1
|
Toutain TGLDO, Miranda JGV, do Rosário RS, de Sena EP. Directed brain interactions over time: A resting-state EEG comparison between schizophrenia and healthy individuals. Psychiatry Res Neuroimaging 2024; 344:111861. [PMID: 39153230 DOI: 10.1016/j.pscychresns.2024.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Understanding the neurophysiological mechanisms of schizophrenia (SZ) is one of the challenges of neuroscience. Many anatomical and functional studies have pointed to problems in brain connectivity in SZ individuals. However, little is known about the relationships between specific brain regions and impairments in brain connectivity in SZ individuals. Herein we propose a new approach using time-varying graphs and the motif synchronization method to build dynamic brain functional networks (BFNs). Dynamic BFNs were constructed from resting-state electroencephalography (rs-EEG) of 14 schizophrenia (SZ) individuals and 14 healthy controls (HCs). BFNs were evaluated based on the percentage of synchronization importance between a pair of regions (considering external and internal interactions) over time. We found differences in the directed interaction between brain regions in SZ individuals compared to the control group. Our method revealed low bilaterally directed interactions between the temporal lobes in SZ individuals compared to HCs, indicating a potential link between altered brain connectivity and the characteristic symptoms of schizophrenia. From a clinical perspective, these results shed light on developing new therapeutic approaches targeting these specific neural interactions that are altered in individuals with SZ. This knowledge allows the application of better interventions focused on restoring or compensating for interrupted connectivity patterns.
Collapse
Affiliation(s)
- Thaise G L de O Toutain
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil; Laboratory of Biosystems, Federal University of Bahia, Salvador, Brazil
| | | | | | - Eduardo Pondé de Sena
- Postgraduate Program in Interactive Processes of Organs and Systems, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil; Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Vale do Canela, Salvador, BA 40110-100, Brazil.
| |
Collapse
|
2
|
Becske M, Marosi C, Molnár H, Fodor Z, Farkas K, Rácz FS, Baradits M, Csukly G. Minimum spanning tree analysis of EEG resting-state functional networks in schizophrenia. Sci Rep 2024; 14:10495. [PMID: 38714807 PMCID: PMC11076461 DOI: 10.1038/s41598-024-61316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed. Two minutes long 64-channel EEG recordings were registered during resting, eyes closed condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC-c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, the result of lower diameter, higher leaf number, and also higher maximum degree and maximum betweenness centrality in patients suggest a star-like, and more random network topology in patients with schizophrenia. Our findings are in accordance with some previous findings based on resting-state EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less optimal, more centralized organization.
Collapse
Affiliation(s)
- Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | | | - Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary.
| |
Collapse
|
3
|
Luo Y, Yu Y, He H, Fan N. Acute ketamine induces neuronal hyperexcitability and deficits in prepulse inhibition by upregulating IL-6. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110913. [PMID: 38103855 DOI: 10.1016/j.pnpbp.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Acute ketamine administration results in psychotic symptoms similar to those observed in schizophrenia and is regarded as a pharmacological model of schizophrenia. Accumulating evidence suggests that patients with schizophrenia show increased IL-6 levels in the blood and cerebrospinal fluid and that IL-6 levels are associated with the severity of psychotic symptoms. In the present study, we found that a single ketamine exposure led to increased expression of IL-6 and IL-6Rα, decreased dendritic spine density, increased expression and currents of T-type calcium channels, and increased neuron excitability in the hippocampal CA1 area 12 h after exposure. Acute ketamine administration also led to impaired prepulse inhibition (PPI) 12 h after administration. Additionally, we found that the expression of signaling molecules IKKα/β, NF-κB, JAK2, and STAT3 was upregulated 12 h after a single ketamine injection. The decreases in dendritic spine density, the increases in calcium currents and neuron excitability, and the impairments in PPI were ameliorated by blocking IL-6 or IL-6Rα. Our findings show that blocking IL-6 or its receptor may protect hippocampal neurons from hyperexcitability, thereby ameliorating ketamine-induced psychotic effects. Our study provides additional evidence that targeting IL-6 and its receptor is a potential strategy for treating psychotic symptoms in acute ketamine-induced psychosis and schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
4
|
Díez Á, Gomez-Pilar J, Poza J, Beño-Ruiz-de-la-Sierra R, Fernández-Linsenbarth I, Recio-Barbero M, Núñez P, Holgado-Madera P, Molina V. Functional network properties in schizophrenia and bipolar disorder assessed with high-density electroencephalography. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110902. [PMID: 38036032 DOI: 10.1016/j.pnpbp.2023.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The study of the cortical functional network properties in schizophrenia (SZ) may benefit from the use of graph theory parameters applied to high-density electroencephalography (EEG). Connectivity Strength (CS) assesses global synchrony of the network, and Shannon Graph Complexity (SGC) summarizes the network distribution of link weights and allows distinguishing between primary and secondary pathways. Their joint use may help in understanding the underpinnings of the functional network hyperactivation and task-related hypomodulation previously described in psychoses. METHODS We used 64-sensor EEG recordings during a P300 oddball task in 128 SZ patients (96 chronic, CR, and 32 first episodes, FE), as well as 46 bipolar disorder (BD) patients, and 92 healthy controls (HC). Pre-stimulus and modulation (task-response minus pre-stimulus windows values) of CS and SGC were assessed in the theta band (4-8 Hz) and the broadband (4-70 Hz). RESULTS Compared to HC, SZ patients (CR and FE) showed significantly higher pre-stimulus CS values in the broadband, and both SZ and BD patients showed lower theta-band CS modulation. SGC modulation values, both theta-band and broadband, were also abnormally reduced in CR patients. Statistically significant relationships were found in the theta band between SGC modulation and both CS pre-stimulus and modulation values in patients. CS altered measures in patients were additionally related to their cognitive outcome and negative symptoms. A primary role of antipsychotics in these results was ruled out. CONCLUSIONS Our results linking SGC and CS alterations in psychotic patients supported a hyperactive and hypomodulatory network mainly involving connections in secondary pathways.
