1
|
Dory EK, Loterstein Y, Hazani R, Zalsman G, Weller A. The impact of maternal premating stress on the postnatal outcomes of offspring in rodent studies: A systematic review. Neurosci Biobehav Rev 2025; 172:106114. [PMID: 40154654 DOI: 10.1016/j.neubiorev.2025.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
Maternal premating stress (mPMS) has been linked to adverse outcomes in the next generation. In this systematic review, we examined the impact of mPMS on offspring's neurodevelopmental milestones, behavioral outcomes, and physiological alterations before and after adulthood in rodent studies. We conducted a systematic literature review using PubMed, Scopus, ProQuest, and APA PsycNet, using the terms "premating stress", "pregestational stress", "prepregnancy stress, and "preconception stress". Thirty studies that met exclusion and inclusion criteria and contained relevant data were included. The reviewed literature suggests that mPMS can delay progeny's neurobehavioral development during the first week of life and increase their stress\anxiety- and depression-like behaviors, especially before postnatal day 60. Furthermore, male offspring's memory abilities may be impaired, although learning ability remained intact in both sexes. Finally, mPMS appear to have a negative impact mainly on male offsprings' social behaviors. Some physiological alterations are discussed in relation to these behavioral outcomes, but cautiously, as studies' foci were highly diverse and prevented identifying consistent patterns of results. We also note that dams' recovery period, stress intensity and severity, type, duration, and offspring's weaning age should be considered in future studies.
Collapse
Affiliation(s)
- Elin Kachuki Dory
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Yoni Loterstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Reut Hazani
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Geha Mental Health Center, Petah Tiqva, Israel
| | - Gil Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY, USA
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Xie H, Jiang Y, Zhang X, Min X, Zeng J, Chen L, Zeng N, Liu R. Corticosterone-induced postpartum depression induces depression-like behavior and impairs hippocampal neurogenesis in adolescent offspring via HPA axis and BDNF-mTOR pathway. Neurobiol Stress 2025; 34:100708. [PMID: 39877695 PMCID: PMC11772995 DOI: 10.1016/j.ynstr.2025.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored. In this study, we demonstrated postpartum mice treated with high CORT experienced activation of the hypothalamic-pituitary-adrenal (HPA) axis, which induced depressive-like behavior and impaired maternal caring behavior. Furthermore, adolescent offspring of PPD mice exhibited depression-like behavior, and learning and memory deficits. These offspring also showed diminished levels of DCX+, decreased levels of synaptic proteins, and reduced dendritic spine density and length in hippocampus. Additionally, we detected increased serum stressed hormones and decreased hippocampal glucocorticoid receptor (GR) protein level in the offspring. We also found the offspring exhibited reduced expression of brain-derived neurotrophic factor (BDNF) and the phosphorylation tyrosine kinase receptor B (TrkB), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) proteins in hippocampus. These results indicated that the behavioral deficits and neuronal damage observed in the offspring of PPD mice may be related to HPA axis dysfunction and inhibition of the BDNF-mTOR pathway. In conclusion, our findings confirm that CORT induces depression-like behavior and impairs maternal caring behavior in maternal mice, which in turn affects their offspring's emotion and cognitive behavior. This impact is characterized by the activation of the HPA axis and inhibition of the BDNF-mTOR pathway.
Collapse
Affiliation(s)
- Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yanning Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xinran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
3
|
Dory EK, Gueta A, Loterstein Y, Moshe L, Matas D, Koren L, Weller A. Intergenerational transfer of binge eating-like behavior: The additive impact of juvenile stress. Appetite 2024; 203:107713. [PMID: 39396762 DOI: 10.1016/j.appet.2024.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Binge eating (BE) is consuming large amounts of food in a short time, while experiencing loss of control over eating behavior. BE can be hereditary, and juvenile stress (JS) may contribute to its onset. We examined the impact of JS on BE-like behavior, in an animal model of intergenerational BE. Twenty-four female Wistar rats received 2-h access to palatable food (PF) three or five times a week (3 TW or 5 TW) for 4 weeks, followed by the open field test (OFT). At postnatal day (PND)27-29, female offspring either underwent JS (O-JSC) or not (O-CC). At PND51-53, offspring's stress levels were assessed behaviorally. At PND70-85, offspring received 2-h access to PF three times a week to assess their BE-like tendency. Hair samples were collected afterwards. Compared to 5 TW, 3 TW had a greater binge size. In the elevated plus maze and dark\light box, in O-JSC, offspring of 3 TW (O-3TW) spent less time in the open arms and lit area compared to O-5TW. O-3TW consumed more PF than O-5TW. O-JSC consumed more than O-CC. O-3TW-JSC had higher hair CORT levels than O-3TW-CC and O-5TW-JSC. This study highlights the interplay between maternal and offspring experiences, allowing for the study of underlying mechanisms.
