1
|
Džodić J, Marković M, Milenković D, Dimić D. Molecular Aspects of the Interactions between Selected Benzodiazepines and Common Adulterants/Diluents: Forensic Application of Theoretical Chemistry Methods. Int J Mol Sci 2024; 25:10087. [PMID: 39337573 PMCID: PMC11432270 DOI: 10.3390/ijms251810087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Benzodiazepines are frequently encountered in crime scenes, often mixed with adulterants and diluents, complicating their analysis. This study investigates the interactions between two benzodiazepines, lorazepam (LOR) and alprazolam (ALP), with common adulterants/diluents (paracetamol, caffeine, glucose, and lactose) using infrared (IR) spectroscopy and quantum chemical methods. The crystallographic structures of LOR and ALP were optimized using several functionals (B3LYP, B3LYP-D3BJ, B3PW91, CAM-B3LYP, M05-2X, and M06-2X) combined with the 6-311++G(d,p) basis set. M05-2X was the most accurate when comparing experimental and theoretical bond lengths and angles. Vibrational and 13C NMR spectra were calculated to validate the functional's applicability. The differences between LOR's experimental and theoretical IR spectra were attributed to intramolecular interactions between LOR monomers, examined through density functional theory (DFT) optimization and quantum theory of atoms in molecules (QTAIM) analysis. Molecular dynamics simulations modeled benzodiazepine-adulterant/diluent systems, predicting the most stable structures, which were further analyzed using QTAIM. The strongest interactions and their effects on IR spectra were identified. Comparisons between experimental and theoretical spectra confirmed spectral changes due to interactions. This study demonstrates the potential of quantum chemical methods in analyzing complex mixtures, elucidating spectral changes, and assessing the structural stability of benzodiazepines in forensic samples.
Collapse
Affiliation(s)
- Jelica Džodić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milica Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Hill RD, Shetty RA, Sumien N, Forster MJ, Gatch MB. Locomotor and discriminative stimulus effects of three benzofuran compounds in comparison to abused psychostimulants. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 8:100182. [PMID: 37600151 PMCID: PMC10432784 DOI: 10.1016/j.dadr.2023.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Aims Benzofurans are used recreationally, due their ability to cause psychostimulant and/or entactogenic effects, but unfortunately produce substantial adverse effects, including death. Three benzofurans 5-(2-aminopropyl)-2,3-dihydrobenzofuran (5-APDB), 5-(2-aminopropyl)-2,3-dihydrobenzofuran (5-MAPB) and 6-(2-aminopropyl) benzofuran (6-APB) were tested to determine their behavioral effects in comparison with 2,3-methylenedioxymethamphetamine (MDMA), cocaine, and methamphetamine. Methods Locomotor activity was tested in groups of 8 male Swiss-Webster mice in an open-field task to screen for locomotor stimulant or depressant effects and to identify behaviorally active doses and times of peak effect. Discriminative stimulus effects were tested in groups of 6 male Sprague-Dawley rats trained to discriminate MDMA (1.5 mg/kg), cocaine (10 mg/kg), or methamphetamine (1 mg/kg) from saline using a FR 10 for food in a two-lever operant task. Results In the locomotor activity test, MDMA (ED50 = 8.34 mg/kg) produced peak stimulant effects 60 to 80 min following injection. 5-MAPB (ED50 = 0.92 mg/kg) produced modest stimulant effects 50 to 80 min after injection, whereas 6-APB (ED50 = 1.96 mg/kg) produced a robust stimulant effect 20 to 50 min after injection. 5-APDB produced an early depressant phase (ED50 = 3.38 mg/kg) followed by a modest stimulant phase (ED50 = 2.57 mg/kg) 20 to 50 min after injection. In the drug discrimination tests, 5-APDB (ED50 = 1.02 mg/kg), 5-MAPB (ED50 = 1.00 mg/kg) and 6-APB (ED50 = 0.32 mg/kg) fully substituted in MDMA-trained rats, whereas only 5-MAPB fully substituted for cocaine, and no compounds fully substituted for methamphetamine. Conclusions The synthetic benzofuran compound 5-APDB and 5-MAPB produced weak locomotor effects, whereas 6-APB produced robust locomotor stimulant effects. All compounds were more potent than MDMA. All three compounds fully substituted in MDMA-trained rats suggesting similar subjective effects. Taken together, these results suggest that these benzofuran compounds may have abuse liability as substitutes for MDMA.