Collapse
Affiliation(s)
- Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | | | | | | | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain.; Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | | | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain.; Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain..
| |
Collapse
|
5
|
Chang Y, Wang X, Liao J, Chen S, Liu X, Liu S, Ming D. Temporal hyper-connectivity and frontal hypo-connectivity within gamma band in schizophrenia: A resting state EEG study. Schizophr Res 2024; 264:220-230. [PMID: 38183959 DOI: 10.1016/j.schres.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/12/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE The brain network serves as the physiological foundation for information processing of the brain. Many studies have reported abnormalities of gamma oscillations in Schizophrenia. The aim of this study was to investigate the gamma-band connectivity in Schizophrenia patients. METHODS We recorded the resting state electroencephalogram (EEG) for 15 schizophrenia patients with refractory auditory hallucinations and 14 healthy controls, with eyes open and closed. The brain network was constructed based on weighted phase lag index for gamma band. Whole scalp metrics (clustering coefficient, global efficiency and local efficiency) and local region metrics (degree and betweenness centrality) in the frontal and temporal lobes were computed. Correlation analyses between network metrics and symptom scales were examined to find associations with symptom severity. RESULTS Schizophrenia patients had larger global efficiency and local efficiency (p < 0.05) with eyes closed, probably representing greater brain activity and information exchange. For degree and betweenness centrality, schizophrenia patients showed an increase (p < 0.05) in the temporal lobe but a decrease (p < 0.05) in the frontal lobe with eyes closed and open, potentially account for the patients' symptoms such as hallucinations and thought disorders. Local efficiency and frontal lobe degree were positively and negatively correlated with the scales, respectively (both p < 0.05). CONCLUSIONS Altered connectivity of the resting state brain network has been revealed and may be associated with the core symptoms of schizophrenia. Our study provides promising evidence for the investigation of the pathological basis of Schizophrenia and could aid in objective diagnosis.
Collapse
Affiliation(s)
- Yuan Chang
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Xiaojuan Wang
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Jingmeng Liao
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Sitong Chen
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Xiaoya Liu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Shuang Liu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China.
| | - Dong Ming
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| |
Collapse
|
6
|
Li Z, Yi C, Chen C, Liu C, Zhang S, Li S, Gao D, Cheng L, Zhang X, Sun J, He Y, Xu P. Predicting individual muscle fatigue tolerance by resting-state EEG brain network. J Neural Eng 2022; 19. [PMID: 35901723 DOI: 10.1088/1741-2552/ac8502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Exercise-induced muscle fatigue is a complex physiological phenomenon involving the central and peripheral nervous systems, and fatigue tolerance varies across individuals. Various studies have emphasized the close relationships between muscle fatigue and the brain. However, the relationships between the resting-state electroencephalogram (rsEEG) brain network and individual muscle fatigue tolerance remain unexplored. APPROACH Eighteen elite water polo athletes took part in our experiment. Five-minute before- and after-fatigue-exercise rsEEG and fatiguing task (i.e., elbow flexion and extension) electromyography (EMG) data were recorded. Based on the graph theory, we constructed the before- and after-task rsEEG coherence network and compared the network differences between them. Then, the correlation between the before-fatigue rsEEG network properties and the EMG fatigue indexes when a subject cannot keep on exercising anymore was profiled. Finally, a prediction model based on the before-fatigue rsEEG network properties was established to predict fatigue tolerance. MAIN RESULTS Results of this study revealed the significant differences between the before- and after-exercise rsEEG brain network and found significant high correlations between before-exercise rsEEG network properties in the beta band and individual muscle fatigue tolerance. Finally, an efficient support vector regression (SVR) model based on the before-exercise rsEEG network properties in the beta band was constructed and achieved the accurate prediction of individual fatigue tolerance. Similar results were also revealed on another thirty-subject swimmer data set further demonstrating the reliability of predicting fatigue tolerance based on the rsEEG network. SIGNIFICANCE Our study investigates the relationship between the rsEEG brain network and individual muscle fatigue tolerance and provides a potential objective physiological biomarker for tolerance prediction and the regulation of muscle fatigue.
Collapse
Affiliation(s)
- Zhiwei Li
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Chanlin Yi
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Chunli Chen
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Chen Liu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Shu Zhang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Shunchang Li
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Dongrui Gao
- Chengdu University of Information Technology, No.24 Block 1, Xuefu Road, Chengdu, Sichuan, 610225, CHINA
| | - Liang Cheng
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Xiabing Zhang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Junzhi Sun
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Ying He
- Small Ball Department of Physical Education and Sport Sciences, Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| |
Collapse
|
7
|
Fernández-Linsenbarth I, Planchuelo-Gómez Á, Beño-Ruiz-de-la-Sierra RM, Díez A, Arjona A, Pérez A, Rodríguez-Lorenzana A, Del Valle P, de Luis-García R, Mascialino G, Holgado-Madera P, Segarra-Echevarría R, Gomez-Pilar J, Núñez P, Bote-Boneaechea B, Zambrana-Gómez A, Roig-Herrero A, Molina V. Search for schizophrenia and bipolar biotypes using functional network properties. Brain Behav 2021; 11:e2415. [PMID: 34758203 PMCID: PMC8671779 DOI: 10.1002/brb3.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Recent studies support the identification of valid subtypes within schizophrenia and bipolar disorder using cluster analysis. Our aim was to identify meaningful biotypes of psychosis based on network properties of the electroencephalogram. We hypothesized that these parameters would be more altered in a subgroup of patients also characterized by more severe deficits in other clinical, cognitive, and biological measurements. METHODS A clustering analysis was performed using the electroencephalogram-based network parameters derived from graph-theory obtained during a P300 task of 137 schizophrenia (of them, 35 first episodes) and 46 bipolar patients. Both prestimulus and modulation of the electroencephalogram were included in the analysis. Demographic, clinical, cognitive, structural cerebral data, and the modulation of the spectral entropy of the electroencephalogram were compared between clusters. Data from 158 healthy controls were included for further comparisons. RESULTS We identified two clusters of patients. One cluster presented higher prestimulus connectivity strength, clustering coefficient, path-length, and lower small-world index compared to controls. The modulation of clustering coefficient and path-length parameters was smaller in the former cluster, which also showed an altered structural connectivity network and a widespread cortical thinning. The other cluster of patients did not show significant differences with controls in the functional network properties. No significant differences were found between patients´ clusters in first episodes and bipolar proportions, symptoms scores, cognitive performance, or spectral entropy modulation. CONCLUSION These data support the existence of a subgroup within psychosis with altered global properties of functional and structural connectivity.
