1
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
2
|
Kocherlakota S, Swinkels D, Van Veldhoven PP, Baes M. Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations. Methods Mol Biol 2023; 2643:469-500. [PMID: 36952207 DOI: 10.1007/978-1-0716-3048-8_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Nasyrova RF, Khasanova AK, Altynbekov KS, Asadullin AR, Markina EA, Gayduk AJ, Shipulin GA, Petrova MM, Shnayder NA. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022; 14:5142. [PMID: 36501171 PMCID: PMC9736950 DOI: 10.3390/nu14235142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia (Sch) is a severe and widespread mental disorder. Antipsychotics (APs) of the first and new generations as the first-line treatment of Sch are not effective in about a third of cases and are also unable to treat negative symptoms and cognitive deficits of schizophrenics. This explains the search for new therapeutic strategies for a disease-modifying therapy for treatment-resistant Sch (TRS). Biological compounds are of great interest to researchers and clinicians, among which D-Serine (D-Ser) and D-Aspartate (D-Asp) are among the promising ones. The Sch glutamate theory suggests that neurotransmission dysfunction caused by glutamate N-methyl-D-aspartate receptors (NMDARs) may represent a primary deficiency in this mental disorder and play an important role in the development of TRS. D-Ser and D-Asp are direct NMDAR agonists and may be involved in modulating the functional activity of dopaminergic neurons. This narrative review demonstrates both the biological role of D-Ser and D-Asp in the normal functioning of the central nervous system (CNS) and in the pathogenesis of Sch and TRS. Particular attention is paid to D-Ser and D-Asp as promising components of a nutritive disease-modifying therapy for TRS.
Collapse
Affiliation(s)
- Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Aiperi K. Khasanova
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, The Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina A. Markina
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Arseny J. Gayduk
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
4
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
5
|
The Effects of Antipsychotics on the Synaptic Plasticity Gene Homer1a Depend on a Combination of Their Receptor Profile, Dose, Duration of Treatment, and Brain Regions Targeted. Int J Mol Sci 2020; 21:ijms21155555. [PMID: 32756473 PMCID: PMC7432375 DOI: 10.3390/ijms21155555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Antipsychotic agents modulate key molecules of the postsynaptic density (PSD), including the Homer1a gene, implicated in dendritic spine architecture. How the antipsychotic receptor profile, dose, and duration of administration may influence synaptic plasticity and the Homer1a pattern of expression is yet to be determined. Methods: In situ hybridization for Homer1a was performed on rat tissue sections from cortical and striatal regions of interest (ROI) after acute or chronic administration of three antipsychotics with divergent receptor profile: Haloperidol, asenapine, and olanzapine. Univariate and multivariate analyses of the effects of topography, treatment, dose, and duration of antipsychotic administration were performed. Results: All acute treatment regimens were found to induce a consistently higher expression of Homer1a compared to chronic ones. Haloperidol increased Homer1a expression compared to olanzapine in striatum at the acute time-point. A dose effect was also observed for acute administration of haloperidol. Conclusions: Biological effects of antipsychotics on Homer1a varied strongly depending on the combination of their receptor profile, dose, duration of administration, and throughout the different brain regions. These molecular data may have translational valence and may reflect behavioral sensitization/tolerance phenomena observed with prolonged antipsychotics.
Collapse
|
6
|
Errico F, Cuomo M, Canu N, Caputo V, Usiello A. New insights on the influence of free d-aspartate metabolism in the mammalian brain during prenatal and postnatal life. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140471. [PMID: 32561430 DOI: 10.1016/j.bbapap.2020.140471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023]
Abstract
Free d-aspartate is abundant in the mammalian embryonic brain. However, following the postnatal onset of the catabolic d-aspartate oxidase (DDO) activity, cerebral d-aspartate levels drastically decrease, remaining constantly low throughout life. d-Aspartate stimulates both glutamatergic NMDA receptors (NMDARs) and metabotropic Glu5 receptors. In rodents, short-term d-aspartate exposure increases spine density and synaptic plasticity, and improves cognition. Conversely, persistently high d-Asp levels produce NMDAR-dependent neurotoxic effects, leading to precocious neuroinflammation and cell death. These pieces of evidence highlight the dichotomous impact of d-aspartate signaling on NMDAR-dependent processes and, in turn, unveil a neuroprotective role for DDO in preventing the detrimental effects of excessive d-aspartate stimulation during aging. Here, we will focus on the in vivo influence of altered d-aspartate metabolism on the modulation of glutamatergic functions and its involvement in translational studies. Finally, preliminary data on the role of embryonic d-aspartate in the mouse brain will also be reviewed.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy.