Collapse
Affiliation(s)
- Rebecca D. Hill
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, TX 76109, United States
| | - Ritu A. Shetty
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, TX 76109, United States
| | - Nathalie Sumien
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, TX 76109, United States
| | - Michael J. Forster
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, TX 76109, United States
| | - Michael B. Gatch
- University of North Texas Health Science Center, Department of Pharmacology and Neuroscience, 3500 Camp Bowie Blvd, Fort Worth, TX 76109, United States
| |
Collapse
|
3
|
Sahai M, Opacka-Juffry J. Molecular mechanisms of action of stimulant novel psychoactive substances that target the high-affinity transporter for dopamine. Neuronal Signal 2021; 5:NS20210006. [PMID: 34888062 PMCID: PMC8630395 DOI: 10.1042/ns20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Drug misuse is a significant social and public health problem worldwide. Misused substances exert their neurobehavioural effects through changing neural signalling within the brain, many of them leading to substance dependence and addiction in the longer term. Among drugs with addictive liability, there are illicit classical stimulants such as cocaine and amphetamine, and their more recently available counterparts known as novel psychoactive substances (NPS). Stimulants normally increase dopamine availability in the brain, including the pathway implicated in reward-related behaviour. This pattern is observed in both animal and human brain. The main biological target of stimulants, both classical and NPS, is the dopamine transporter (DAT) implicated in the dopamine-enhancing effects of these drugs. This article aims at reviewing research on the molecular mechanisms underpinning the interactions between stimulant NPS, such as benzofurans, cathinones or piperidine derivatives and DAT, to achieve a greater understanding of the core phenomena that decide about the addictive potential of stimulant NPS. As the methodology is essential in the process of experimental research in this area, we review the applications of in vitro, in vivo and in silico approaches. The latter, including molecular dynamics, attracts the focus of the present review as the method of choice in molecular and atomistic investigations of the mechanisms of addiction of stimulant NPS. Research of this kind is of interest to not only scientists but also health professionals as updated knowledge of NPS, their modes of action and health risks, is needed to tackle the challenges posed by NPS misuse.
Collapse
Affiliation(s)
- Michelle A. Sahai
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, U.K
| | | |
Collapse
|
4
|
Current Situation of the Metabolomics Techniques Used for the Metabolism Studies of New Psychoactive Substances. Ther Drug Monit 2021; 42:93-97. [PMID: 31425443 DOI: 10.1097/ftd.0000000000000694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of this short overview is to summarize and discuss the English-written and PubMed-listed review articles and original studies published between January 2015 and April 2019 on the use of metabolomics techniques for investigating the metabolism of new psychoactive substances (NPS). First, a brief introduction is given on the metabolism of NPS and metabolomics techniques in general. Afterward, the selected original studies are summarized and discussed. Finally, a section dedicated to the studies on NPS beyond metabolism using metabolomics techniques is provided. Thereafter, both sections are concluded and perspectives are given. METHODS PubMed was searched for English-written literature published between January 1, 2015 and April 1, 2019. RESULTS The present short overview found that the current use of metabolomics techniques in investigating the metabolism of NPS is rather limited, but these techniques can support and facilitate traditional metabolism studies. CONCLUSIONS Thus, there may be a certain potential for using metabolomics techniques in the field of NPS research, but a great challenge remains to thoroughly adopt the existing metabolomics methods.