Collapse
Affiliation(s)
| | | | | | - Alvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Antonio Arjona
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Adela Pérez
- Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain
| | | | - Pilar Del Valle
- Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain
| | | | - Guido Mascialino
- School of Psychology, Universidad de Las Américas, Quito, Ecuador
| | | | | | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | | | | | | | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Zhao Z, Li J, Niu Y, Wang C, Zhao J, Yuan Q, Ren Q, Xu Y, Yu Y. Classification of Schizophrenia by Combination of Brain Effective and Functional Connectivity. Front Neurosci 2021; 15:651439. [PMID: 34149345 PMCID: PMC8209471 DOI: 10.3389/fnins.2021.651439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
At present, lots of studies have tried to apply machine learning to different electroencephalography (EEG) measures for diagnosing schizophrenia (SZ) patients. However, most EEG measures previously used are either a univariate measure or a single type of brain connectivity, which may not fully capture the abnormal brain changes of SZ patients. In this paper, event-related potentials were collected from 45 SZ patients and 30 healthy controls (HCs) during a learning task, and then a combination of partial directed coherence (PDC) effective and phase lag index (PLI) functional connectivity were used as features to train a support vector machine classifier with leave-one-out cross-validation for classification of SZ from HCs. Our results indicated that an excellent classification performance (accuracy = 95.16%, specificity = 94.44%, and sensitivity = 96.15%) was obtained when the combination of functional and effective connectivity features was used, and the corresponding optimal feature number was 15, which included 12 PDC and three PLI connectivity features. The selected effective connectivity features were mainly located between the frontal/temporal/central and visual/parietal lobes, and the selected functional connectivity features were mainly located between the frontal/temporal and visual cortexes of the right hemisphere. In addition, most of the selected effective connectivity abnormally enhanced in SZ patients compared with HCs, whereas all the selected functional connectivity features decreased in SZ patients. The above results showed that our proposed method has great potential to become a tool for the auxiliary diagnosis of SZ.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Jun Li
- School of International Education, Xinxiang Medical University, Xinxiang, China
| | - Yanxiang Niu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Junqiang Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Qingli Yuan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Qiongqiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| |
Collapse
|
9
|
Northoff G, Gomez-Pilar J. Overcoming Rest-Task Divide-Abnormal Temporospatial Dynamics and Its Cognition in Schizophrenia. Schizophr Bull 2021; 47:751-765. [PMID: 33305324 PMCID: PMC8661394 DOI: 10.1093/schbul/sbaa178] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex psychiatric disorder exhibiting alterations in spontaneous and task-related cerebral activity whose relation (termed "state dependence") remains unclear. For unraveling their relationship, we review recent electroencephalographic (and a few functional magnetic resonance imaging) studies in schizophrenia that assess and compare both rest/prestimulus and task states, ie, rest/prestimulus-task modulation. Results report reduced neural differentiation of task-related activity from rest/prestimulus activity across different regions, neural measures, cognitive domains, and imaging modalities. Together, the findings show reduced rest/prestimulus-task modulation, which is mediated by abnormal temporospatial dynamics of the spontaneous activity. Abnormal temporospatial dynamics, in turn, may lead to abnormal prediction, ie, predictive coding, which mediates cognitive changes and psychopathological symptoms, including confusion of internally and externally oriented cognition. In conclusion, reduced rest/prestimulus-task modulation in schizophrenia provides novel insight into the neuronal mechanisms that connect task-related changes to cognitive abnormalities and psychopathological symptoms.
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Center/7th Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, Royal Ottawa Healthcare Group, University of Ottawa, Ottawa ON, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| |
Collapse
|
10
|
Dynamic Changes of Brain Networks during Working Memory Tasks in Schizophrenia. Neuroscience 2020; 453:187-205. [PMID: 33249224 DOI: 10.1016/j.neuroscience.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
Electroencephalograph (EEG) signals and graph theory measures have been widely used to characterize the brain functional networks of healthy individuals and patients by calculating the correlations between different electrodes over an entire time series. Although EEG signals have a high temporal resolution and can provide relatively stable results, the process of constructing and analyzing brain functional networks is inevitably complicated by high time complexity. Our goal in this research was to distinguish the brain function networks of schizophrenia patients from those of healthy participants during working memory tasks. Consequently, we utilized a method involving microstates, which are each characterized by a unique topography of electric potentials over an entire channel array, to reduce the dimension of the EEG signals during working memory tasks and then compared and analyzed the brain functional networks using the microstates time series (MTS) and original time series (OTS) of the schizophrenia patients and healthy individuals. We found that the right frontal and parietal-occipital regions neurons of the schizophrenia patients were less active than those of the healthy participants during working memory tasks. Notably, compared with OTS, the time needed to construct the brain functional networks was significantly reduced by using MTS. In conclusion, our results show that, like OTS, MTS can well distinguish the brain functional network of schizophrenia patients from those of healthy individuals during working memory tasks while greatly decreasing time complexity. MTS can thus provide a method for characterizing the original time series for the construction and analysis of EEG brain functional networks.
