiqing Xiang
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, 510080, China
| | - Shi Yan
- The Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Fangfang Sun
- The Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Zhisheng Wei
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Pochwat B, Nowak G, Szewczyk B. An update on NMDA antagonists in depression. Expert Rev Neurother 2019; 19:1055-1067. [DOI: 10.1080/14737175.2019.1643237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Gabriel Nowak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| |
Collapse
|
15
|
Reshma, Vaishanav SK, Yadav T, Sinha S, Tiwari S, Satnami ML, Ghosh KK. Antidepressant drug-protein interactions studied by spectroscopic methods based on fluorescent carbon quantum dots. Heliyon 2019; 5:e01631. [PMID: 31193112 PMCID: PMC6517537 DOI: 10.1016/j.heliyon.2019.e01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
A highly sensitive fluorescent carbon quantum dots (CDs) was designed to measure the interaction of antidepressant drugs and serum albumins (SA). In present investigation the interaction of bovine serum albumin (BSA) and human serum albumin (HSA) with antidepressant drugs viz. amitryptiline hydrochloride (AMT), chlorpromazine hydrochloride (CPZ) and desipramine hydrochloride (DSP) bioconjugated on CDs have been studied by different spectroscopic techniques i.e., Fluorescence, UV-Visible, Dynamic light scattering (DLS) and FT-IR. The CDs were prepared by one-pot method using glucose and PEG-200. The developed CDs showed blue luminescence under irradiation with ultra-violet. The Stern-Volmer quenching constant (K sv ) indicates the presence of static quenching mechanism. The apparent binding constant K a between antidepressant drugs with complex of SA-CDs have been determined. These results illustrated that CPZ shows strong binding with HSA. As further analyzed by FT-IR spectroscopy and DLS technique, the results suggested induced conformational changes on SA, thus confirming the experimental and theoretical results. Thus, a thorough knowledge of the energetics of drug-protein affinities in presence of CDs as attempted in this work is vital in giving way for appropriate drug delivery.
Collapse
Affiliation(s)
- Reshma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Sandeep K. Vaishanav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
- State Forensic Science Laboratory, Raipur, C.G., 492013, India
| | - Toshikee Yadav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Srishti Sinha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| |
Collapse
|
16
|
Wang JQ, Mao L. The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Mol Neurobiol 2019; 56:6197-6205. [PMID: 30737641 DOI: 10.1007/s12035-019-1524-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
Abstract
Major depressive disorder is a chronic debilitating mental illness. Its pathophysiology at cellular and molecular levels is incompletely understood. Increasing evidence supports a pivotal role of the mitogen-activated protein kinase (MAPK), in particular the extracellular signal-regulated kinase (ERK) subclass of MAPKs, in the pathogenesis, symptomatology, and treatment of depression. In humans and various chronic animal models of depression, the ERK signaling was significantly downregulated in the prefrontal cortex and hippocampus, two core areas implicated in depression. Inhibiting the ERK pathway in these areas caused depression-like behavior. A variety of antidepressants produced their behavioral effects in part via normalizing the downregulated ERK activity. In addition to ERK, the brain-derived neurotrophic factor (BDNF), an immediate upstream regulator of ERK, the cAMP response element-binding protein (CREB), a transcription factor downstream to ERK, and the MAPK phosphatase (MKP) are equally vulnerable to depression. While BDNF and CREB were reduced in their activity in the prefrontal cortex and hippocampus of depressed animals, MKP activity was enhanced in parallel. Chronic antidepressant treatment readily reversed these neurochemical changes. Thus, ERK signaling in the depression-implicated brain regions was disrupted during the development of depression, which contributes to the long-lasting and transcription-dependent neuroadaptations critical for enduring depression-like behavior and the therapeutic effect of antidepressants.