Collapse
|
5
|
Brandt SD, Walters HM, Partilla JS, Blough BE, Kavanagh PV, Baumann MH. The psychoactive aminoalkylbenzofuran derivatives, 5-APB and 6-APB, mimic the effects of 3,4-methylenedioxyamphetamine (MDA) on monoamine transmission in male rats. Psychopharmacology (Berl) 2020; 237:3703-3714. [PMID: 32875347 PMCID: PMC7686291 DOI: 10.1007/s00213-020-05648-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE The nonmedical use of new psychoactive substances (NPS) is a worldwide public health concern. The so-called "benzofury" compounds, 5-(2-aminopropyl)benzofuran (5-APB) and 6-(2-aminopropyl)benzofuran (6-APB), are NPS with stimulant-like properties in human users. These substances are known to interact with monoamine transporters and 5-HT receptors in transfected cells, but less is known about their effects in animal models. METHODS Here, we used in vitro monoamine transporter assays in rat brain synaptosomes to characterize the effects of 5-APB and 6-APB, together with their N-methyl derivatives 5-MAPB and 6-MAPB, in comparison with 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA). In vivo neurochemical and behavioral effects of 5-APB (0.3 and 1.0 mg/kg, i.v.) and 6-APB (0.3 and 1.0 mg/kg, i.v.) were assessed in comparison with MDA (1.0 and 3.0 mg/kg, i.v.) using microdialysis sampling in the nucleus accumbens of conscious male rats. RESULTS All four benzofuran derivatives were substrate-type releasers at dopamine transporters (DAT), norepinephrine transporters (NET), and serotonin transporters (SERT) with nanomolar potencies, similar to the profile of effects produced by MDA and MDMA. However, the benzofurans were at least threefold more potent than MDA and MDMA at evoking transporter-mediated release. Like MDA, both benzofurans induced dose-related elevations in extracellular dopamine and serotonin in the brain, but benzofurans were more potent than MDA. The benzofuran derivatives also induced profound behavioral activation characterized by forward locomotion which lasted for at least 2 h post-injection. CONCLUSIONS Overall, benzofurans are more potent than MDA in vitro and in vivo, producing sustained stimulant-like effects in rats. These data suggest that benzofuran-type compounds may have abuse liability and could pose risks for adverse effects, especially if used in conjunction with abused drugs or medications which enhance monoamine transmission in the brain.
Collapse
Affiliation(s)
- Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, L3 3AF, Liverpool, UK
| | - Hailey M. Walters
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, 333 Cassell Drive, MD 21224, USA
| | - John S. Partilla
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, 333 Cassell Drive, MD 21224, USA
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Pierce V. Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James Hospital, Dublin 8, Ireland
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, 333 Cassell Drive, MD 21224, USA,Correspondence: Michael H. Baumann, Ph.D., Chief, Designer Drug Research Unit (DDRU), Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA) 333 Cassell Drive, Suite 4400, Baltimore, MD 21224,
| |
Collapse
|
6
|
Loi B, Sahai MA, De Luca MA, Shiref H, Opacka-Juffry J. The Role of Dopamine in the Stimulant Characteristics of Novel Psychoactive Substances (NPS)-Neurobiological and Computational Assessment Using the Case of Desoxypipradrol (2-DPMP). Front Pharmacol 2020; 11:806. [PMID: 32670057 PMCID: PMC7289955 DOI: 10.3389/fphar.2020.00806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulant drugs, including novel psychoactive substances (NPS, formerly “legal highs”) have addictive potential which their users may not realize. Stimulants increase extracellular dopamine levels in the brain, including the reward and addiction pathways, through interacting with dopamine transporter (DAT). This work aimed to assess the molecular and atomistic mechanisms of stimulant NPS actions at DAT, which translate into biological outcomes such as dopamine release in the brain’s reward pathway. We applied combined in vitro, in vivo, and in silico methods and selected 2-diphenylmethylpiperidine (2-DPMP) as an example of stimulant NPS for this study. We measured in vitro binding of 2-DPMP to rat striatum and accumbens DAT by means of quantitative autoradiography with a selective DAT-radioligand [125I]RTI-121. We evaluated the effects of intravenously administered 2-DPMP on extracellular dopamine in the accumbens-shell and striatum using in vivo microdialysis in freely moving rats. We used dynamic modeling to investigate the interactions of 2-DPMP within DAT, in comparison with cocaine and amphetamine. 2-DPMP potently displaced the radioligand in the accumbens and striatum showing dose-dependence from 0.3 to 30 μM. IC50 values were: 5.65 × 10-7M for accumbens shell and 6.21 × 10-7M for dorsal striatum. Dose-dependent responses were also observed in accumbens-shell and striatum in vivo, with significant increases in extracellular dopamine levels. Molecular dynamics simulations identified contrasting conformational changes of DAT for inhibitors (cocaine) and releasers (amphetamine). 2-DPMP led to molecular rearrangements toward an outward-facing DAT conformation that suggested a cocaine-type effect. The present combination of molecular modeling with experimental neurobiological procedures allows for extensive characterization of the mechanisms of drug actions at DAT as the main molecular target of stimulants, and provides an insight into the role of dopamine in the molecular and neurobiological mechanisms of brain responses to stimulant NPS that have addictive potential. Such knowledge reveals the risk of addiction related to NPS use. The research presented here can be adapted for other psychostimulants that act at their membrane protein targets.