Collapse
|
11
|
Zhao Z, Wang C, Yuan Q, Zhao J, Ren Q, Xu Y, Li J, Yu Y. Dynamic changes of brain networks during feedback-related processing of reinforcement learning in schizophrenia. Brain Res 2020; 1746:146979. [PMID: 32544500 DOI: 10.1016/j.brainres.2020.146979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022]
Abstract
Previous studies have reported that schizophrenia (SZ) patients showed selective reinforcement learning deficits and abnormal feedback-related event-related potential (ERP) components. However, how the brain networks and their topological properties evolve over time during transient feedback-related cognition processing in SZ patients has not been investigated so far. In this paper, using publicly available feedback-related ERP data which were recorded from SZ patients and healthy controls (HC) when they performed a reinforcement learning task, we carried out an event-related network analysis where topology of brain functional networks was characterized with some graph measures including clustering coefficient (C), global efficiency (Eglobal) and local efficiency (Elocal) on a millisecond timescale. Our results showed that the brain functional networks displayed rapid rearrangements of topological properties during transient feedback-related cognition process for both two groups. More importantly, we found that SZ patients exhibited significantly reduced theta-band (time window of 170-350 ms after stimuli onset) brain functional connectivity strength, Eglobal, Elocal and C in response to negative feedback stimuli compared to HC group. The network based statistic (NBS) analysis detected one significantly decreased theta-band subnetwork in SZ patients mainly involving in frontal-occipital and temporal-occipital connections compared to HC group. In addition, clozapine treatment seemed to greatly reduce theta-band power and topological measures of brain networks in SZ patients. Finally, the theta-band power, graph measures and functional connectivity were extracted to train a support vector machine classifier for classification of HC from SZ, or Cloz + SZ or Cloz- SZ, and a relatively good classification accuracy of 84.48%, 89.47% and 78.26% was obtained, respectively. The above results suggested a less optimal organization of theta-band brain network in SZ patients, and studying the topological parameters of brain networks evolve over time during transient feedback-related processing could be useful for understanding the pathophysiologic mechanisms underlying reinforcement learning deficits in SZ patients.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China.
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Qingli Yuan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Junqiang Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Qiongqiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Jie Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China.
| |
Collapse
|
12
|
Lubeiro A, Fatjó-Vilas M, Guardiola M, Almodóvar C, Gomez-Pilar J, Cea-Cañas B, Poza J, Palomino A, Gómez-García M, Zugasti J, Molina V. Analysis of KCNH2 and CACNA1C schizophrenia risk genes on EEG functional network modulation during an auditory odd-ball task. Eur Arch Psychiatry Clin Neurosci 2020; 270:433-442. [PMID: 30607529 DOI: 10.1007/s00406-018-0977-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
A deficit in task-related functional connectivity modulation from electroencephalogram (EEG) has been described in schizophrenia. The use of measures of neuronal connectivity as an intermediate phenotype may allow identifying genetic factors involved in these deficits, and therefore, establishing underlying pathophysiological mechanisms. Genes involved in neuronal excitability and previously associated with the risk for schizophrenia may be adequate candidates in relation to functional connectivity alterations in schizophrenia. The objective was to study the association of two genes of voltage-gated ion channels (CACNA1C and KCNH2) with the functional modulation of the cortical networks measured with EEG and graph-theory parameter during a cognitive task, both in individuals with schizophrenia and healthy controls. Both CACNA1C (rs1006737) and KCNH2 (rs3800779) were genotyped in 101 controls and 50 schizophrenia patients. Small-world index (SW) was calculated from EEG recorded during an odd-ball task in two different temporal windows (pre-stimulus and response). Modulation was defined as the difference in SW between both windows. Genetic, group and their interaction effects on SW in the pre-stimulus window and in modulation were evaluated using ANOVA. The CACNA1C genotype was not associated with SW properties. KCNH2 was significantly associated with SW modulation. Healthy subjects showed a positive SW modulation irrespective of the KCNH2 genotype, whereas within patients allele-related differences were observed. Patients carrying the KCNH2 risk allele (A) presented a negative SW modulation and non-carriers showed SW modulation similar to the healthy subjects. Our data suggest that KCNH2 genotype contributes to the efficient modulation of brain electrophysiological activity during a cognitive task in schizophrenia patients.
Collapse
Affiliation(s)
- Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Carrer Del Dr. Antoni Pujadas, 38 Sant Boi De Llobregat, 08830, Barcelona, Spain. .,Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain. .,CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain.
| | - Maria Guardiola
- FIDMAG Germanes Hospitalàries Research Foundation, Carrer Del Dr. Antoni Pujadas, 38 Sant Boi De Llobregat, 08830, Barcelona, Spain.,Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar
- FIDMAG Germanes Hospitalàries Research Foundation, Carrer Del Dr. Antoni Pujadas, 38 Sant Boi De Llobregat, 08830, Barcelona, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Department TSCIT, ETS Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - Benjamin Cea-Cañas
- Neurophysiology service, University Hospital of Valladolid, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, Department TSCIT, ETS Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain.,Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Aitor Palomino
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - Marta Gómez-García
- Psychiatry service, University Hospital of Valladolid, Valladolid, Spain
| | - Jone Zugasti
- Psychiatry Department, University Hospital of Álava, Álava, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain.,CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain.,Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Psychiatry service, University Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
13
|