Collapse
Affiliation(s)
- John Q Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Rm. M3-213, Kansas City, MO, USA. .,Department of Anesthesiology, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO, USA.
| | - Limin Mao
- Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Rm. M3-213, Kansas City, MO, USA
| |
Collapse
|
17
|
Dean B, Lam LQ, Scarr E, Duce JA. Cortical biometals: Changed levels in suicide and with mood disorders. J Affect Disord 2019; 243:539-544. [PMID: 30292148 DOI: 10.1016/j.jad.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Changes in levels of metals have been suggested to contribute to the pathophysiologies of several neurodegenerative disorders but to our knowledge this is the first metallomic study in CNS from patients with mood disorders. The focus of this study was on cortical regions affected by the pathophysiologies of bipolar disorders and major depressive disorders. METHODS Levels of metals were measured using inductively coupled plasma mass spectrometry in Brodmann's areas (BA) 6, 10 and 17 from patients with major depressive disorders (n = 13), bipolar disorders (n = 12) and age / sex matched controls (n = 13). RESULTS There were lower levels of cortical strontium (BA 6 & 10), ruthenium (BA 6 & 17) and cadmium (BA 10) from patients with major depressive disorder as well as lower levels of strontium in BA 10 from patients with bipolar disorders. Unexpectedly, there were changes in levels of 16 metals in the cortex, mainly BA 6, from suicide completers compared to those who died of other causes. LIMITATIONS Cohort sizes were relatively small but comparable with many studies using human postmortem CNS. Like all studies on non-treatment naïve patients, drug treatment was a potential confound in our experiments. CONCLUSIONS Our exploratory study suggests changes in levels of metals in bipolar disorders and major depressive disorders could be affecting cortical oxidative balance in patients with mood disorders. Our data raises the possibility that measuring levels of specific biometals in the blood could be used as a biomarker for increased risk of suicide.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Centre for Mental Health, the Faculty of Health, Arts and Design, Swinburne University, Hawthorne, Victoria, Australia
| | - Linh Q Lam
- The Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Scarr
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - James A Duce
- The Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; The Alzheimer's Research UK Cambridge Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| |
Collapse
|
18
|
Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation. Psychopharmacology (Berl) 2018; 235:233-244. [PMID: 29058041 DOI: 10.1007/s00213-017-4761-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a highly prevalent illness that affects large populations across the world, and increasing evidence suggests that neuroinflammation and levels of brain-derived neurotrophic factor (BDNF) are closely related to depression. Dihydromyricetin (DHM) is a kind of flavonoid natural product that has been reported to display multiple pharmacological effects, including anti-inflammatory and anti-oxidative properties, and these may contribute to ameliorate MDD. OBJECTIVE This study investigated the effect of DHM on depression-related phenotypes in various experimental animal models. METHODS The antidepressant-like effect of DHM was validated via depression-related behavioral tests in naïve male C57BL/6 mice, as well as in the acute lipopolysaccharide-induced mouse model of depression. The chronic unpredicted mild stress (CUMS) mouse model of depression was also used to assess the rapid antidepressant-like effect of DHM by tail suspension test (TST), forced swimming test (FST), locomotor activity, and sucrose preference test (SPT). The expression of BDNF and inflammatory factors were determined through Western blotting and enzyme-linked immunosorbent assay, respectively. RESULTS DHM reduced immobility time in the TST and FST both in mice and the acute LPS-induced mouse model of depression. Seven days of DHM treatment ameliorated depression-related behaviors induced by CUMS, whereas similar treatment with the typical antidepressant venlafaxine did not. DHM activated the ERK1/2-CREB pathway and increased glycogen synthase kinase-3 beta (GSK-3β) phosphorylation at ser-9, with upregulation of BDNF expression, in both hippocampal tissues and cultured hippocampal cells. CONCLUSION The present data indicate that DHM exerts a more rapid antidepressant-like effect than does a typical antidepressant, in association with enhancement of BDNF expression and inhibition of neuroinflammation.
Collapse
|
19
|
Hippocampal mTOR signaling is required for the antidepressant effects of paroxetine. Neuropharmacology 2018; 128:181-195. [DOI: 10.1016/j.neuropharm.2017.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/07/2017] [Accepted: 10/07/2017] [Indexed: 02/04/2023]
|
20
|
Ramos-Hryb AB, Cunha MP, Pazini FL, Lieberknecht V, Prediger RDS, Kaster MP, Rodrigues ALS. Ursolic acid affords antidepressant-like effects in mice through the activation of PKA, PKC, CAMK-II and MEK1/2. Pharmacol Rep 2017; 69:1240-1246. [PMID: 29128805 DOI: 10.1016/j.pharep.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ursolic acid has been shown to display antidepressant-like effects in mice through the modulation of monoaminergic systems. In this study, we sought to investigate the involvement of signaling pathways on the antidepressant-like effects of ursolic acid. METHODS Mice were treated orally with ursolic acid (0.1mg/kg) and, 45min later they received the followings inhibitors by intracerebroventricular route: H-89 (PKA inhibitor, 1μg/mouse), KN-62 (CAMK-II inhibitor, 1μg/mouse), chelerythrine (PKC inhibitor, 1μg/mouse), U0126 (MEK1/2 inhibitor, 5μg/mouse), PD98059 (MEK1/2 inhibitor, 5μg/mouse), wortmannin (PI3K irreversible inhibitor, 0.1μg/mouse) or LY294002 (PI3K inhibitor, 10 nmol/mouse). Immobility time of mice was registered in the tail suspension test (TST). RESULTS The anti-immobility effect of ursolic acid in the TST was abolished by the treatment of mice with H-89, KN-62, chelerythrine, U0126 or PD98059, but not with wortmannin or LY294002. CONCLUSIONS These results suggest that activation of PKA, PKC, CAMK-II, MEK1/2 may underlie the antidepressant-like effects of ursolic acid.