Collapse
Affiliation(s)
- Barbara Loi
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, Department of Pharmacy, Postgraduate Medicine and Pharmacology, University of Hertfordshire, Hatfield, United Kingdom.,Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | | | - Hana Shiref
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| | | |
Collapse
|
7
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
8
|
Shiref H, Bergman S, Clivio S, Sahai MA. The fine art of preparing membrane transport proteins for biomolecular simulations: Concepts and practical considerations. Methods 2020; 185:3-14. [PMID: 32081744 PMCID: PMC10062712 DOI: 10.1016/j.ymeth.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022] Open
Abstract
Molecular dynamics (MD) simulations have developed into an invaluable tool in bimolecular research, due to the capability of the method in capturing molecular events and structural transitions that describe the function as well as the physiochemical properties of biomolecular systems. Due to the progressive development of more efficient algorithms, expansion of the available computational resources, as well as the emergence of more advanced methodologies, the scope of computational studies has increased vastly over time. We now have access to a multitude of online databases, software packages, larger molecular systems and novel ligands due to the phenomenon of emerging novel psychoactive substances (NPS). With so many advances in the field, it is understandable that novices will no doubt find it challenging setting up a protein-ligand system even before they run their first MD simulation. These initial steps, such as homology modelling, ligand docking, parameterization, protein preparation and membrane setup have become a fundamental part of the drug discovery pipeline, and many areas of biomolecular sciences benefit from the applications provided by these technologies. However, there still remains no standard on their usage. Therefore, our aim within this review is to provide a clear overview of a variety of concepts and methodologies to consider, providing a workflow for a case study of a membrane transport protein, the full-length human dopamine transporter (hDAT) in complex with different stimulants, where MD simulations have recently been applied successfully.
Collapse
Affiliation(s)
- Hana Shiref
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Shana Bergman
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University (WCMC), New York, NY 10065, USA
| | | | - Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
9
|
Structure-activity relationships of bath salt components: substituted cathinones and benzofurans at biogenic amine transporters. Psychopharmacology (Berl) 2019; 236:939-952. [PMID: 30397775 PMCID: PMC6500773 DOI: 10.1007/s00213-018-5059-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/02/2018] [Indexed: 01/05/2023]
Abstract
RATIONALE New psychoactive substances (NPSs), including substituted cathinones and other stimulants, are synthesized, sold on the Internet, and ingested without knowledge of their pharmacological activity and/or toxicity. In vitro pharmacology plays a role in therapeutic drug development, drug-protein in silico interaction modeling, and drug scheduling. OBJECTIVES The goal of this research was to determine mechanisms of action that may indicate NPS abuse liability. METHODS Affinities to displace the radioligand [125I]RTI-55 and potencies to inhibit [3H]neurotransmitter uptake for 22 cathinones, 6 benzofurans and another stimulant were characterized using human embryonic kidney cells stably expressing recombinant human transporters for dopamine, norepinephrine, or serotonin (hDAT, hNET, or hSERT, respectively). Selected compounds were tested for potencies and efficacies at inducing [3H]neurotransmitter release via the transporters. Computational modeling was conducted to explain plausible molecular interactions established by NPS and transporters. RESULTS Most α-pyrrolidinophenones had high hDAT potencies and selectivities in uptake assays, with hDAT/hSERT uptake selectivity ratios of 83-360. Other substituted cathinones varied in their potencies and selectivities, with N-ethyl-hexedrone and N-ethyl-pentylone having highest hDAT potencies and N-propyl-pentedrone having highest hDAT selectivity. 4-Cl-ethcathinone and 3,4-methylenedioxy-N-propylcathinone had higher hSERT selectivity. Benzofurans generally had low hDAT selectivity, especially 1-(2,3-dihydrobenzofuran-5-yl)-N-methylpropan-2-amine, with 25-fold higher hSERT potency. Consistent with this selectivity, the benzofurans were releasers at hSERT. Modeling indicated key amino acids in the transporters' binding pockets that influence drug affinities. CONCLUSIONS The α-pyrrolidinophenones, with high hDAT selectivity, have high abuse potential. Lower hDAT selectivity among benzofurans suggests similarity to methylenedioxymethamphetamine, entactogens with lower stimulant activity.