Collapse
Affiliation(s)
- Elin Kachuki Dory
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Avi Gueta
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Yoni Loterstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Lital Moshe
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Devorah Matas
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Lee Koren
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
4
|
Zhang Y, Wei CK, Wang P, Zheng LC, Cheng Y, Ren ZH, Jin YH, Yao YY, Liu HZ. S-ketamine alleviates depression-like behavior and hippocampal neuroplasticity in the offspring of mice that experience prenatal stress. Sci Rep 2024; 14:26929. [PMID: 39505897 PMCID: PMC11542010 DOI: 10.1038/s41598-024-76226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Prenatal stress exerts long-term impact on neurodevelopment in the offspring, with consequences such as increasing the offspring's risk of depression in adolescence and early adulthood. S-ketamine can produce rapid and robust antidepressant effects, but it is not clear yet whether and how S-ketamine alleviates depression in prenatally stressed offspring. The current study incestigated the preliminary anti-depression mechanism of S-ketamine in prenatally stressed offspring, particularly with regard to neuroplasticity. The pregnant females were given chronic unpredictable mild stress on the 7th-20th day of pregnancy and their male offspring were intraperitoneally injected with a single dose of S-ketamine (10 mg/kg) on postnatal day 42. Our findings showed that S-ketamine treatment counteracted the development of depression-like behaviors in prenatally stressed offspring. At the cellular level, S-ketamine markedly enhanced neuroplasticity in the CA1 hippocampus: Golgi-Cox staining showed that S-ketamine alleviated the reduction of neuronal complexity and dendritic spine density; Transmission electron microscopy indicated that S-ketamine reversed synaptic morphology alterations. At the molecular level, by western blot and RT-PCR we detected that S-ketamine significantly upregulated the expression of BDNF and PSD95 and activated AKT and mTOR in the hippocampus. In conclusion, prenatal stress induced by chronic unpredictable mild stress leads to depressive-like behaviors and hippocampal neuroplasticity impairments in male offspring. S-ketamine can produce antidepressant effects by enhancing hippocampal neuroplasticity via the BDNF/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Psychiatry, Changzhou Dean Hospital (also known as Changzhou No.9 People's Hospital), Changzhou, China
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chu-Ke Wei
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Ping Wang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Liu-Cheng Zheng
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yang Cheng
- Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Zhen-Hua Ren
- Department of Anatomy, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yu-Hong Jin
- Department of Psychiatry, Changzhou Dean Hospital (also known as Changzhou No.9 People's Hospital), Changzhou, China
| | - Yu-You Yao
- School of Public Health, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, China.
| | - Huan-Zhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
5
|
Bale R, Doshi G. Deciphering the role of siRNA in anxiety and depression. Eur J Pharmacol 2024; 981:176868. [PMID: 39128805 DOI: 10.1016/j.ejphar.2024.176868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Anxiety and depression are central nervous system illnesses that are among the most prevalent medical concerns of the twenty-first century. Patients with this condition and their families bear psychological, financial, and societal hardship. There are currently restrictions when utilizing the conventional course of treatment. RNA interference is expected to become an essential approach in anxiety and depression due to its potent and targeted gene silencing. Silencing of genes by post-transcriptional modification is the mechanism of action of small interfering RNA (siRNA). The suppression of genes linked to disease is typically accomplished by siRNA molecules in an efficient and targeted manner. Unfavourable immune responses, off-target effects, naked siRNA instability, nuclease vulnerability, and the requirement to create an appropriate delivery method are some of the challenges facing the clinical application of siRNA. This review focuses on the use of siRNA in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
6
|
Qin H, Yu M, Han N, Zhu M, Li X, Zhou J. Antidepressant effects of esketamine via the BDNF/AKT/mTOR pathway in mice with postpartum depression and their offspring. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110992. [PMID: 38484929 DOI: 10.1016/j.pnpbp.2024.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Postpartum depression (PPD) is a serious mental health problem that can negatively affect future generations. BDNF/AKT/mTOR signaling in the frontal lobe and hippocampus in mice is associated with depression, but its role in mice with PPD and their offspring is unknown. This study was aimed at investigating the effects of esketamine (ESK), a drug approved for treatment of refractory depression, on the BDNF/AKT/mTOR pathway in mice with PPD and their offspring. A model of chronic unpredictable mild stress with pregnancy was used. ESK was injected into postpartum mice, and behavioral tests were conducted to predict the severity of symptoms at the end of lactation and in the offspring after adulthood. Both mice with PPD and their offspring showed significant anxiety- and depression-like behaviors that were ameliorated with the ESK intervention. ESK enhanced exploratory behavior in unfamiliar environments, increased the preference for sucrose, and ameliorated the impaired BDNF/AKT/mTOR signaling in the frontal and hippocampal regions in mice. Thus, ESK may have great potential in treating PPD and decreasing the incidence of depression in offspring.