Collapse
Affiliation(s)
- Ana B Ramos-Hryb
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rui D S Prediger
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
21
|
The Role of MAPK and Dopaminergic Synapse Signaling Pathways in Antidepressant Effect of Electroacupuncture Pretreatment in Chronic Restraint Stress Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2357653. [PMID: 29234374 PMCID: PMC5664199 DOI: 10.1155/2017/2357653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Acupuncture has demonstrated the function in ameliorating depressive-like behaviors via modulating PKA/CREB signaling pathway. To further confirm the antidepressant mechanism of EA on the mitogen-activated protein kinase (MAPK) and dopaminergic synapse signaling pathways, 4 target proteins were detected based on our previous iTRAQ analysis. Rats were randomly divided into control group, model group, and electroacupuncture (EA) group. Except for the control group, all rats were subjected to 28 days of chronic restraint stress (CRS) protocols to induce depression. In the EA group, EA pretreatment at Baihui (GV20) and Yintang (GV29) was performed daily (1 mA, 2 Hz, discontinuous wave, 20 minutes) prior to restraint. The antidepressant-like effect of EA was measured by body weight and open-field test. The protein levels of DAT, Th, Mapt, and Prkc in the hippocampus were examined by using Western blot. The results showed EA could ameliorate the depression-like behaviors and regulate the expression levels of Prkc and Mapt in CRS rats. The effect of EA on DAT and Th expression was minimal. These findings implied that EA pretreatment could alleviate depression through modulating MAPK signaling pathway. The role of EA on dopaminergic synapse signaling pathways needs to be further explored.
Collapse
|
22
|
Pochwat B, Rafało-Ulińska A, Domin H, Misztak P, Nowak G, Szewczyk B. Involvement of extracellular signal-regulated kinase (ERK) in the short and long-lasting antidepressant-like activity of NMDA receptor antagonists (zinc and Ro 25-6981) in the forced swim test in rats. Neuropharmacology 2017; 125:333-342. [PMID: 28802646 DOI: 10.1016/j.neuropharm.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
Abstract
Short and long acting NMDA receptor (NMDAR) antagonists exert their antidepressant-like effects by activating signaling pathways involved in the synthesis of synaptic proteins and formation of new synaptic connections in the prefrontal cortex (PFC) of rats. The blockade of the ERK pathway abolishes ketamine and Ro 25-6981 antidepressant potency. However, the role of ERK in the antidepressant-like activity of short acting NMDAR antagonists is still unclear. More puzzling is the fact that the precise role of ERK in the short and long lasting effects of long-acting NMDAR antagonists is unknown. In this study, we show that zinc, (Zn) a short-acting NMDAR antagonist evokes only transient ERK activation, which is observed 7 min after its administration in the PFC of rats. In contrast to Zn, the long acting NMDAR antagonist Ro 25-6981 produces persistent ERK activation lasting up to 24 h. Pretreatment with the MAPK/ERK inhibitor (U0126) totally abolished Zn and Ro 25-6981 antidepressant-like activities in the forced swim test in rats. However, when U0126 is administered 15 min after Zn or Ro 25-6981 both compounds maintain their short-lasting antidepressant-like activity. On the other hand, posttreatment with U0126 significantly attenuated the long lasting antidepressant-like activity of Ro 25-6981. These results indicate that the activation of ERK is crucial for the short- and long lasting antidepressant-like activity observed in the FST in rats.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Anna Rafało-Ulińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Paulina Misztak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Gabriel Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
23
|
HIV-1 gp120 Upregulates Brain-Derived Neurotrophic Factor (BDNF) Expression in BV2 Cells via the Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2017; 62:199-208. [PMID: 28560687 DOI: 10.1007/s12031-017-0931-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.