Carment L, Dupin L, Guedj L, Térémetz M, Krebs MO, Cuenca M, Maier MA, Amado I, Lindberg PG. Impaired attentional modulation of sensorimotor control and cortical excitability in schizophrenia. Brain 2020; 142:2149-2164. [PMID: 31099820 PMCID: PMC6598624 DOI: 10.1093/brain/awz127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 03/10/2019] [Indexed: 11/14/2022] Open
Abstract
Impairments in attentional, working memory and sensorimotor processing have been consistently reported in schizophrenia. However, the interaction between cognitive and sensorimotor impairments and the underlying neural mechanisms remains largely uncharted. We hypothesized that altered attentional processing in patients with schizophrenia, probed through saccadic inhibition, would partly explain impaired sensorimotor control and would be reflected as altered task-dependent modulation of cortical excitability and inhibition. Twenty-five stabilized patients with schizophrenia, 17 unaffected siblings and 25 healthy control subjects were recruited. Subjects performed visuomotor grip force-tracking alone (single-task condition) and with increased cognitive load (dual-task condition). In the dual-task condition, two types of trials were randomly presented: trials with visual distractors (requiring inhibition of saccades) or trials with addition of numbers (requiring saccades and addition). Both dual-task trial types required divided visual attention to the force-tracking target and to the distractor or number. Gaze was measured during force-tracking tasks, and task-dependent modulation of cortical excitability and inhibition were assessed using transcranial magnetic stimulation. In the single-task, patients with schizophrenia showed increased force-tracking error. In dual-task distraction trials, force-tracking error increased further in patients, but not in the other two groups. Patients inhibited fewer saccades to distractors, and the capacity to inhibit saccades explained group differences in force-tracking performance. Cortical excitability at rest was not different between groups and increased for all groups during single-task force-tracking, although, to a greater extent in patients (80%) compared to controls (40%). Compared to single-task force-tracking, the dual-task increased cortical excitability in control subjects, whereas patients showed decreased excitability. Again, the group differences in cortical excitability were no longer significant when failure to inhibit saccades was included as a covariate. Cortical inhibition was reduced in patients in all conditions, and only healthy controls increased inhibition in the dual-task. Siblings had similar force-tracking and gaze performance as controls but showed altered task-related modulation of cortical excitability and inhibition in dual-task conditions. In patients, neuropsychological scores of attention correlated with visuomotor performance and with task-dependant modulation of cortical excitability. Disorganization symptoms were greatest in patients with weakest task-dependent modulation of cortical excitability. This study provides insights into neurobiological mechanisms of impaired sensorimotor control in schizophrenia showing that deficient divided visual attention contributes to impaired visuomotor performance and is reflected in impaired modulation of cortical excitability and inhibition. In siblings, altered modulation of cortical excitability and inhibition is consistent with a genetic risk for cortical abnormality.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Laura Guedj
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Maxime Térémetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France.,SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Macarena Cuenca
- SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France.,Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France.,Integrative Neuroscience and Cognition Center, UMR 8002, CNRS / Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie, CNRS GDR3557, Paris, France.,Integrative Neuroscience and Cognition Center, UMR 8002, CNRS / Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Life Sciences, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France.,SHU, Resource Center for Cognitive Remediation and Psychosocial Rehabilitation, Université Paris Descartes, Hôpital Sainte-Anne, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Institut de Psychiatrie, CNRS GDR3557, Paris, France
| |
Collapse
|
14
|
Carment L, Khoury E, Dupin L, Guedj L, Bendjemaa N, Cuenca M, Maier MA, Krebs MO, Lindberg PG, Amado I. Common vs. Distinct Visuomotor Control Deficits in Autism Spectrum Disorder and Schizophrenia. Autism Res 2020; 13:885-896. [PMID: 32157824 DOI: 10.1002/aur.2287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are neurodevelopmental disorders with partly overlapping clinical phenotypes including sensorimotor impairments. However, direct comparative studies on sensorimotor control across these two disorders are lacking. We set out to compare visuomotor upper limb impairment, quantitatively, in ASD and SCZ. Patients with ASD (N = 24) were compared to previously published data from healthy control participants (N = 24) and patients with SCZ (N = 24). All participants performed a visuomotor grip force-tracking task in single and dual-task conditions. The dual-task (high cognitive load) presented either visual distractors or required mental addition during grip force-tracking. Motor inhibition was measured by duration of force release and from principal component analysis (PCA) of the participant's force-trajectory. Common impairments in patients with ASD and SCZ included increased force-tracking error in single-task condition compared to controls, a further increase in error in dual-task conditions, and prolonged duration of force release. These three sensorimotor impairments were found in both patient groups. In contrast, distinct impairments in patients with ASD included greater error under high cognitive load and delayed onset of force release compared to SCZ. The PCA inhibition component was higher in ASD than SCZ and controls, correlated to duration of force release, and explained group differences in tracking error. In conclusion, sensorimotor impairments related to motor inhibition are common to ASD and SCZ, but more severe in ASD, consistent with enhanced neurodevelopmental load in ASD. Furthermore, impaired motor anticipation may represent a further specific impairment in ASD. Autism Res 2020, 13: 885-896. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism spectrum disorder (ASD) and schizophrenia (SCZ) are neurodevelopmental disorders with partly overlapping and partly distinct clinical symptoms. Sensorimotor impairments rank among these symptoms, but it is less clear whether they are shared or distinct. In this study, we showed using a grip force task that sensorimotor impairments related to motor inhibition are common to ASD and SCZ, but more severe in ASD. Impaired motor anticipation may represent a further specific impairment in ASD.