Collapse
Affiliation(s)
- Han Qin
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Miao Yu
- Department of Science Experiment Center, China Medical University, Shenyang, China
| | - Nianjiao Han
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Meilin Zhu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xia Li
- Department of Gynecology, The First Hospital, China Medical University, Shenyang, China.
| | - Jing Zhou
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Zaccarelli-Magalhães J, Abreu GR, Fukushima AR, Pantaleon LP, Ribeiro BB, Munhoz C, Manes M, de Lima MA, Miglioli J, Flório JC, Lebrun I, Ricci EL, Spinosa HS. Ketamine causes poor maternal care in rats with postpartum depression and leads to few behavioral and neurochemical alterations on male offspring. Behav Brain Res 2024; 459:114799. [PMID: 38065224 DOI: 10.1016/j.bbr.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
Ketamine is an anesthetic drug that also has antidepressant properties, with quick action. Despite the great number of studies showing its effectiveness as a treatment for major depression, there is little information about its effects on postpartum depression, as pharmacological treatments bring risks to the health of both mother and child. Thus, this study aimed to evaluate the effects of prolonged treatment with subanesthetic doses of ketamine in a rat model of postpartum depression. Female dams were induced to postpartum depression by the maternal separation model from lactating day (LD) 2-12. They were divided into four groups: one control and three experimental groups, which were treated with different doses of ketamine (5, 10 or 20 mg/kg) from LD 2-21 i.p. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day 2 through 90. Ketamine causes poor maternal care, with few neurochemical alterations. However, the highest dose used in this study had an antidepressant effect. Regarding the male offspring, indirect exposure to ketamine through breast milk caused few behavioral changes during infancy, but they were not permanent, as they faded in adulthood. Nevertheless, this exposure was able to cause alterations in their monoaminergic neurotransmission systems that were found in both infancy and adulthood periods.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Gabriel R Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - André R Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Lorena P Pantaleon
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Beatriz B Ribeiro
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Camila Munhoz
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Mayara A de Lima
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Júlia Miglioli
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Esther L Ricci
- School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Helenice S Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| |
Collapse
|
8
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. eLife 2024; 12:RP90164. [PMID: 38226689 PMCID: PMC10945581 DOI: 10.7554/elife.90164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
9
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547215. [PMID: 37425891 PMCID: PMC10327205 DOI: 10.1101/2023.06.30.547215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A. Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mariko H. Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Ma J, Li K, Sun X, Liang JN, An XQ, Tian M, Li J, Yan F, Yin Y, Yang YA, Chen FY, Zhang LQ, He XX, He ZX, Guo WX, Zhu XJ, Yu HL. Dysregulation of AMPK-mTOR signaling leads to comorbid anxiety in Dip2a KO mice. Cereb Cortex 2022; 33:4977-4989. [PMID: 36227200 DOI: 10.1093/cercor/bhac393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Autism is often comorbid with other psychiatric disorders. We have previously shown that Dip2a knockout (KO) induces autism-like behaviors in mice. However, the role of Dip2a in other psychiatric disorders remains unclear. In this paper, we revealed that Dip2a KO mice had comorbid anxiety. Dip2a KO led to a reduction in the dendritic length of cortical and hippocampal excitatory neurons. Molecular mechanism studies suggested that AMPK was overactivated and suppressed the mTOR cascade, contributing to defects in dendritic morphology. Deletion of Dip2a in adult-born hippocampal neurons (Dip2a conditional knockout (cKO)) increased susceptibility to anxiety upon acute stress exposure. Application of (2R,6R)-hydroxynorketamine (HNK), an inhibitor of mTOR, rescued anxiety-like behaviors in Dip2a KO and Dip2a cKO mice. In addition, 6 weeks of high-fat diet intake alleviated AMPK-mTOR signaling and attenuated the severity of anxiety in both Dip2a KO mice and Dip2a cKO mice. Taken together, these results reveal an unrecognized function of DIP2A in anxiety pathophysiology via regulation of AMPK-mTOR signaling.