Collapse
|
24
|
Zinc in the Monoaminergic Theory of Depression: Its Relationship to Neural Plasticity. Neural Plast 2017; 2017:3682752. [PMID: 28299207 PMCID: PMC5337390 DOI: 10.1155/2017/3682752] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Preclinical and clinical studies have demonstrated that zinc possesses antidepressant properties and that it may augment the therapy with conventional, that is, monoamine-based, antidepressants. In this review we aim to discuss the role of zinc in the pathophysiology and treatment of depression with regard to the monoamine hypothesis of the disease. Particular attention will be paid to the recently described zinc-sensing GPR39 receptor as well as aspects of zinc deficiency. Furthermore, an attempt will be made to give a possible explanation of the mechanisms by which zinc interacts with the monoamine system in the context of depression and neural plasticity.
Collapse
|
25
|
Pinto Brod LM, Fronza MG, Vargas JP, Lüdtke DS, Brüning CA, Savegnago L. Modulation of PKA, PKC, CAMKII, ERK 1/2 pathways is involved in the acute antidepressant-like effect of (octylseleno)-xylofuranoside (OSX) in mice. Psychopharmacology (Berl) 2017; 234:717-725. [PMID: 27995278 DOI: 10.1007/s00213-016-4505-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE (Octylseleno)-xylofuranoside (OSX) is an organoselenium compound from the class of alkylseleno carbohydrates possessing a C8 alkyl chain. Members of this class of organoselenium compounds have promising pharmacological activities, among them are antioxidant and acute antidepressant-like activities with the involvement of monoaminergic system, as previously presented by our research group. OBJECTIVE The objective of the study was to investigate the possible involvement of cellular signalling pathways in the antidepressant-like effect caused by OSX (0.01 mg/kg, oral route (p.o.) by gavage) in the tail suspension test (TST) in mice. METHODS Mice were treated by intracerebroventricular (i.c.v.) injection either with vehicle or with H-89 (1 μg/site i.c.v., an inhibitor of protein kinase A-PKA), KN-62 (1 μg/site i.c.v., an inhibitor of Ca2+/calmodulin-dependent protein kinase II-CAMKII), chelerythrine (1 μg/site i.c.v., an inhibitor of protein kinase C-PKC) or PD098059 (5 μg/site i.c.v., an inhibitor of extracellular-regulated protein kinase 1/2-ERK1/2). Fifteen minutes after, vehicle or OSX was injected, and 30 min later, the TST and open field tests (OFT) were carried out. RESULTS The antidepressant-like effect of orally administered OSX was blocked by treatment of the mice with H-89, KN-62, chelerythrine and PD098059; all inhibitors of signalling proteins involved with neurotrophic signalling pathways. The number of crossings in the OFT was not altered by treatment with OSX and/or signalling antagonists. CONCLUSIONS The results demonstrated that OSX showed an antidepressant-like effect in the TST in mice through the activation of protein kinases PKA, PKC, CAMKII and ERK1/2 that are involved in intracellular signalling pathways.
Collapse
Affiliation(s)
- Lucimar M Pinto Brod
- Programa de Pós Graduação em Biotecnologia, PPGBiotec, Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Mariana G Fronza
- Programa de Pós Graduação em Biotecnologia, PPGBiotec, Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil
| | - Jaqueline Pinto Vargas
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Diogo S Lüdtke
- Instituto de Química, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
| | - César Augusto Brüning
- Núcleo de Síntese, Aplicação e Análise de Compostos Orgânicos e Inorgânicos, Universidade Federal da Fronteira Sul, Cerro Largo, RS, Brazil
| | - Lucielli Savegnago
- Programa de Pós Graduação em Biotecnologia, PPGBiotec, Grupo de Pesquisa em Neurobiotecnologia - GPN, CDTec, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil. .,Programa de Pós Graduação em Bioquímica e Bioprospecção, PPGBBio, Grupo de Pesquisa em Neurobiotecnologia - GPN, CCQFA, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brazil.