Collapse
Affiliation(s)
- Loïc Carment
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.,Institut de Psychiatrie CNRS GDR3557, Paris, France
| | | | - Lucile Dupin
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.,Institut de Psychiatrie CNRS GDR3557, Paris, France
| | - Laura Guedj
- Resource Center for Cognitive Remediation and Psychosocial Rehabilitation (C3RP), Université de Paris, Hôpital Sainte-Anne, Paris, France
| | - Narjes Bendjemaa
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.,Institut de Psychiatrie CNRS GDR3557, Paris, France.,Resource Center for Cognitive Remediation and Psychosocial Rehabilitation (C3RP), Université de Paris, Hôpital Sainte-Anne, Paris, France.,Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France
| | - Macarena Cuenca
- Institut de Psychiatrie CNRS GDR3557, Paris, France.,Centre de Recherche Clinique, Hôpital Sainte-Anne, Paris, France
| | - Marc A Maier
- Institut de Psychiatrie CNRS GDR3557, Paris, France.,Université de Paris UMR 8002 CNRS, Paris, France
| | - Marie-Odile Krebs
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.,Institut de Psychiatrie CNRS GDR3557, Paris, France.,Resource Center for Cognitive Remediation and Psychosocial Rehabilitation (C3RP), Université de Paris, Hôpital Sainte-Anne, Paris, France
| | - Påvel G Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.,Institut de Psychiatrie CNRS GDR3557, Paris, France
| | - Isabelle Amado
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France.,Institut de Psychiatrie CNRS GDR3557, Paris, France.,Resource Center for Cognitive Remediation and Psychosocial Rehabilitation (C3RP), Université de Paris, Hôpital Sainte-Anne, Paris, France
| |
Collapse
|
15
|
Cea-Cañas B, Gomez-Pilar J, Núñez P, Rodríguez-Vázquez E, de Uribe N, Díez Á, Pérez-Escudero A, Molina V. Connectivity strength of the EEG functional network in schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109801. [PMID: 31682892 DOI: 10.1016/j.pnpbp.2019.109801] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/16/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023]
Abstract
The application of graph theory measures in the study of functional brain networks allows for the description of their general properties and their alterations in mental illness. Among these measures, connectivity strength (CS) estimates the degree of functional connectivity of the whole network. Previous studies in schizophrenia patients have reported higher baseline CS values and modulation deficits in EEG spectral properties during cognitive activity. The specificity of these alterations and their relationships with pharmacological treatments remain unknown. Therefore, in the present study, we assessed functional CS on EEG-based brain networks in 79 schizophrenia and 29 bipolar patients in addition to 63 healthy controls. The subjects performed a P300 task during the EEG recordings from which the pre-stimulus and the task-related modulation CS values were computed in the global and theta bands. These values were compared between the groups and between the patients who had and had not received different treatments. The global band pre-stimulus CS was significantly higher in the schizophrenia group compared with the bipolar and control groups. Theta band CS modulation was decreased in schizophrenia and bipolar patients. Treatment with antipsychotics, lithium, benzodiazepines, and anticonvulsants did not significantly alter these CS values. The first-episode and chronic schizophrenia patients did not show significant differences in CS values. Higher global band pre-stimulus CS values were associated with worse general cognition in schizophrenia patients. These data support increased connectivity in the whole-brain network that is specific to schizophrenia and suggest a general hyper-synchronized basal state that might hamper cognition in this syndrome.
Collapse
Affiliation(s)
- Benjamín Cea-Cañas
- Clinical Neurophysiology Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Eva Rodríguez-Vázquez
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Nieves de Uribe
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Álvaro Díez
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Adela Pérez-Escudero
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Vicente Molina
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain; Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain.
| |
Collapse
|
16
|
Sun Q, Fang Y, Peng X, Shi Y, Chen J, Wang L, Tan L. Hyper-Activated Brain Resting-State Network and Mismatch Negativity Deficit in Schizophrenia With Auditory Verbal Hallucination Revealed by an Event-Related Potential Evidence. Front Psychiatry 2020; 11:765. [PMID: 32903707 PMCID: PMC7438905 DOI: 10.3389/fpsyt.2020.00765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a holergasia with unclear mechanism and high heterogeneity. Auditory verbal hallucination (AVH) study might help in understanding schizophrenia from the perspective of individual symptoms. This study aimed to investigate the activities of the resting-state networks (RSN) in the electroencephalogram (EEG) and mismatch negativity (MMN) in task-related state of schizophrenia patients with AVH. We recruited 30 schizophrenia patients without any medication for more than 4 weeks (15 AVH patients and 15 Non-AVH patients) and 15 healthy controls. We recorded the EEG data of the participants in the resting-state for 7 min and the event-related potential (ERP) data under an auditory oddball paradigm. In the resting-state EEG network, AVH patients exhibited a higher clustering coefficient than Non-AVH patients and healthy controls on delta and beta bands and a shorter characteristic path length than Non-AVH patients and healthy controls on all frequency bands. For ERP data, AVH patients showed a lower MMN amplitude than healthy controls (p = 0.017) and Non-AVH patients (p = 0.033). What's more, MMN amplitude was positively correlated with clustering coefficient, and negatively correlated with characteristic path length on delta, theta, beta and gamma band in AVH patients. Our results indicate that AVH patients showed a hyper-activity in resting-state and may have impaired higher-order auditory expectations in the task-related state than healthy controls and Non-AVH patients. And it seems reasonable to conclude that the formation of AVH may occupy certain brain resources and compete for brain resources with external auditory stimuli.
Collapse
Affiliation(s)
- Qiaoling Sun
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yehua Fang
- Department of Clinical Psychology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xuemei Peng
- Department Psychology, Xiangtan Central Hospital, Xiangtan, China
| | - Yongyan Shi
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinhong Chen
- Department of Sleeping Disorders & Neurosis, Brain Hospital of Hunan Province, Changsha, China
| | - Lifeng Wang
- Department of Clinical Psychology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liwen Tan
- Department of Psychiatry, Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task. Behav Neurol 2019; 2019:1410425. [PMID: 31565094 PMCID: PMC6745104 DOI: 10.1155/2019/1410425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2019] [Accepted: 06/10/2019] [Indexed: 12/29/2022] Open
Abstract
Previous studies have shown that the neural mechanisms underlying visual spatial attention rely on top-down control information from the frontal and parietal cortexes, which ultimately amplifies sensory processing of stimulus occurred at the attended location relative to those at unattended location. However, the modulations of effective brain networks in response to stimulus at attended and unattended location are not yet clear. In present study, we collected event-related potentials (ERPs) from 15 subjects during a visual spatial attention task, and a partial directed coherence (PDC) method was used to construct alpha-band effective brain networks of two conditions (targets at attended and nontargets at unattended location). Flow gain mapping, effective connectivity pattern, and graph measures including clustering coefficient (C), characteristic path length (L), global efficiency (Eglobal), and local efficiency (Elocal) were compared between two conditions. Flow gain mapping showed that the frontal region seemed to serve as the main source of information transmission in response to targets at attended location while the parietal region served as the main source in nontarget condition. Effective connectivity pattern indicated that in response to targets, there existed obvious top-down connections from the frontal, temporal, and parietal cortexes to the visual cortex compared with in response to nontargets. Graph theory analysis was used to quantify the topographical properties of the brain networks, and results revealed that in response to targets, the brain networks were characterized by significantly smaller characteristic path length and larger global efficiency than in response to nontargets. Our findings suggested that smaller characteristic path length and larger global efficiency could facilitate global integration of information and provide a substrate for more efficient perceptual processing of targets at attended location compared with processing of nontargets at ignored location, which revealed the neural mechanisms underlying visual spatial attention from the perspective of effective brain networks and graph theory for the first time and opened new vistas to interpret a cognitive process.