Collapse
Affiliation(s)
- Jun Ma
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.,Department of Oral Anatomy and Physiology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Kai Li
- Department of Anesthesia, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xue Sun
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jia-Nan Liang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xian-Quan An
- Department of Anesthesiology, Second Hospital, Jilin University, Changchun 130041, China
| | - Meng Tian
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jing Li
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Fang Yan
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Yue Yin
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Ying-Ao Yang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Fei-Yang Chen
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lu-Qing Zhang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Wu R, Liu J, Vu J, Huang Y, Dietz DM, Li JX. Interleukin-1 receptor-associated kinase 4 (IRAK4) in the nucleus accumbens regulates opioid-seeking behavior in male rats. Brain Behav Immun 2022; 101:37-48. [PMID: 34958862 PMCID: PMC8885906 DOI: 10.1016/j.bbi.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY,Medical College of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
12
|
mTOR Knockdown in the Infralimbic Cortex Evokes A Depressive-like State in Mouse. Int J Mol Sci 2021; 22:ijms22168671. [PMID: 34445375 PMCID: PMC8395521 DOI: 10.3390/ijms22168671] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Fast and sustained antidepressant effects of ketamine identified the mammalian target of rapamycin (mTOR) signaling pathway as the main modulator of its antidepressive effects. Thus, mTOR signaling has become integral for the preclinical evaluation of novel compounds to treat depression. However, causality between mTOR and depression has yet to be determined. To address this, we knocked down mTOR expression in mice using an acute intracerebral infusion of small interfering RNAs (siRNA) in the infralimbic (IL) or prelimbic (PrL) cortices of the medial prefrontal cortex (mPFC), and evaluated depressive- and anxious-like behaviors. mTOR knockdown in IL, but not PrL, cortex produced a robust depressive-like phenotype in mice, as assessed in the forced swimming test (FST) and the tail suspension test (TST). This phenotype was associated with significant reductions of mTOR mRNA and protein levels 48 h post-infusion. In parallel, decreased brain-derived neurotrophic factor (BDNF) expression was found bilaterally in both IL and PrL cortices along with a dysregulation of serotonin (5-HT) and glutamate (Glu) release in the dorsal raphe nucleus (DRN). Overall, our results demonstrate causality between mTOR expression in the IL cortex and depressive-like behaviors, but not in anxiety.
Collapse
|
13
|
Neis VB, Moretti M, Rosa PB, Dalsenter YDO, Werle I, Platt N, Kaufmann FN, Rosado AF, Besen MH, Rodrigues ALS. The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav 2020; 198:173020. [DOI: 10.1016/j.pbb.2020.173020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
|
14
|
Wu R, Xiao D, Shan X, Dong Y, Tao WW. Rapid and Prolonged Antidepressant-like Effect of Crocin Is Associated with GHSR-Mediated Hippocampal Plasticity-related Proteins in Mice Exposed to Prenatal Stress. ACS Chem Neurosci 2020; 11:1159-1170. [PMID: 32203651 DOI: 10.1021/acschemneuro.0c00022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prenatal stress (PNS) has a prolonged and adverse effect on offspring, leading to a significantly increased vulnerability to developing depression in their later life. Traditional therapies have delayed onset and limited efficacy; thus, it remains an urgent need to find novel medications with fast-onset and high-efficacy potentials. Crocin, with its structure clearly examined, has shown antidepressant-like effects. However, few studies extensively investigated its effect especially in mice exposed to PNS. Using an established PNS model, we tested whether crocin could have a rapid and persistent antidepressant-like effect in PNS mice. Growth hormone secretagogue receptor (GHSR) and phosphoinositide 3-kinase (PI3K) inhibitors were used to test their effects in antidepressant-like effect of crocin. Hippocampal GHSR-PI3K signaling was examined both in PNS mice treated with a single dose of crocin and in combination of GHSR inhibitor. PNS mice showed depression-like behaviors at juvenile and adulthood, and crocin induced an instant and persistent antidepressant-like response in PNS mice in a dose-dependent manner. Moreover, crocin increased the expression of hippocampal synaptic plasticity-associated proteins through the restoration of GHSR-PI3K signaling. Inhibitions of both GHSR and PI3K abolished the effect of crocin in alleviating depressive-like behaviors. More importantly, GHSR inhibitor JMV2959 blocked the enhanced expression of hippocampal plasticity-related proteins induced by crocin. The present study demonstrated that crocin induced a fast-onset and prolonged antidepressant effect in PNS mice and suggested that GHSR-PI3K signaling may play a key role in crocin's effect at least partially by a restoration of hippocampal synaptic plasticity-associated proteins.