| |
Collapse
|
26
|
Domin H, Szewczyk B, Pochwat B, Woźniak M, Śmiałowska M. Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: behavioral, molecular, and immunohistochemical evidence. Psychopharmacology (Berl) 2017; 234:631-645. [PMID: 27975125 PMCID: PMC5263200 DOI: 10.1007/s00213-016-4495-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE It has recently been found that chronic treatment with the highly selective, brain-penetrating Y5 receptor antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro [1] benzothiepino[5,4-d] thiazol-2-yl) amino] cyclohexyl]methyl]-methanesulfonamide], produces antidepressant-like effects in the rat chronic mild stress model. OBJECTIVE In the present study, we investigated the possible antidepressant-like activity of Lu AA33810 in rats subjected to glial ablation in the prefrontal cortex (PFC) by the gliotoxin L-AAA, which is an astroglial degeneration model of depression. RESULTS We observed that Lu AA33810 administered intraperitoneally at a single dose of 10 mg/kg both reversed depressive-like behavioral changes in the forced swim test (FST) and prevented degeneration of astrocytes in the mPFC. The mechanism of antidepressant and glioprotective effects of Lu AA33810 has not been studied, so far. We demonstrated the contribution of the noradrenergic rather than the serotonergic pathway to the antidepressant-like action of Lu AA33810 in the FST. Moreover, we found that antidepressant-like effect of Lu AA33810 was connected with the influence on brain-derived neurotrophic factor (BDNF) protein expression. We also demonstrated the antidepressant-like effect of Lu AA33810 in the FST in rats which did not receive the gliotoxin. We found that intracerebroventricular injection of the selective MAPK/ERK inhibitor U0126 (5 μg/2 μl) and the selective PI3K inhibitor LY294002 (10 nmol/2 μl) significantly inhibited the anti-immobility effect of Lu AA33810 in the FST in rats, suggesting that MAPK/ERK and PI3K signaling pathways could be involved in the antidepressant-like effect of Lu AA33810. CONCLUSION Our results indicate that Lu AA33810 exerts an antidepressant-like effect and suggest the Y5 receptors as a promising target for antidepressant therapy.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Bartłomiej Pochwat
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland
| | - Maria Śmiałowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, Smętna street 12, Poland.
| |
Collapse
|
27
|
Evidence for the involvement of heme oxygenase-1 in the antidepressant-like effect of zinc. Pharmacol Rep 2017; 69:497-503. [PMID: 31994098 DOI: 10.1016/j.pharep.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/18/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Considering that heme oxygenase-1 (HO-1) and the brain-derived neurotrophic factor (BDNF)-mediated pathway are involved in the pathophysiology of depression and that zinc has been shown to exert beneficial effects in the management of depression, this study investigated the influence of these targets on the antidepressant-like effect of zinc. METHODS Mice were treated with sub-effective or effective doses of zinc chloride (ZnCl2, 10 mg/kg, po), and 45 min later, they received intracerebroventricular (icv) injections of sub-effective doses of either zinc protoporphyrin IX (ZnPP, 10 μg/mouse, HO-1 inhibitor), cobalt protoporphyrin IX (CoPP, 0.01 μg/mouse, HO-1 inducer) or K-252a (1 μg/mouse, TrkB receptor antagonist). Immobility time and locomotor activity were evaluated through the tail suspension test (TST) and open-field test (OFT), respectively. HO-1 immunocontents were evaluated in the prefrontal cortex and hippocampus 60 min after ZnCl2 (10 mg/kg, po) treatment. RESULTS The antidepressant-like effect of ZnCl2 was prevented by the treatment with ZnPP and K-252a. Furthermore, sub-effective doses of CoPP and ZnCl2 produced a synergistic antidepressant-like effect in the TST. None of the treatments altered locomotor activity. ZnCl2 administration increased HO-1 immunocontents only in the prefrontal cortex. CONCLUSIONS The results indicate that the antidepressant-like effect of ZnCl2 in the TST may depend on the induction of HO-1, and activation of TrkB receptor.
Collapse
|
28
|
Signaling pathways underlying the antidepressant-like effect of inosine in mice. Purinergic Signal 2016; 13:203-214. [PMID: 27966087 DOI: 10.1007/s11302-016-9551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A1 and A2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca2+/calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine in a preclinical test of depression.