Collapse
|
10
|
Roque Bravo R, Carmo H, Carvalho F, Bastos MDL, Dias da Silva D. Benzo fury: A new trend in the drug misuse scene. J Appl Toxicol 2019; 39:1083-1095. [PMID: 30723925 DOI: 10.1002/jat.3774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/23/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Benzofurans, also known by users as benzo fury or benzofury, are synthetic phenethylamines and constitute the third most prominent group of new psychoactive substances (NPS). As the use of these substances has been spread as an alternative to the classic illicit psychostimulants, such as amphetamines, their legal status was reviewed, resulting in an utter prohibition of these NPS in many countries worldwide. Herein, the prevalence of abuse, chemistry, biological effects, metabolism, and the potential harms and risky behaviors associated with the abuse of benzofurans are reviewed. The congeners of this group are mainly consumed recreationally at electronic dance music parties, in polydrug abuse settings. Benzofurans preferentially act by disturbing the functioning of serotonergic circuits, which induces their entactogenic and stimulant effects and is the reason behind the considerable number of recent benzo fury-related deaths. The slight interaction of these drugs with the dopaminergic system justifies the rewarding effects of these drugs. To date, published evidence on the mechanisms of toxicity of benzo fury is very limited but a body of research is now beginning to emerge revealing an alarming public health threat regarding the abuse of these NPS.
Collapse
Affiliation(s)
- Rita Roque Bravo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
| |
Collapse
|
11
|
Sahai MA, Davidson C, Dutta N, Opacka-Juffry J. Mechanistic Insights into the Stimulant Properties of Novel Psychoactive Substances (NPS) and Their Discrimination by the Dopamine Transporter-In Silico and In Vitro Exploration of Dissociative Diarylethylamines. Brain Sci 2018; 8:brainsci8040063. [PMID: 29642450 PMCID: PMC5924399 DOI: 10.3390/brainsci8040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Novel psychoactive substances (NPS) may have unsuspected addiction potential through possessing stimulant properties. Stimulants normally act at the dopamine transporter (DAT) and thus increase dopamine (DA) availability in the brain, including nucleus accumbens, within the reward and addiction pathway. This paper aims to assess DAT responses to dissociative diarylethylamine NPS by means of in vitro and in silico approaches. We compared diphenidine (DPH) and 2-methoxydiphenidine (methoxphenidine, 2-MXP/MXP) for their binding to rat DAT, using autoradiography assessment of [125I]RTI-121 displacement in rat striatal sections. The drugs' effects on electrically-evoked DA efflux were measured by means of fast cyclic voltammetry in rat accumbens slices. Computational modeling, molecular dynamics and alchemical free energy simulations were used to analyse the atomistic changes within DAT in response to each of the five dissociatives: DPH, 2-MXP, 3-MXP, 4-MXP and 2-Cl-DPH, and to calculate their relative binding free energy. DPH increased DA efflux as a result of its binding to DAT, whereas MXP had no significant effect on either DAT binding or evoked DA efflux. Our computational findings corroborate the above and explain the conformational responses and atomistic processes within DAT during its interactions with the dissociative NPS. We suggest DPH can have addictive liability, unlike MXP, despite the chemical similarities of these two NPS.
Collapse
Affiliation(s)
- Michelle A Sahai
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK.
| | - Colin Davidson
- St George's, University of London, London SW17 0RE, UK.
- Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | | | | |
Collapse
|
12
|
Abstract
This summarizing and descriptive review article is an update on previously published reviews. It covers English-written and PubMed-listed review articles and original studies published between May 2016 and November 2017 on the toxicokinetics of new psychoactive substances (NPS). Compounds covered include stimulants and entactogens, synthetic cannabinoids, tryptamines, phenethylamine and phencyclidine-like drugs, benzodiazepines, and opioids. First, an overview and discussion is provided on selected review articles followed by an overview and discussion on selected original studies. Both sections are then concluded by an opinion on these latest developments. The present review shows that the NPS market is still highly dynamic and that studies regarding their toxicokinetics are necessary to understand risks associated with their consumption. Data collection and studies are encouraged to allow for detection of NPS in biological matrices in cases of acute intoxications or chronic consumption. Although some data are available, scientific papers dealing with the mechanistic reasons behind acute and chronic toxicity are still lacking.
Collapse
Affiliation(s)
- Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| |
Collapse
|
13
|
Shevyrin V, Shafran Y. Distinguishing of 2-MAPB and 6-MAPB: Solution of the problem. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:633-637. [PMID: 28708288 DOI: 10.1002/jms.3970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Differentiation of new psychoactive substance (NPS), 6-(2-methylaminopropyl)benzofuran (6-MAPB), and its positional isomer, 2-(2-methylaminopropyl)benzofuran (2-MAPB), by means of gas chromatography/mass spectrometry (GC/MS) with quadrupole detection is ambiguous. Reliable distinguishing of the two isomers could be achieved by MS/MS spectra recorded after collision-induced dissociation (CID) of precursor ions. Both electron ionization (EI) and electrospray ionization (ESI) methods could be used for these purposes.
Collapse
Affiliation(s)
- Vadim Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str, 620002, Ekaterinburg, Russian Federation
| | - Yuri Shafran
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str, 620002, Ekaterinburg, Russian Federation
| |
Collapse
|
14
|
Bertol E, Vaiano F, Mari F, Di Milia MG, Bua S, Supuran CT, Carta F. Advances in new psychoactive substances identification: the U.R.I.To.N. Consortium. J Enzyme Inhib Med Chem 2017. [PMID: 28629236 PMCID: PMC6445230 DOI: 10.1080/14756366.2017.1333987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Identification of new psychoactive substances (NPS) in biological and non-biological samples represents a hard challenge for forensic toxicologists. Their great chemical variety and the speed with which new NPS are synthesised and spread make stringent the need of advanced tools for their detection based on multidisciplinary approaches. For this reason, in August 2016, the "Unit of Research and Innovation in Forensic Toxicology and Neuroscience of Addiction" (U.R.I.To.N.) was founded by the Forensic Toxicology Division of the University of Florence. In this Research Unit, various professionals (i.e. forensic toxicologists, chemists, physicians) collaborate to study all the aspects of drugs of abuse, especially NPS. Herein, we describe the multidisciplinary approach comprising liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), gas chromatography hyphenated to mass spectrometry (GC-MS) and solution nuclear magnetic resonance analysis that allowed the identification of three NPS such as 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 2-amino-1-(4-bromo-2,5-dimethoxyphenyl)ethan-1-one (bk-2C-B), and 3-(2-aminopropyl)indole (α-methyltryptamine) in seized materials.
Collapse
Affiliation(s)
- Elisabetta Bertol
- a Forensic Toxicology Division, Department of Health Sciences , University of Florence , Florence , Italy
| | - Fabio Vaiano
- a Forensic Toxicology Division, Department of Health Sciences , University of Florence , Florence , Italy
| | - Francesco Mari
- a Forensic Toxicology Division, Department of Health Sciences , University of Florence , Florence , Italy
| | - Maria Grazia Di Milia
- a Forensic Toxicology Division, Department of Health Sciences , University of Florence , Florence , Italy
| | - Silvia Bua
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy.,c Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | - Fabrizio Carta
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy.,c Dipartimento di Chimica, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| |
Collapse
|
15
|
Davidson C, Opacka-Juffry J, Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E, Molina-Holgado F. Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events. CANNABINOID PHARMACOLOGY 2017; 80:135-168. [DOI: 10.1016/bs.apha.2017.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|