Collapse
Affiliation(s)
- Ruyan Wu
- School of Medicine, Yangzhou University, Yangzhou 225000, China
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo 14203, New York, United States
| | - Dong Xiao
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Shan
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Dong
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Tao
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
15
|
Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res 2019; 376:112153. [PMID: 31419519 PMCID: PMC6783386 DOI: 10.1016/j.bbr.2019.112153] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many individuals with major depression is one of the most important findings in clinical psychopharmacology in recent decades. The initial report of these effects in human subjects was based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent investigation has included both further studies in individuals with depression, as well as reverse translational experiments in animal models, especially rodents. While there is general agreement in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-like properties, there are also points of contention across studies, including the precise mechanism of action of this drug. In this review, we briefly summarize prominent yet variable findings regarding the mechanism of action. We also discuss a combination of similarities and variances in the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species and strain, test, stressor, and presumably sex of the experimenter. We then present previously unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have robust antidepressant-like properties in unstressed animals, and may actually promote depression-like behavior, in contrast to widely reported findings. We conclude that the data best support the notion of ketamine action principally via NMDA receptor antagonism, transiently boosting glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future studies should address in greater detail the extent to which antidepressant-like properties of this drug are stress-sensitive, in an effort to better model major depression present in humans.
Collapse
Affiliation(s)
- Andrew J Polis
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Paul J Fitzgerald
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Pho J Hale
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Brendon O Watson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America.
| |
Collapse
|
16
|
Alese OO, Mabandla MV. Transgenerational deep sequencing revealed hypermethylation of hippocampal mGluR1 gene with altered mRNA expression of mGluR5 and mGluR3 associated with behavioral changes in Sprague Dawley rats with history of prolonged febrile seizure. PLoS One 2019; 14:e0225034. [PMID: 31710636 PMCID: PMC6844483 DOI: 10.1371/journal.pone.0225034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/27/2019] [Indexed: 02/04/2023] Open
Abstract
The impact of febrile seizure has been shown to transcend immediate generation with the alteration of glutamatergic pathway being implicated. However, transgenerational effects of this neurological disorder particularly prolonged febrile seizure (PFS) on neurobehavioral study and methylation profile is unknown. We therefore hypothesized that transgenerational impact of prolonged febrile seizure is dependent on methylation of hippocampal mGluR1 gene. Prolonged febrile seizure was induced on post-natal day (PND) 14, by injecting lipopolysaccharide (LPS; 217μg/kg ip) and kainic acid (KA; 1.83 mg/kg ip). Sucrose preference test (SPT) and Forced swim test (FST) were carried out in the first generation (F0) of animals at PND37 and PND60. The F0 rats were decapitated at PND 14, 37 and 60 which corresponded to childhood, adolescent and adulthood respectively and their hippocampal tissue collected. The second generation (F1) rats were obtained by mating F0 generation at PND 60 across different groups, F1 rats were subjected to SPT and FST test on PND 37 only. Decapitation of F1rats and collection of hippocampal tissues were done on PND 14 and 37. Assessment of mGluR5 and mGluR3 mRNA was done with PCR while mGluR1 methylation profile was assessed with the Quantitative MassARRAY analysis. Results showed that PFS significantly leads to decreased sucrose consumption in the SPT and increased immobility time in the FST in both generations of rats. It also leads to significant decrease in mGluR5 mRNA expression with a resultant increased expression of mGluR3 mRNA expression and hypermethylation of mGluR1 gene across both generations of rats. This study suggested that PFS led to behavioral changes which could be transmitted on to the next generation in rats.