Collapse
|
29
|
Ludka FK, Constantino LC, Dal-Cim T, Binder LB, Zomkowski A, Rodrigues ALS, Tasca CI. Involvement of PI3K/Akt/GSK-3β and mTOR in the antidepressant-like effect of atorvastatin in mice. J Psychiatr Res 2016; 82:50-7. [PMID: 27468164 DOI: 10.1016/j.jpsychires.2016.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/30/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
Abstract
Atorvastatin is a cholesterol-lowering statin that has been shown to exert several pleiotropic effects in the nervous system as a neuroprotective and antidepressant-like agent. Antidepressant-like effect of atorvastatin in mice is mediated by glutamatergic and serotoninergic receptors, although the precise intracellular signaling pathways involved are unknown. PI3K/Akt/GSK-3β/mTOR signaling pathway has been associated to neurobiology of depression and seems to be modulated by some pharmacological antidepressant strategies. The present study investigated the participation of the PI3K/Akt/GSK-3β/mTOR signaling pathway in the antidepressant-like effect of an acute atorvastatin treatment in mice. Atorvastatin sub-effective (0.01 mg/kg) or effective (0.1 mg/kg) doses in the tail suspension test (TST) was administered orally alone or in combination with PI3K, GSK-3β or mTOR inhibitors. The administration of PI3K inhibitor, LY294002 (10 nmol/site, i.c.v) completely prevented the antidepressant-like effect of atorvastatin (0.1 mg/kg, p.o.). The participation of GSK-3β in the antidepressant-like effect of atorvastatin was demonstrated by co-administration of a sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) with AR-A014418 (0.01 μg/site, i.c.v., a selective GSK-3β inhibitor) or with lithium chloride (10 mg/kg, p.o., a non-selective GSK-3β inhibitor). The mTOR inhibitor, rapamycin (0.2 nmol/site, i.c.v.) was also able to prevent atorvastatin (0.1 mg/kg, p.o.) antidepressant-like effect. These behavioral findings were supported by neurochemical observations, as atorvastatin treatment increased the immunocontent of the phosphorylated isoforms of Akt, GSK-3β and mTOR in the hippocampus of mice. Taken together, our results suggest an involvement of the PI3K/Akt/GSK-3β/mTOR signaling pathway in the antidepressant-like effect of atorvastatin in mice.
Collapse
Affiliation(s)
- Fabiana Kalyne Ludka
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Curso de Farmácia, Universidade do Contestado, 89460-000, Canoinhas, SC, Brazil.
| | - Leandra Celso Constantino
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Tharine Dal-Cim
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Andréa Zomkowski
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
30
|
Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:201-7. [PMID: 26596986 DOI: 10.1016/j.pnpbp.2015.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/28/2015] [Accepted: 10/23/2015] [Indexed: 11/21/2022]
Abstract
Depression is one of the most commonly diagnosed neuropsychiatric disorders and several studies have demonstrated a role for selenium in mood disorders. For this reason, the present study investigated the role of the monoaminergic system in the antidepressant-like action of (octylseleno)-xylofuranoside (OSX), an organoselenium compound, in the tail suspension test (TST) in mice. For this purpose, OSX (0.001–10 mg/kg) was administered orally (p.o.) 30 min prior to testing, and all of the tested doses reduced the immobility time in the TST without changing the locomotor activity measured in the open field test (OFT). Furthermore, the antidepressant-like effect of OSX (0.01 mg/kg, p.o.) in the TSTwas prevented by pre-treatment in mice with ketanserin (1 mg/kg, intraperitoneal route (i.p.); a 5-HT2A/2C receptor antagonist),WAY100635 (0.1mg/kg, subcutaneous (s.c.); a selective 5-HT1A receptor antagonist), p-chlorophenylalaninemethyl ester-PCPA (100mg/kg, i.p.; a selective inhibitor of tryptophan hydroxylase), prazosin (1 mg/kg, i.p.; an α1-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p.; an α2-adrenoceptor antagonist), SCH233390 (0.05 mg/kg, s.c., a dopaminergic D1 receptor antagonist) and sulpiride (50 mg/kg, i.p., a dopaminergic D2 receptor antagonist), but not with ondansetron (1 mg/kg, i.p.; a selective 5-HT3 receptor antagonist). Taken together, these data demonstrate that OSX has a potent antidepressant like effect in TST at lower doses (0.001–10 mg/kg), which is dependent on its interaction with the serotonergic, noradrenergic and dopaminergic systems.