Collapse
|
18
|
Cea-Cañas B, de Luis R, Lubeiro A, Gomez-Pilar J, Sotelo E, Del Valle P, Gómez-García M, Alonso-Sánchez A, Molina V. Structural connectivity in schizophrenia and bipolar disorder: Effects of chronicity and antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:369-377. [PMID: 30790676 DOI: 10.1016/j.pnpbp.2019.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
Previous studies based on graph theory parameters applied to diffusion tensor imaging support an alteration of the global properties of structural connectivity network in schizophrenia. However, the specificity of this alteration and its possible relation with chronicity and treatment have received small attention. We have assessed small-world (SW) and connectivity strength indexes of the structural network built using fractional anisotropy values of the white matter tracts connecting 84 cortical and subcortical regions in 25 chronic and 18 first episode (FE) schizophrenia and 24 bipolar patients and 28 healthy controls. Chronic schizophrenia and bipolar patients showed significantly smaller SW and connectivity strength indexes in comparison with controls and FE patients. SW reduction was driven by increased averaged path-length (PL) values. Illness duration but not treatment doses were negatively associated with connectivity strength, SW and PL in patients. Bipolar patients exposed to antipsychotics did not differ in SW or connectivity strength from bipolar patients without such an exposure. Executive functions and social cognition were related to SW index in the schizophrenia group. Our results support a role for chronicity but not treatment in structural network alterations in major psychoses, which may not differ between schizophrenia and bipolar disorder, and may hamper cognition.
Collapse
Affiliation(s)
- Benjamín Cea-Cañas
- Clinical Neurophysiology Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Rodrigo de Luis
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Eva Sotelo
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Pilar Del Valle
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Marta Gómez-García
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Adrián Alonso-Sánchez
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007 Salamanca, Spain.
| |
Collapse
|
19
|
Gomez-Pilar J, Poza J, Gómez C, Northoff G, Lubeiro A, Cea-Cañas BB, Molina V, Hornero R. Altered predictive capability of the brain network EEG model in schizophrenia during cognition. Schizophr Res 2018; 201:120-129. [PMID: 29764760 DOI: 10.1016/j.schres.2018.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 12/21/2022]
Abstract
The study of the mechanisms involved in cognition is of paramount importance for the understanding of the neurobiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying functional network for each subject. Finally, pre-stimulus network connections were iteratively modified according to different models of network reorganization. This adjustment was applied by minimizing the prediction error through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly connected during pre-stimulus) for most of the subjects, though the ratio of controls that exhibited this behavior was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct evidence that the changes in phase-based brain network parameters from pre-stimulus to cognitive response in the theta band are closely related to the performance in important cognitive domains. Our findings not only contribute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal substrates in schizophrenia.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain.
| | - Jesús Poza
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain; INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Alba Lubeiro
- Psychiatry Department, University Hospital of Valladolid, Valladolid, Spain
| | | | - Vicente Molina
- INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain; Psychiatry Department, University Hospital of Valladolid, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain; INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|
20
|
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Reusable Multielectrode Array Technique for Electroencephalography in Awake Freely Moving Mice. Front Integr Neurosci 2018; 12:53. [PMID: 30416434 PMCID: PMC6213968 DOI: 10.3389/fnint.2018.00053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/08/2018] [Indexed: 11/13/2022] Open
Abstract
Translational comparison of rodent models of neurological and neuropsychiatric diseases to human electroencephalography (EEG) biomarkers in these conditions will require multisite rodent EEG on the skull surface, rather than local area electrocorticography (ECoG) or multisite local field potential (LFP) recording. We have developed a technique for planar multielectrode array (MEA) implantation on the mouse skull surface, which enables multisite EEG in awake and freely moving mice and reusability of the MEA probes. With this method, we reliably obtain 30-channel low-noise EEG from awake mice. Baseline and stimulus-evoked EEG recordings can be readily obtained and analyzed. For example, we have demonstrated EEG responses to auditory stimuli. Broadband noise elicits reliable 30-channel auditory event-related potentials (ERPs), and chirp stimuli induce phase-locked EEG responses just as in human sound presentation paradigms. This method is unique in achieving chronic implantation of novel MEA technology onto the mouse skull surface for chronic multisite EEG recordings. Furthermore, we demonstrate a reliable method for reusing MEA probes for multiple serial implantations without loss of EEG quality. This skull surface MEA methodology can be used to obtain simultaneous multisite EEG recordings and to test EEG biomarkers in diverse mouse models of human neurological and neuropsychiatric diseases. Reusability of the MEA probes makes it more cost-effective to deploy this system for various studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jonathan W Lovelace
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
21
|
Effect of 5-HTTLPR on current source density, connectivity, and topological properties of resting state EEG networks. Brain Res 2018; 1697:67-75. [PMID: 29913130 DOI: 10.1016/j.brainres.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
Abstract
The S allele of serotonin transporter gene (5-HTTLPR) has been found to increase the risk of depression and other mental health problems, but some evidence suggests that S-allele carriers outperform subjects carrying the long allele in an array of cognitive tasks. Evidence linking this polymorphism with individual variation in electrophysiological properties of resting state brain networks is very limited. This study investigated the effect of 5-HTTLPR polymorphism on EEG current source density, connectivity, and topological properties of resting state networks. We collected genetic and resting state EEG data in 113 Caucasians. As compared to L-homozygotes, S-allele carriers showed lower current source density and connectivity in most frequency bands in areas overlapping with the default mode and emotion regulation regions. The analysis of graph-theoretical measures showed that S-allele carriers, as compared to L-homozygotes, have less optimal topological properties of brain networks in theta, but more optimal in alpha band. This dissociation may reflect the predisposition to emotional disorders, which is inherent to S-allele carriers, and, on the other hand, their superior functioning in some cognitive domains.