Collapse
MESH Headings
- Animals
- Base Sequence
- Behavior, Animal
- DNA Methylation/genetics
- High-Throughput Nucleotide Sequencing
- Hippocampus/metabolism
- Immobilization
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Metabotropic Glutamate 5/genetics
- Receptor, Metabotropic Glutamate 5/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Seizures, Febrile/genetics
- Sucrose
- Swimming
Collapse
Affiliation(s)
- Oluwole Ojo Alese
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Musa V. Mabandla
- Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Camargo A, Pazini FL, Rosa JM, Wolin IAV, Moretti M, Rosa PB, Neis VB, Rodrigues ALS. Augmentation effect of ketamine by guanosine in the novelty-suppressed feeding test is dependent on mTOR signaling pathway. J Psychiatr Res 2019; 115:103-112. [PMID: 31128500 DOI: 10.1016/j.jpsychires.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
The ketamine's potential for the treatment of refractory depression and anxiety has been considered one the most important discoveries in the last years, however, repeated use of ketamine is limited due to its side/adverse effects. Therefore, the search for effective augmentation strategies that may reduce ketamine doses is welcome. Therefore, this study sought to augment the effect of ketamine by guanosine in the novelty-suppressed feeding (NSF) test, a behavioral paradigm able to detect depression/anxiety-related behavior. Acute administration of guanosine (0.05 mg/kg, p.o.), similar to ketamine (1 mg/kg, i.p.), produced a rapid behavioral response in mice submitted to NSF test. Moreover, the coadministration of sub-effective doses of guanosine (0.01 mg/kg, p.o.) and ketamine (0.1 mg/kg, i.p.) was effective in mice submitted to NSF test. Subsequently, the intracellular mechanism underpinning the augmentation effect of ketamine by guanosine was investigated. Our results suggest that augmentation response of ketamine by guanosine in the NSF test probably involves the activation of mTOR signaling, since the treatment with rapamycin (0.2 nmol/site, i.c.v., a selective mTOR inhibitor) completely abolished this effect. This augmentation strategy also increased mTOR phosphorylation (Ser2448) in the hippocampus, reinforcing the role of mTOR in this augmentation response. However, no changes in the p70S6K, PSD-95, GluA1, and synapsin immunocontents were found in the hippocampus of ketamine plus guanosine-treated mice. Overall, results provide evidence that guanosine is able to augment the effect of ketamine in the NSF test via mTOR activation, a finding that might have therapeutic implications for the management of depression/anxiety.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ingrid A V Wolin
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Neuroscience Postgraduate Program, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
18
|
Miyata S, Kumagaya R, Kakizaki T, Fujihara K, Wakamatsu K, Yanagawa Y. Loss of Glutamate Decarboxylase 67 in Somatostatin-Expressing Neurons Leads to Anxiety-Like Behavior and Alteration in the Akt/GSK3β Signaling Pathway. Front Behav Neurosci 2019; 13:131. [PMID: 31275123 PMCID: PMC6591520 DOI: 10.3389/fnbeh.2019.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder worldwide. Several lines of evidence suggest that the dysfunction of somatostatin (SOM) neurons is associated with the pathophysiology of MDD. Importantly, most SOM neurons are γ-aminobutyric acid (GABA) interneurons. However, whether the dysfunction of GABAergic neurotransmission from SOM neurons contributes to the pathophysiology of MDD remains elusive. To address this issue, we investigated the emotional behaviors and relevant molecular mechanism in mice lacking glutamate decarboxylase 67 (GAD67), an isoform of GABA-synthesizing enzyme, specifically in SOM neurons (SOM-GAD67 mice). The SOM-GAD67 mice exhibited anxiety-like behavior in the open-field test without an effect on locomotor activity. The SOM-GAD67 mice showed depression-like behavior in neither the forced swimming test nor the sucrose preference test. In addition, the ability to form contextual fear memory was normal in the SOM-GAD67 mice. Furthermore, the plasma corticosterone level was normal in the SOM-GAD67 mice both under baseline and stress conditions. The expression ratios of p-AktSer473/Akt and p-GSK3βSer9/GSK3β were decreased in the frontal cortex of SOM-GAD67 mice. Taken together, these data suggest that the loss of GAD67 from SOM neurons may lead to the development of anxiety-like but not depression-like states mediated by modification of Akt/GSK3β activities.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ryota Kumagaya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kaori Wakamatsu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
19
|