Collapse
|
31
|
Manosso LM, Moretti M, Colla AR, Ribeiro CM, Dal-Cim T, Tasca CI, Rodrigues ALS. Involvement of glutamatergic neurotransmission in the antidepressant-like effect of zinc in the chronic unpredictable stress model of depression. J Neural Transm (Vienna) 2016; 123:339-52. [PMID: 26747027 DOI: 10.1007/s00702-015-1504-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
Stress and excessive glutamatergic neurotransmission have been implicated in the pathophysiology of depression. Therefore, this study was aimed at investigating the influence of zinc on depressive-like behavior induced by chronic unpredictable stress (CUS), on alterations in glutamate-induced toxicity and immunocontent of proteins involved in the control of glutamatergic neurotransmission in the hippocampus of mice. Mice were subjected to CUS procedure for 14 days. From the 8th to the 14th day, mice received zinc chloride (ZnCl2) (10 mg/kg) or fluoxetine (10 mg/kg, positive control) once a day by oral route. CUS caused a depressive-like behavior evidenced by the increased immobility time in the tail suspension test (TST), which was prevented by treatment with ZnCl2 or fluoxetine. Ex vivo exposure of hippocampal slices to glutamate (10 mM) resulted in a significant decrease on cell viability; however, neither CUS procedure nor drug treatments altered this reduction. No alterations in the immunocontents of GLT-1 and GFAP or p-Akt were observed in any experimental group. The ratio of p-Akt/AKT was also not altered in any group. However, Akt immunocontent was increased in stressed mice and in animals treated with ZnCl2 (stressed or non-stressed mice) and EAAC1 immunocontent was increased in stressed mice treated with ZnCl2, fluoxetine or vehicle and in non-stressed mice treated with ZnCl2 and fluoxetine. These findings indicate a robust effect of zinc in reversing behavioral alteration induced by CUS in mice, through a possible modulation of the glutamatergic neurotransmission, extending literature data regarding the mechanisms underlying its antidepressant-like action.
Collapse
Affiliation(s)
- Luana M Manosso
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Post-Graduate Nutrition Program, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - André R Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Tharine Dal-Cim
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
32
|
Kaster MP, Moretti M, Cunha MP, Rodrigues ALS. Novel approaches for the management of depressive disorders. Eur J Pharmacol 2016; 771:236-40. [DOI: 10.1016/j.ejphar.2015.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/14/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
|
33
|
Szewczyk B, Pochwat B, Rafało A, Palucha-Poniewiera A, Domin H, Nowak G. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Neuropharmacology 2015; 99:517-26. [PMID: 26297535 DOI: 10.1016/j.neuropharm.2015.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/23/2015] [Accepted: 08/16/2015] [Indexed: 12/13/2022]
Abstract
The rapid antidepressant response to the N-methyl-D-aspartate (NMDA) receptor antagonists is mediated by activation of the mammalian target of the rapamycin (mTOR) signaling pathway, an increase in the synthesis of synaptic proteins and formation of new synapses in the prefrontal cortex (PFC) of rats. Zinc (Zn), which is a potent NMDA receptor antagonist, exerts antidepressant-like effects in screening tests and models of depression. We focused these studies in investigating whether activation of the mTOR signaling pathway is also a necessary mechanism of the antidepressant-like activity of Zn. We observed that a single injection of Zn (5 mg/kg) induced an increase in the phosphorylation of mTOR and p70S6K 30 min and 3 h after Zn treatment at time points when Zn produced also an antidepressant-like effect in the forced swim test (FST). Furthermore, Zn administered 3 h before the decapitation increased the level of brain derived neurotrophic factor (BDNF), GluA1 and synapsin I. An elevated level of GluA1 and synapsin I was still observed 24 h after the Zn treatment, although Zn did not produce any effects in the FST at that time point. We also observed that pretreatment with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), H-89 (PKA inhibitor) and GF109203X (PKC inhibitor) blocked the antidepressant-like effect of Zn in FST in rats and blocks Zn-induced activation of mTOR signaling proteins (analyzed 30 min after Zn administration). These studies indicated that the antidepressant-like activity of Zn depends on the activation of mTOR signaling and other signaling pathways related to neuroplasticity, which can indirectly modulate mTOR function.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Bartłomiej Pochwat
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna Rafało
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Palucha-Poniewiera
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|