Collapse
|
22
|
Altered Small-World Networks in First-Episode Schizophrenia Patients during Cool Executive Function Task. Behav Neurol 2018; 2018:2191208. [PMID: 30254708 PMCID: PMC6145160 DOI: 10.1155/2018/2191208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 01/25/2023] Open
Abstract
At present, little is known about brain functional connectivity and its small-world topologic properties in first-episode schizophrenia (SZ) patients during cool executive function task. In this paper, the Trail Making Test-B (TMT-B) task was used to evaluate the cool executive function of first-episode SZ patients and electroencephalography (EEG) data were recorded from 14 first-episode SZ patients and 14 healthy controls during this cool executive function task. Brain functional connectivity between all pairs of EEG channels was constructed based on mutual information (MI) analysis. The constructed brain functional networks were filtered by three thresholding schemes: absolute threshold, mean degree, and a novel data-driven scheme based on orthogonal minimal spanning trees (OMST), and graph theory was then used to study the topographical characteristics of the filtered brain graphs. Results indicated that the graph theoretical measures of the theta band showed obvious difference between SZ patients and healthy controls. In the theta band, the characteristic path length was significantly longer and the cluster coefficient was significantly smaller in the SZ patients for a wide range of absolute threshold T. However, the cluster coefficient showed no significant changes, and the characteristic path length was still significantly longer in SZ patients when calculated as a function of mean degree K. Interestingly, we also found that only the characteristic path length was significantly longer in SZ patients compared with healthy controls after using the OMST scheme. Pearson correlation analysis showed that the characteristic path length was positively correlated with executive time of TMT-B for the combined SZ patients and healthy controls (r = 0.507, P = 0.006), but not for SZ patients alone (r = 0.072, P = 0.612). The above results suggested a less optimal organization of the brain network and could be useful for understanding the pathophysiologic mechanisms underlying cool executive dysfunction in first-episode SZ patients.
Collapse
|
23
|
Gomez-Pilar J, de Luis-García R, Lubeiro A, de la Red H, Poza J, Núñez P, Hornero R, Molina V. Relations between structural and EEG-based graph metrics in healthy controls and schizophrenia patients. Hum Brain Mapp 2018; 39:3152-3165. [PMID: 29611297 DOI: 10.1002/hbm.24066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Our aim was to assess structural and functional networks in schizophrenia patients; and the possible prediction of the latter based on the former. The possible dependence of functional network properties on structural alterations has not been analyzed in schizophrenia. We applied averaged path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion magnetic resonance and electroencephalography in 39 schizophrenia patients and 79 controls. Functional data were collected for the global and theta frequency bands during an odd-ball task, prior to stimulus delivery and at the corresponding processing window. Connectivity matrices were constructed from tractography and registered cortical segmentations (structural) and phase-locking values (functional). Both groups showed a significant electroencephalographic task-related modulation (change between prestimulus and response windows) in the global and theta bands. Patients showed larger structural PL and prestimulus density in the global and theta bands, and lower PL task-related modulation in the theta band. Structural network values predicted prestimulus global band values in controls and global band task-related modulation in patients. Abnormal functional values found in patients (prestimulus density in the global and theta bands and task-related modulation in the theta band) were not predicted by structural data in this group. Structural and functional network abnormalities respectively predicted cognitive performance and positive symptoms in patients. Taken together, the alterations in the structural and functional theta networks in the patients and the lack of significant relations between these alterations, suggest that these types of network abnormalities exist in different groups of schizophrenia patients.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Rodrigo de Luis-García
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain
| | - Henar de la Red
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
24
|
Gomez-Pilar J, de Luis-García R, Lubeiro A, de Uribe N, Poza J, Núñez P, Ayuso M, Hornero R, Molina V. Deficits of entropy modulation in schizophrenia are predicted by functional connectivity strength in the theta band and structural clustering. NEUROIMAGE-CLINICAL 2018; 18:382-389. [PMID: 29487795 PMCID: PMC5814380 DOI: 10.1016/j.nicl.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/10/2018] [Accepted: 02/04/2018] [Indexed: 01/17/2023]
Abstract
Spectral entropy (SE) allows comparing task-related modulation of electroencephalogram (EEG) between patients and controls, i.e. spectral changes of the EEG associated to task performance. A SE modulation deficit has been replicated in different schizophrenia samples. To investigate the underpinnings of SE modulation deficits in schizophrenia, we applied graph-theory to EEG recordings during a P300 task and fractional anisotropy (FA) data from diffusion tensor imaging in 48 patients (23 first episodes) and 87 healthy controls. Functional connectivity was assessed from phase-locking values among sensors in the theta band, and structural connectivity was based on FA values for the tracts connecting pairs of regions. From those data, averaged clustering coefficient (CLC), characteristic path-length (PL) and connectivity strength (CS, also known as density) were calculated for both functional and structural networks. The corresponding functional modulation values were calculated as the difference in SE and CLC, PL and CS between the pre-stimulus and response windows during the task. The results revealed a higher functional CS in the pre-stimulus window in patients, predictive of smaller modulation of SE in this group. The amount of increase in theta CS from pre-stimulus to response related to SE modulation in patients and controls. Structural CLC was associated with SE modulation in the patients. SE modulation was predictive of negative symptoms, whereas CLC and PL modulation was associated with cognitive performance in the patients. These results support that a hyperactive functional connectivity and/or structural connective deficits in the patients hamper the dynamical modulation of connectivity underlying cognition. Functional connectivity strength and structural clustering properties were associated to the deficit in SE modulation in schizophrenia. Functional connectivity strength in the theta band was larger in the baseline in the patients. A hyperactive pre-stimulus state hampers the capacity for adequately modulating neural activity across the brain in schizophrenia. The possible basis for that problem may be investigated to identify therapeutic targets.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Rodrigo de Luis-García
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - Nieves de Uribe
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007, University of Salamanca, Spain; IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Marta Ayuso
- Neurophysiology Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007, University of Salamanca, Spain; IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain; Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003 Valladolid, Spain.; Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007, University of Salamanca, Spain.
| |
Collapse
|