Jawaid A, Roszkowski M, Mansuy IM. Transgenerational Epigenetics of Traumatic Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:273-298. [PMID: 30072057 DOI: 10.1016/bs.pmbts.2018.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic stress is a type of environmental experience that can modify behavior, cognition and physiological functions such as metabolism, in mammals. Many of the effects of traumatic stress can be transmitted to subsequent generations even when individuals from these generations are not exposed to any traumatic stressor. This book chapter discusses the concept of epigenetic/non-genomic inheritance of such traits involving the germline in mammals. It includes a comprehensive review of animal and human studies on inter- and transgenerational inheritance of the effects of traumatic stress, some of the epigenetic changes in the germline currently known to be associated with traumatic stress, and possible mechanisms for their induction and maintenance during development and adulthood. We also describe some experimental interventions that attempted to prevent the transmission of these effects, and consider the evolutionary importance of transgenerational inheritance and future outlook of the field.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Martin Roszkowski
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Medical Faculty of the University of Zurich and Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Walker VR, Boyles AL, Pelch KE, Holmgren SD, Shapiro AJ, Blystone CR, Devito MJ, Newbold RR, Blain R, Hartman P, Thayer KA, Rooney AA. Human and animal evidence of potential transgenerational inheritance of health effects: An evidence map and state-of-the-science evaluation. ENVIRONMENT INTERNATIONAL 2018; 115:48-69. [PMID: 29549716 DOI: 10.1016/j.envint.2017.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND An increasing number of reports suggest early life exposures result in adverse effects in offspring who were never directly exposed; this phenomenon is termed "transgenerational inheritance." Given concern for public health implications for potential effects of exposures transmitted to subsequent generations, it is critical to determine how widespread and robust this phenomenon is and to identify the range of exposures and possible outcomes. OBJECTIVES This scoping report examines the evidence for transgenerational inheritance associated with exposure to a wide range of stressors in humans and animals to identify areas of consistency, uncertainty, data gaps, and to evaluate general risk of bias issues for the transgenerational study design. METHODS A protocol was developed to collect and categorize the literature into a systematic evidence map for transgenerational inheritance by health effects, exposures, and evidence streams following the Office of Health Assessment and Translation (OHAT) approach for conducting literature-based health assessments. RESULTS A PubMed search yielded 63,758 unique records from which 257 relevant studies were identified and categorized into a systematic evidence map by evidence streams (46 human and 211 animal), broad health effect categories, and exposures. Data extracted from the individual studies are available in the Health Assessment Workspace Collaborative (HAWC) program. There are relatively few bodies of evidence where multiple studies evaluated the same exposure and the same or similar outcomes. Studies evaluated for risk of bias generally had multiple issues in design or conduct. CONCLUSIONS The evidence mapping illustrated that risk of bias, few studies, and heterogeneity in exposures and endpoints examined present serious limitations to available bodies of evidence for assessing transgenerational effects. Targeted research is suggested to addressed inconsistencies and risk of bias issues identified, and thereby establish more robust bodies of evidence to critically assess transgenerational effects - particularly by adding data on exposure-outcome pairs where there is some evidence (i.e., reproductive, metabolic, and neurological effects).
Collapse
Affiliation(s)
- Vickie R Walker
- Office of Health Assessment and Translation (OHAT), Division of National Toxicology Program (NTP), National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA.
| | - Abee L Boyles
- Office of Health Assessment and Translation (OHAT), Division of National Toxicology Program (NTP), National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | - Katherine E Pelch
- Office of Health Assessment and Translation (OHAT), Division of National Toxicology Program (NTP), National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | | | - Andrew J Shapiro
- Program Operations Branch, DNTP, NIEHS, NIH, DHHS, Research Triangle Park, NC, USA
| | - Chad R Blystone
- Toxicology Branch, DNTP, NIEHS, NIH, DHHS, Research Triangle Park, NC, USA
| | - Michael J Devito
- NTP Laboratory, DNTP, NIEHS, NIH, DHHS, Research Triangle Park, NC, USA
| | - Retha R Newbold
- Researcher Emeritus, DNTP, NIEHS, NIH, DHHS, Research Triangle Park, NC, USA
| | | | | | - Kristina A Thayer
- Office of Health Assessment and Translation (OHAT), Division of National Toxicology Program (NTP), National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | - Andrew A Rooney
- Office of Health Assessment and Translation (OHAT), Division of National Toxicology Program (NTP), National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Lai KP, Li JW, Wang SY, Wan MT, Chan TF, Lui WY, Au DWT, Wu RSS, Kong RYC. Transcriptomic analysis reveals transgenerational effect of hypoxia on the neural control of testicular functions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:41-48. [PMID: 29276994 DOI: 10.1016/j.aquatox.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