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131 Naples, Italy
| | - Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Institute of Biochemistry and Cell Biology, National Research Council (CNR), 00015, Monterotondo Scalo, Rome, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Science and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
7
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
8
|
Liu J, Wang LN. The efficacy and safety of riluzole for neurodegenerative movement disorders: a systematic review with meta-analysis. Drug Deliv 2018; 25:43-48. [PMID: 29226728 PMCID: PMC6058579 DOI: 10.1080/10717544.2017.1413446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neurodegenerative movement disorders mainly include Parkinson’s disease, atypical parkinsonisms, Huntington disease, and hereditary ataxia. Riluzole is the only drug approved by the US Food and Drug Administration for amyotrophic lateral sclerosis. The neuroprotective effects of riluzole have been observed in experimental models of neurodegenerative movement disorders. In this paper, we aimed to systematically analyze the efficacy and safety of riluzole for patients with neurodegenerative movement disorder. We searched the electronic databases such as PubMed, EMBASE, CINAHL, Cochrane Library and China National Knowledge Infrastructure until June 2017 for the eligible randomized controlled trials, as well as the unpublished and ongoing trials. For continuous data, we calculated standardized mean differences with 95% confidence intervals if studies did not use the same scales to measure outcomes. For dichotomous data, we calculated risk differences if a trial reported no adverse events or dropouts. We pooled the results using a random-effects model. We included nine studies with 1320 patients with neurodegenerative movement disorders, which compared riluzole with placebo. No significant difference was found in the number of participants with adverse events but with motor improvement in hereditary ataxia. There were only two studies focusing on neuroprotective effect. Riluzole is well-tolerated in the patients with neurodegenerative movement disorders. Riluzole seems to be promising for patients with hereditary ataxia in symptomatic effect, which needs to be further confirmed by well-designed studies in the future. Moreover, it makes sense to design long-term study focusing on neuroprotective effect of riluzole in disease-modifying.
Collapse
Affiliation(s)
- Jia Liu
- a Department of Neurology , Xuanwu Hospital, Capital Medical University , Beijing , China
| | - Lu-Ning Wang
- b Department of Geriatric Neurology , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
9
|
Li Y, Han H, Yin J, Li T, Yin Y. Role of D-aspartate on biosynthesis, racemization, and potential functions: A mini-review. ACTA ACUST UNITED AC 2018; 4:311-315. [PMID: 30175260 PMCID: PMC6116324 DOI: 10.1016/j.aninu.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022]
Abstract
D-aspartate, a natural and endogenous amino acid, widely exists in animal tissues and can be synthesized through aspartate racemase and transformed by D-aspartate oxidase (DDO). D-aspartate mainly serves as a neurotransmitter and has been demonstrated to exhibit various physiological functions, including nutritional potential, regulation on reproduction and hormone biology, and neuron protection. This article mainly reviews the synthesis, racemization, and physiological functions of D-aspartate with emphasis on the potential in diseases.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Han
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Corresponding authors.
| |
Collapse
|
10
|
Errico F, Nuzzo T, Carella M, Bertolino A, Usiello A. The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Front Psychiatry 2018; 9:559. [PMID: 30459655 PMCID: PMC6232865 DOI: 10.3389/fpsyt.2018.00559] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Besides d-serine, another d-amino acid with endogenous occurrence in the mammalian brain, d-aspartate, has been recently shown to influence NMDA receptor (NMDAR)-mediated transmission. d-aspartate is present in the brain at extracellular level in nanomolar concentrations, binds to the agonist site of NMDARs and activates this subclass of glutamate receptors. Along with its direct effect on NMDARs, d-aspartate can also evoke considerable l-glutamate release in specific brain areas through the presynaptic activation of NMDA, AMPA/kainate and mGlu5 receptors. d-aspartate is enriched in the embryonic brain of rodents and humans and its concentration strongly decreases after birth, due to the post-natal expression of the catabolising enzyme d-aspartate oxidase (DDO). Based on the hypothesis of NMDAR hypofunction in schizophrenia pathogenesis, recent preclinical and clinical studies suggested a relationship between perturbation of d-aspartate metabolism and this psychiatric disorder. Consistently, neurophysiological and behavioral characterization of Ddo knockout (Ddo -/-) and d-aspartate-treated mice highlighted that abnormally higher endogenous d-aspartate levels significantly increase NMDAR-mediated synaptic plasticity, neuronal spine density and memory. Remarkably, increased d-aspartate levels influence schizophrenia-like phenotypes in rodents, as indicated by improved fronto-hippocampal connectivity, attenuated prepulse inhibition deficits and reduced activation of neuronal circuitry induced by phencyclidine exposure. In healthy humans, a genetic polymorphism associated with reduced prefrontal DDO gene expression predicts changes in prefrontal phenotypes including greater gray matter volume and enhanced functional activity during working memory. Moreover, neurochemical detections in post-mortem brain of schizophrenia-affected patients have shown significantly reduced d-aspartate content in prefrontal regions, associated with increased DDO mRNA expression or DDO enzymatic activity. Overall, these findings suggest a possible involvement of dysregulated embryonic d-aspartate metabolism in schizophrenia pathophysiology and, in turn, highlight the potential use of free d-aspartate supplementation as a new add-on therapy for treating the cognitive symptoms of this mental illness.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
11
|
Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, Martinotti G, Orsolini L, Valchera A, Di Giannantonio M, de Bartolomeis A. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions. Int J Mol Sci 2017; 18:E135. [PMID: 28085108 PMCID: PMC5297768 DOI: 10.3390/ijms18010135] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/25/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of "synapse-based" psychiatric therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Tomasetti
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "Maria SS dello Splendore", 641021 Giulianova, Italy.
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Elisabetta Filomena Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Domenico De Berardis
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- New York State Psychiatric Institute, Columbia University, New York, NY 10027, USA.
| | | | - Giovanni Martinotti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | | | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
| |
Collapse
|