There are over 400 hypoxic zones in the ocean worldwide. Both laboratory and field studies have shown that hypoxia causes endocrine disruption and reproductive impairments in vertebrates. More importantly, our recent study discovered that parental (F0) hypoxia exposure resulted in the transgenerational impairment of sperm quality in the F2 generation through the epigenetic regulation of germ cells. In the present study, we aim to test the hypothesis that the brain, as the major regulator of the brain-pituitary-gonad (BPG) axis, is also involved in the observed transgenerational effect. Using comparative transcriptomic analysis on brain tissues of marine medaka Oryzias melastigma, 45 common differentially expressed genes caused by parental hypoxia exposure were found in the hypoxic group of the F0 and F2 generations, and the transgenerational groups of the F2 generation. The bioinformatic analysis on this deregulated gene cluster further highlighted the possible involvement of the brain in the transgenerational effect of hypoxia on testicular structure, including abnormal morphologies of the epididymis and the seminal vesicle, and degeneration of the seminiferous tubule. This finding is concordant to the result of hematoxylin and eosin staining, which showed the reduction of testicular lobular diameter in the F0 and F2 generations. Our study demonstrated for the first time the involvement of the brain in the transgenerational effect of hypoxia.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Jing Woei Li
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Simon Yuan Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Miles Teng Wan
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wing Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Doris Wai-Ting Au
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Rudolf Shiu-Sun Wu
- State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region.
| | - Richard Yuen-Chong Kong
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
22
|
Rodrigues Junior WDS, Oliveira-Silva P, Faria-Melibeu ADC, Campello-Costa P, Serfaty CA. Serotonin transporter immunoreactivity is modulated during development and after fluoxetine treatment in the rodent visual system. Neurosci Lett 2017; 657:38-44. [PMID: 28756191 DOI: 10.1016/j.neulet.2017.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/03/2023]
Abstract
The serotonin transporter (5-HTT) regulates serotonin homeostasis and has been used as a target for different drugs in depression treatment. Although the serotonergic system has received a lot of attention, little is known about the effects of these drugs over serotonin transporters. In this work, we investigated the expression pattern of 5-HTT during development of the visual system and the influence of fluoxetine on different signaling pathways. Our data showed that the expression of 5-HTT has a gradual increase from postnatal day 0 until 42 and decrease afterwards. Moreover, chronic fluoxetine treatment both in childhood and adolescence induces down regulation of 5-HTT expression and phosphorylation of ERK and AKT signaling pathways. Together these data suggest that the levels of 5-HTT protein could be important for the development of the central nervous system and suggest that the ERK and AKT are involved in the molecular pathways of antidepressants drugs, acting in concert to improve serotonergic signaling.
Collapse
Affiliation(s)
- Wandilson Dos Santos Rodrigues Junior
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Priscilla Oliveira-Silva
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Claudio Alberto Serfaty
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
23
|
Chronic stress prior to pregnancy potentiated long-lasting postpartum depressive-like behavior, regulated by Akt-mTOR signaling in the hippocampus. Sci Rep 2016; 6:35042. [PMID: 27756905 PMCID: PMC5069466 DOI: 10.1038/srep35042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
Postpartum depression (PPD) affects over 10% of new mothers and adversely impacts the health of offspring. One of the greatest risk factors for PPD is prepregnancy stress but the underlying biological mechanism is unknown. Here we constructed an animal model which recapitulated prepregnancy stress induced PPD and tested the role of Akt-mTOR signaling in the hippocampus. Female virgin Balb/c mice received chronic restraint stress, followed by co-housing with a normal male mouse. We found that the chronic stress led to a transient depressive-like condition that disappeared within two weeks. However, prepregnantly stressed females developed long-term postpartum depressive-like (PPD-like) symptoms as indicated by deficient performance in tests of sucrose preference, forced swim, and novelty-suppressed feeding. Chronic stress induced transient decrease in Akt-mTOR signaling and altered expressions of glutamate receptor subunits NR1 and GluR1, in contrast to long-term deficits in Akt-mTOR signaling, GluR1/NR1 ratio, and hippocampal neurogenesis in PPD-like mice. Acute ketamine improved the molecular signaling abnormality, and reversed the behavioral deficits in PPD-like mice in a rapid and persistent manner, in contrast to ineffectiveness by chronic fluoxetine treatment. Taken together, we find that chronic prepregnancy stress potentiates a long-term PPD, in which Akt-mTOR signaling may play a crucial role.
Collapse
|